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PURPOSE. While millions of individuals show early age-related macular degeneration (AMD)
signs, yet have excellent vision, the risk of progression to advanced AMD with legal blindness
is highly variable. We suggest means of artificial intelligence to individually predict AMD
progression.

METHODS. In eyes with intermediate AMD, progression to the neovascular type with choroidal
neovascularization (CNV) or the dry type with geographic atrophy (GA) was diagnosed based
on standardized monthly optical coherence tomography (OCT) images by independent
graders. We obtained automated volumetric segmentation of outer neurosensory layers and
retinal pigment epithelium, drusen, and hyperreflective foci by spectral domain-OCT image
analysis. Using imaging, demographic, and genetic input features, we developed and validated
a machine learning–based predictive model assessing the risk of conversion to advanced
AMD.

RESULTS. Of a total of 495 eyes, 159 eyes (32%) had converted to advanced AMD within 2
years, 114 eyes progressed to CNV, and 45 to GA. Our predictive model differentiated
converting versus nonconverting eyes with a performance of 0.68 and 0.80 for CNV and GA,
respectively. The most critical quantitative features for progression were outer retinal
thickness, hyperreflective foci, and drusen area. The features for conversion showed
pathognomonic patterns that were distinctly different for the neovascular and the atrophic
pathways. Predictive hallmarks for CNV were mostly drusen-centric, while GA markers were
associated with neurosensory retina and age.

CONCLUSIONS. Artificial intelligence with automated analysis of imaging biomarkers allows
personalized prediction of AMD progression. Moreover, pathways of progression may be
specific in respect to the neovascular/atrophic type.

Keywords: age-related macular degeneration, optical coherence tomography, machine
learning, artificial intelligence, choroidal neovascularization

Age-related macular degeneration (AMD) is a leading cause
for irreversible visual loss despite progress in therapeutic

strategies. As a result of shifting demographics and aging
populations, rates of overall worldwide vision loss during
2005–2015 increased by 23% for blindness and by 24% for
severe vision impairment, in total affecting more than 900
million individuals.1 Impaired visual function has a tangible
impact on quality of life, with sight loss being independently
associated with adverse social outcomes and impaired general
and mental health.2 There is obviously an urgent need to
intervene in a timely manner, to efficiently manage the
consequences of this overwhelming epidemic, and to under-
stand the association of ageing and invariable vision loss.

Progression to advanced AMD is heralded by the presence of
large drusen and pigmentary anomalies.3 However, despite
these associations on a population level, it is difficult to
determine the precise risk and timing of disease progression for
an individual patient.

With rapid advances in diagnostic imaging technology, the
morphologic assessment of macular pathology has shifted to

optical coherence tomography (OCT).4 Spectral domain (SD)-
OCT was successful in reliably detecting drusen in 99.7% of
AMD eyes in the Age-Related Eye Disease Study (AREDS)
cohort.5 Quantitative drusen imaging revealed a dynamic
growth pattern of drusen with an increase in drusen volume
over time in 48% of eyes.6 Moreover, a distinct association was
found between drusen characteristics such as area and volume
and the development of advanced AMD, both for the
neovascular as well as atrophic type.7 Since patients with a
high drusen volume have a significantly higher progression rate
toward either form of advanced AMD, OCT algorithms capable
of reliably measuring drusen were suggested for determining
clinical trial endpoints for AMD, accelerating the development
of timely and adequate treatments.8

Advanced means of medical image analysis are now
beginning to offer tools that are not only able to automatically
and reliably segment even discrete morphologic features and to
recognize associations between markers, identifying patho-
physiological patterns, but also to offer distinct predictions of
the future disease course.9

Copyright 2018 The Authors

iovs.arvojournals.org j ISSN: 1552-5783 3199

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded From: https://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/937362/ on 12/17/2018

https://creativecommons.org/licenses/by-nc-nd/4.0/


In this article, we present a method to identify the
individual risk of conversion of intermediate AMD to the
advanced stages, that is, neovascular AMD or geographic
atrophy (GA). We describe how modern means of artificial
intelligence such as machine learning techniques can be used
to predict the individual risk of disease progression in a
common and severe disease such as AMD based mainly on
morphologic imaging biomarkers but also on integrating
genetic and demographic parameters.

METHODS

Participants and Image Acquisition

This post hoc analysis was performed on longitudinal data of
fellow eyes of patients with neovascular AMD participating in
the HARBOR clinical trial (ClinicalTrials.gov identifier:
NCT00891735). HARBOR was a 24-month, phase III, random-
ized, multicenter, double-masked, active treatment controlled
study that evaluated the efficacy and safety of intravitreal
ranibizumab, 0.5 and 2.0 mg, administered monthly or on an
as-needed basis in 1095 treatment-naive patients with sub-
foveal neovascular AMD. Patients had prospective monthly
evaluations of both eyes with SD-OCT imaging following a
standardized protocol. All images in the study were acquired
with a HD-OCT device (Cirrus; Carl Zeiss Meditec, Inc., Dublin,
CA, USA) and contained 512 3 128 3 1024 voxels with a size of
11.7 3 47.2 3 2.0 lm3, covering a volume of 6 3 6 3 2 mm3.
The study was conducted in compliance with the Declaration
of Helsinki, and approval for this post hoc analysis was
obtained by the Ethics Committee at the Medical University of
Vienna.

Manual Grading Protocol

To create a gold standard of conversion times, two graders (SK,
XH) manually determined the time of first conversion to
advanced AMD, characterized by either choroidal neovascular-
ization (CNV) or GA, for each fellow eye on the basis of OCT
imaging. As previously defined by Abdelfattah et al.,8 presence
of intraretinal fluid (IRC) or subretinal fluid (SRF) with an
associated suspicious pigment epithelial detachment (PED) or
subretinal hyperreflective material (SHRM) was considered as
evidence of CNV. Furthermore, the presence of thinning of the
RPE band, loss of the overlying ellipsoid zone (EZ), and
external limiting membrane (ELM) with thinning of the outer
nuclear layer (ONL) as well as an increased signal transmission
into the choroid were regarded as GA.

Automated Image Analysis

To be able to quantitatively characterize the morphology of the
retina, a series of fully automated image analysis steps without
manual correction was performed with the aim of extracting

and measuring OCT biomarkers associated with AMD. The
specific biomarkers of interest were the status of outer retinal
layers, drusen and reticular pseudodrusen, and hyperreflective
foci (HRF).

Retinal Layer Segmentation. Automated layer segmenta-
tion was based on the Iowa Reference Algorithms,10 a graph
theoretic approach for identifying a set of surfaces corre-
sponding to layer interfaces. The following three layers
denoting the outer retina were segmented and their thickness
measured: ONL, RPE with photoreceptor outer segments
(RPEþIS/OS), and drusen space between the RPE and Bruch’s
membrane. An example of the segmentation of the three
retinal layers is shown in Figure 1.

Drusen and Reticular Pseudodrusen Segmentation.
The thickness of the segmented drusen was thresholded to
obtain an en face retinal region covered by drusen, which we
call the drusen footprint (see Fig. 4). In addition, automated
image segmentation based on watershed transform was
applied to further partition drusen into individual ones. The
reticular pseudodrusen were segmented by thresholding bright
voxels overlying the IS/OS layer, identifying reflective objects
that protruded into the interface between the IS/OS and ONL
layers.

HRF Segmentation. HRF were automatically segmented
with a deep learning approach based on a convolutional neural
network (CNN)11 specifically developed for this purpose. The
CNN was trained on 812 manually annotated B-scans
containing HRF from 104 patients with CNV, diabetic macular
edema, or retinal vein occlusion. The training set scans were
acquired with two different OCT device models (Cirrus; Carl
Zeiss, and Spectralis; Heidelberg Engineering, Heidelberg,
Germany) and were separate from the set of scans used in
our study. Representative HRF segmentations are shown in
Figure 2.

Predictive Modeling

Machine learning builds predictive models by learning from
examples. Here we learn the risk of conversion from a set of
automatically computed eye characteristics and their manually
graded conversion intervals. Each eye was characterized with a
set of quantitative imaging and nonimaging features. Image-
based features characterized the morphology of the retina
while demographic and genetic features characterized the
patient. To characterize the change of retinal morphology
across time, in addition to the baseline scan, we took the four
next monthly follow-up scans into consideration. A predictive
model was then created that learned from the features of the 4-
month observation period to predict the risk of conversion in
the remaining period of the 2-year study (Fig. 3).

Image-Based Features. From the image analysis steps,
imaging biomarkers of interest were represented as two-
dimensional (2D) en face thickness maps from which a large
and diverse set of features was computed as listed in Table 1. In

FIGURE 1. Example of automated outer retinal layer segmentation (overlaid in yellow): ONL, RPE, and IS/OS, as well as drusen/pseudodrusen.
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addition, retinal layer and HRF specific features were
computed both from retina-wide 2D maps and also from
regions limited to just the drusen footprint. An example of a
patient with longitudinal 2D feature maps is given in Figure 4.
Therefore, for each feature, we measured its mean value and its
change in the form of a linear slope during the observation
period.

Demographic and Genetic Features. Demographic was
information collected from the patients in the HARBOR study,
and they were also genotyped. The following three demo-
graphic features were used: age, gender, and smoking status. In
addition, we used genetic features in the form of a number of
risk alleles of single-nucleotide polymorphisms (SNPs) at 34
AMD-associated loci identified in Fritsche et al.12 A compre-
hensive list of genetic loci used in our study is shown in Table
2.

Machine Learning. Utilizing the above heterogeneous set
of quantitative features, we built a predictive model using
machine learning in a supervised setting. Thus, in order to
make the predictions, the model first learns the relationship
between the time to conversion and a set of features from a
training dataset. The model was implemented using a sparse
Cox proportional hazards (CPH) model.13 CPH is the most
commonly used multivariable linear model for survival time
data; in our case, the eyes were considered to have ‘‘survived’’
until the event of conversion. The CPH model effectively
accounts for different individual conversion intervals and the
censoring phenomenon, that is, the fact that only some eyes
have experienced conversion during the study. The model was
regularized with the least absolute shrinkage and selection
operator (LASSO), which penalizes the number of features
used for the prediction. Such regularization favors simpler

FIGURE 2. Example of automated HRF segmentation (overlaid in yellow) within neurosensory layers.

FIGURE 3. Prediction of conversion over 24 months based on heterogeneous feature modeling from baseline through the observation period M1–
M4.
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models and avoids overfitting the data, at the same time
improving the model’s interpretability. Once trained, the
predictive model produced a hazard ratio (HR) from the input
eye features, which we directly used as an index of risk of eye
conversion. Two predictive models were independently
learned: one for estimating the risk of conversion to CNV,
and the other for estimating the risk of conversion to GA.

Statistical Analysis

The performance of the two predictive models was evaluated
with a 10-fold cross-validation procedure. In such a procedure,
the dataset was randomly partitioned into 10 equal subsets
(folds). One fold (10% of eyes) was retained as test set, and the
remaining nine folds (90% of eyes) were used for training the
model. After 10 iterations, each fold had been tested exactly
once, and we obtained a predicted HR index for each eye in
the dataset. We performed survival analysis using the predicted

HR indices by stratifying the eyes into higher and lower-risk

groups and obtaining their survivor functions denoting the

probability of nonconversion using Kaplan-Meier estimators. A

log-rank test was used to investigate statistical differences in

the survival distributions between the two predicted risk

groups. In addition, the predicted HR index was used to

generate the receiver operating characteristics (ROC) curve to

measure the predictive model’s classification ability in discrim-

inating the eyes that converted during the trial from the

nonconverting eyes. Each point on the ROC curve represents a

sensitivity/specificity pair corresponding to a particular deci-

sion threshold of the HR index. The classification performance

was measured by the area under the ROC curve (AUC), which

evaluates the average sensitivity across all false-positive rates.

The AUC confidence intervals (CIs) were obtained by boot-

strapping with 5000 samples. In addition, specificity at a

clinically acceptable sensitivity of 0.80 was reported.14

FIGURE 4. En face 2D thickness maps of relevant imaging biomarkers across the observation period (baseline, month 4) of an individual eye with
early AMD. The drusen footprint is delineated in white.
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RESULTS

Patient Characteristics

Out of 1095 fellow eyes, 29 were discarded from grading due

to a majority of scans missing. After the grading, 452 eyes were

excluded as they had bilateral advanced AMD from the onset of

the study. A further 39 eyes were discarded as they had already

converted during our observation period (month 0 to month

4), and 70 nonconverting eyes were discarded due to absence
of drusen. Finally, 10 eyes were eliminated due to poor OCT
imaging quality. Thus, data from 495 fellow eyes were used in
our study, out of which 159 eyes converted during our
prediction period (month 5 to month 24), with 114 primarily
converted to CNV and 45 to GA, and 336 eyes with
intermediate AMD not having converted by the end of the
study. The distribution of conversion incidences throughout
the 2-year follow-up is shown in Figure 5. Conversion of
intermediate AMD to either CNV or GA occurred throughout
the study duration, with the timing uniformly distributed. In
this subset of HARBOR fellow eyes, the mean (6SD) age of
patients was 78 (68) years (range, 53–98); 59% were female
and 97% were Caucasian. The mean (6SD) baseline visual
acuity (VA) was 78 (610) letters (range, 5–95; Snellen
equivalent: 20/30, range, 20/800–20/12).

Conversion to CNV

Survival functions produced by the predictive model indicating
the probability of nonconversion for higher-risk eyes (HR > 1)
and lower-risk eyes (HR < 1) are shown in Figure 6a using a
Kaplan-Meier plot. The two survival curves indicating the eyes
with higher risk and lower risk of CNV conversion were well
separated with a statistically significant difference (P < 0.001).

The predictive model for conversion to CNV within the
prediction period produced an ROC curve with the AUC¼0.68
(CI: 0.62–0.73) as shown in Figure 6b. The operating point that
had clinically acceptable sensitivity of 0.80 had a specificity of
0.46.

The importance of features ranked by absolute weight in
the predictive model is shown in Figure 6c. Most of the
features were positively related with the CNV onset, and
furthermore they were mostly focal and obtained from drusen-
centric ROI and were not retina-wide. Prediction of CNV was
predominantly driven by thickening of the subretinal layers,
that is the RPE-drusen complex (RPEDC), an increase in drusen
area and an increase in drusen-centric HRF, together with a
thickening of the ONL where HRF accumulated. There were no
nonimaging features represented among the relevant contrib-
utors, indicating that age and genetic features were not
contributing to CNV conversion prediction.

Conversion to Geographic Atrophy

Kaplan-Meier plots of survival functions produced by the
predictive model indicating the probability of nonconversion
to GA for higher-risk eyes (HR > 1), and lower-risk eyes (HR <
1) are shown in Figure 7a. The two survival curves indicating

TABLE 1. Overview of Imaging and Nonimaging Biomarkers and the Number of Quantitative Features Associated

Biomarkers No. Feature Description

Imaging

Drusen 8 Drusen number, total volume and area, maximal height, mean height, height variability (SD), mean, and

variability (SD) of internal reflectivity

Pseudodrusen 2 Pseudodrusen number and area

Layer: ONL 5 ONL volume and thicknesses: mean, minimal, maximal, and variability (SD)

Layer: RPEþIS/OS 5 RPEþIS/OS volume and thicknesses: mean, minimal, maximal and variability (SD)

Layer: RPEDC 5 RPEþdrusen volume and thicknesses: mean, minimal, maximal, and variability (SD)

HRF 3 HRF in entire retina: total, mean, and variability (SD) of volume and vertical extension

HRF: ONL 3 HRF in ONL: total, mean, and variability (SD) of volume and vertical extension

HRF: RPEþIS/OS 3 HRF in RPEþIS/OS: total, mean and variability (SD) of volume and vertical extension

Nonimaging

Demographic 3 Age, gender, and smoking status

Genetic 34 SNPs associated with AMD identified in Fritsche et al.12

TABLE 2. Thirty-Four Genetic Loci Associated With AMD Screened for
the Study

Lead Variant Locus Name

rs429608 SKIV2L

rs4698775 CCDC109B/MCUB

rs10922109 CFH

rs11884770 COL4A3

rs62247658 ADAMTS9-AS2

rs140647181 COL8A1

rs10033900 CFI

rs114092250 PRLR-SPEF2

rs62358361 C9

rs943080 VEGFA

rs7803454 PILRB-PILRA

rs1142 KMT2E-SRPK2

rs79037040 TNFRSF10A

rs71507014 TRPM3

rs10781182 MIR6130-RORB

rs1626340 TGFBR1

rs2740488 ABCA1

rs12357257 ARHGAP21

rs3750846 ARMS2-HTRA1

rs3138141 RDH5-CD63

rs61941274 ACAD10

rs9564692 B3GALTL

rs61985136 RAD51B

rs2043085 LIPC

rs72802342 CTRB2-CTRB1

rs11080055 TMEM97-VTN

rs6565597 NPLOC4-TSPAN10

rs67538026 CNN2

rs2230199 C3

rs429358 APOE

rs142450006 MMP9

rs201459901 C20orf85

rs5754227 SYN3-TIMP3

rs8135665 SLC16A8
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eyes with higher risk and lower risk of GA conversion were
very well and significantly separated (P < 0.001).

The predictive model for conversion to GA during the study
produced a ROC curve with AUC ¼ 0.80 (CI: 0.73–0.85) as
shown in Figure 7b, indicating a high accuracy of risk
prediction. The operating point that had clinically acceptable
sensitivity of 0.80 had a specificity of 0.69. Thus, the predictive
model for GA conversion prediction obtained higher AUC than
that for CNV conversion but with wider CIs due to fewer eyes
that converted during the study.

Feature importance ranked by absolute weight in the
predictive model is shown in Figure 7c. In contrast to the
progression profile for CNV, signs of atrophy were among the
leading features. Critical features for conversion were outer
retinal thinning, including a higher variability in RPEþIS/OS
thicknesses and a decrease in the RPEþIS/OS minimal
thickness, together with an associated decrease in the
thickness of the ONL and an increased presence of HRF at
the ONL layer. Furthermore, most features were from retina-
wide ROI and not drusen-centric as for CNV. The only relevant
nonimaging feature represented was age, and it was an
important predictor of GA conversion but not for CNV
conversion. Inclusion of genetic features did not benefit the
prediction accuracy.

DISCUSSION

In this pioneering work, we were able to introduce a method
to determine the individual risk for disease progression in one
of the leading causes of visual impairment worldwide, AMD.
State-of-the-art means of artificial intelligence were introduced
into diagnostic evaluation of retinal morphology, demograph-
ics, and genetics. Pathognomonic biomarkers specific for
conversion toward CNV or GA were identified and ranked
according to their prognostic relevance. This novel tool
represents a breakthrough for individual patient counseling
and screening, particularly as it can be used on a large scale
and is effortless compared to the genetic testing that is
currently being suggested to implement personalized medicine
in AMD. Establishment of validated machine learning analyses
into routine OCT imaging will substantially improve patient
care and disease management in AMD with high reliability and
expertise.

The HARBOR study offers a unique data set, including a
large well-phenotyped and -genotyped population and contin-
uous standardized imaging. From a cohort of 1095 eyes with
neovascular AMD and 614 fellow eyes with intermediate AMD,
32% of these fellow eyes converted to late AMD during the 2-
year follow-up period: 23.2% to CNV and 9.4% to GA. In the
MARINA study, new CNV developed in fellow eyes in 30.9% by
24 months,15 indicating that the HARBOR conversion scores
are in the average range. In general, the risk of neovascular
progression is particularly high in fellow eyes of CNV patients,
and vision loss in the second eye is then particularly
devastating, highlighting the importance of efficient second
eye screening in this population providing for earlier interven-
tion and considerably better visual outcomes as shown in the
UK Neovascular AMD Database study for a real-world
scenario.16 Following a regular monitoring schedule as in
HARBOR, a steady and homogenous rate of conversion for
CNV can be expected (Fig. 5), and too-wide intervals for
screening should obviously be avoided, questioning the value
of quarterly monitoring only. This is particularly true for the
distinct group of patients with a high-risk profile.

OCT was shown to offer high sensitivity and specificity for
the detection of new-onset CNV in the AMD Detection of
Onset of New Choroidal Neovascularization study.17 Advanced
OCT analyses in our study identified a group with a low-risk
versus a group with high-risk profile for CNV/GA development.
Qualitative and quantitative drusen imaging has been recog-
nized as a key tool in the prognostic evaluation of neovascular
AMD progression. Abdelfattah et al.8 studied the fellow eyes
conversion in neovascular AMD and found that eyes with a
drusen volume over 0.03 mm3 had a greater than fourfold
higher risk for developing advanced AMD within 24 months
using the commercial software of the instrument. In a similarly
small CNV cohort, Sisternes et al. used advanced OCT analyses
of drusen area, volume, height, and reflectivity to distinguish
progressing and nonprogressing cases and achieved an AUC of
0.74 for CNV conversion in 244 eyes.14 In our much larger
population, the AUC for CNV was 0.68, and even higher for the
prediction performance of GA with an AUC of 0.80. When we
used a similar machine learning algorithm focusing on
individual drusen characteristics in 61 eyes, 944 drusen were
identified at baseline, out of which 26% regressed, resulting in
a predictive AUC of 0.75 within the first 2 years, further
highlighting the potential of image-guided prediction of AMD

FIGURE 5. Distribution of eyes progressing to late AMD during the study shown for conversion toward CNV (left) and GA (right).
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progression, even on the basis of an individual druse.18 Our
study suggests that an increase in overall drusen load is a key,
but not the leading nor the only feature in AMD progression. It
is noteworthy that the morphologic changes during the
development of CNV were more drusen-centric as drusen area
and volume and, particularly, the amount of HRF associated
with drusen ranked high, but the alterations seen in GA
development were spread retina-wide unrelated to drusen
location.

The pathognomonic features associated with AMD progres-
sion are manifold and affect neurosensory layers, such as the
ONL and the IS/OS line as well as the morphology of the RPE.
The extension of neurosensory alteration preexisting before
any active disease occurs is impressively visualized in the
segmented en face maps produced by image analysis methods

(Fig. 4). The primary coexistence of photoreceptor and RPE
alteration early on may explain the poor long-term prognosis
even with efficient CNV treatment on the long term as well as
the simultaneous occurrence of GA despite adequate anti-
VEGF therapy,19 confirmed by our finding of AMD as a
disseminated multilayer pathology.

It is interesting that machine learning–based ranking of the
morphologic features predicting CNV or GA conversion
highlights differential features for the separate pathways that
become obvious when comparing the two feature rankings for
CNV and GA in Figures 6c and 7c. For CNV conversion,
increases in HRF mostly associated with drusen, and to a lesser
extent in the overall retina, in number and total volume rank
high in predictive value. An increase in volume and mean
RPEDC is another prominent feature for CNV development.

FIGURE 6. Predictive model of CNV conversion. (a) Kaplan-Meier plot with survival curves and their CI (dotted lines). (b) Receiver operating curve
of the predictive model with area under the curve of 0.68 (CI: 0.62–0.73). (c) Top 15 most important features with their region of interest drusen-
centric or retina-wide, expressed as a mean signed weight assigned to layer-related (blue), HRF-related (green), and drusen-related (red) features.
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Drusen area matters substantially, but not the presence of
pseudodrusen. An ancillary OCT study on an AREDS popula-
tion of 265 AMD eyes found a clear association of an increased
drusen volume and a 2-year progression to CNV and a
quantitative correlation of the risk for CNV development with
a 31% increased risk for every 0.1 mm3-increase in baseline
drusen volume.20 Compared to the ranking of features leading
to GA, drusen area/volume, together with overlying HRF,
appear to be a distinct pathophysiological hallmark of CNV
development. This insight is confirmed by Fragiotta et al.21

who manually identified HRF as the single most important
predicator of neovascular conversion in a retrospective study
of 73 eyes over 24 months. Computerized analysis allows
corroborating such observations by allowing a comprehensive
ranking of all relevant features.

Morphologic conditions predictive for GA development
predominantly highlight features of atrophy at the level of the
RPEþIS/OS segment, including reduced thickness and volume,
irregularity, as well as thinning of the ONL. The fact that age in
this context correlates highly with GA development impres-
sively highlights the inevitability of vision loss with advancing
age, which is strongly neglected in longevity research. GA is
likely a consequence of the general RPE thinning occurring
with advancing age as shown in a large cohort of about 70,000
individuals in the UK Biobank study.22 The ancillary OCT-
AREDS study indicated a 32% increase to the odds of
developing GA for every 0.001 mm3 increase in abnormal
thinning of the RPE-drusen complex, offering a composite
marker of drusen regression with RPE atrophy.20 The literature
regarding risk factors for GA is richer than that for CNV, and the

FIGURE 7. Predictive model of GA conversion. (a) Kaplan-Meier plot with survival curves and their CIs (dotted lines). (b) Receiver operating curve
of the predictive model with area under the curve of 0.80 (CI: 0.73–0.85). (c) Top 15 most important features with their region of interest drusen-
centric or retina-wide, expressed as a mean signed weight assigned to layer-related (blue), HRF-related (green), drusen-related (red), and nonimaging
(yellow) features.
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results are more consistent. Subsidence of the outer plexiform
layer and inner nuclear layer was described by Wu et al.23 as a
hallmark of ‘‘nascent’’ GA. A loss in thickness and reflectivity of
outer photoreceptor segments and the RPE was identified as
the most discriminant early indicator of regions susceptible to
GA growth by a study of Niu et al.24 using fully automated
prediction of GA development from quantitative OCT bio-
markers. An increase in drusen number does not appear in the
ranking of GA-predictive features, yet pseudodrusen, another
age-related hallmark, seem to be more relevant for GA
progression. HRF are also associated with GA development.
Yet, their appearance is rather diffuse throughout all layers of
the retina and RPE. HRF were described as precursors of GA
development by several authors, such as Christenbury et al.25

in a study of 299 AMD eyes showing a high correlation of GA
development at 2 years with the presence of baseline HRF,
greater number of baseline HRF, and greater axial HRF
distribution. High-speed ultra-high-resolution OCT depicted
HRF as intraretinal RPE migration.26 A correlation of histology
and SD-OCT features by Balaratnasingam et al.27 confirmed the
highly prognostic role of intraretinal RPE cells and suggested
HRF monitoring for obtaining a timeline of incipient GA in
clinical populations and for anatomic endpoints in clinical
trials. The project MACULA by Zanzottera et al.28 offers a RPE
grading system for histology and OCT in AMD explaining the
role of RPE shedding and migration as a pathognomonic
feature of AMD disease.28 Advanced imaging analyses easily
offer such insight in vivo and over time in an individual patient.

An overwhelming feature in the progression to GA ranking
highly in our analyses is the reduction of neurosensory
structures. An abnormal thinning of the RPE-photoreceptor
interface including the interdigitation of outer segments and
RPE apical processes, highly consistent with the segmenta-
tion of the RPEþIS/OS layer chosen for our analysis, was
described by Sevilla et al.29 Neurosensory alteration most
strikingly reflects early functional loss in GA pathophysiology.
Sevilla et al.29 had already correlated morphologic changes at
the RPE-photoreceptor interface with a decrease in cone-
mediated sensitivity and rod-mediated dark adaptation time.29

Tepelus et al.30 also highlighted the correlation between
mesopic retinal sensitivity and OCT metrics of the outer
retina in patients with early AMD. Mesopic testing and
microperimetry are psychophysical and time-consuming
tests; it may be more reliable and feasible to use modern
machine learning algorithms for a comprehensive morpho-
logic analysis and pathology staging.

The limitations of this study include the short duration of 2
years and the consequent need to have only a few visits for
observation. Obviously, a larger population would be beneficial
to reduce the CI width for GA prediction. A further limitation is
the performance failure of automated segmentation of discrete
features of the retinal layers such as the distinction of HRF
close to the RPE and pseudodrusen. However, the consistency
of feature detection and their correlation highlight the quality
of the data. The AUC in this pioneering work is still limited, but
it demonstrates the path to follow and the relevant features and
further improvements of the algorithm are ongoing.

In conclusion, we present an innovative approach for
predicting the risk of progression from intermediate to
advanced AMD that is automated and therefore ideal for
large-scale screening in one of the leading diseases of modern
times. The population of intermediate AMD individuals
included in this study represents the largest cohort analyzed
and offers a solid and prospective follow-up obtained by
protocol. Machine learning and advanced image analysis based
on artificial intelligence allow for a fully automated, fast, and
reliable detection of a large spectrum of different features from
the neurosensory layer to the RPE, including additional

features such as HRF. Most interestingly, differential pathways
became visible for the neovascular and the atrophic pathways
in AMD: focal decompensation within drusen in CNV as
opposed to general retinal ageing in GA. Ageing of the retina is
driven by progressive neurodegeneration that can be precisely
measured using artificial intelligence tools. In the microcosmos
of the eye, computerized image analyses open an entirely new
horizon for understanding retinal ageing and disease and offer
effective screening and intervention at the earliest time point
and at the right therapeutic target.
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