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1. Introduction

Many machine learning methods acting on graph structures can be expressed in terms of
message passing (Koller and Friedman, 2009; Ruozzi, 2011). Among them are variational
methods for approximate Bayesian inference (Jordan et al., 1999), automatic differentiation
(AD) (Baydin et al., 2018), and backpropagation (Dauwels et al., 2005). Concrete implemen-
tations of any message passing algorithm naturally require a data structure representing
the computation graph. Therefore, it is necessary to either explicitly define this graph or
automatically extract it from the model program under question.

A dominant realisation of message passing in modern machine learning is AD. The
two common approaches to extract computation graphs for AD are operator overloading
and source transformation (Griewank and Walther, 2008; van Merriënboer et al., 2018).
Operator overloading works by extending existing numerical operations to additionally track
the executed expressions at runtime on so-called tapes or Wengert lists (Bartholomew-Biggs
et al., 2000). It is dynamic, in the sense that a new tape is recorded for every execution.
However, being implemented on a library level, it usually requires the programmer to use
non-native constructs instead of language primitives, leading to cognitive overhead. Further,
there are additional runtime costs due to the separate interpretation of derivatives stored
on the tape. Source transformation, on the other hand, operates on the syntactic structure
of the whole program, during or before compilation. Unlike in operator overloading, it is
possible to inspect and exploit control structures directly. This can lead to more efficient
results, compared to operator overloading, since the transformation is done only once per
program and eligible for compiler optimisations. But in this approach, no records of the
actual execution paths are constructed explicitly – only static information is used at compile
time, and cannot be accessed for further analysis or transformation. We refer to Baydin et al.
(2018) for a survey on AD methods.

There exists a variety of domains in which the execution path of model programs can
change at each run. Examples of this are models with non-uniform data, such as parse
trees (Socher et al., 2011) or molecular graphs (Bianucci et al., 2000), Bayesian nonparamet-
ric models (Hjort et al., 2010), or simply the occurrence of stochastic control flow in any
probabilistic model. Such models are called dynamic models. The lack of an explicit graph
structure makes it impossible, or at least diffult, to apply source transformation approaches
for general message passing algorithms on them. Operator overloading is the more direct
way for supporting them, since it automatically records a new tape for each input. In fact,
many state-of-the-art machine learning libraries support dynamic graphs based on operator
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overloading, e.g. DyNet (Neubig et al., 2017), Chainer (Tokui et al., 2015), and PyTorch
(Paszke et al., 2017). TensorFlow Fold (Looks et al., 2017) follows a more elaborate approach
and provides “dynamic batching” operators to define static graphs emulating dynamic opera-
tions. However, relying on operator overloading makes it impossible to take advantage of the
benefits of source transformations, such as i) utilizing information about the control flow, ii)
optimizations at compile time and iii) exploiting the model structure for efficient posterior
inference, e.g. detection of conjugacy relationships in models (Hoffman et al., 2018).

In this paper, we present automatic extraction of computation graphs suitable for message-
passing algorithms on both static and dynamic models, using source transformation instead of
operator overloading.1 Inspired by recent work on differential programming (Innes, 2018a), our
approach transforms the intermediate representation, used by the Julia programming language
(Bezanson et al., 2017), of any Julia program. This system can be used to dynamically
track computation graphs of machine learning models implemented in existing deep learning
libraries, e.g. Yuret (2016) and Innes (2018b), and probabilistic programming systems, e.g. Ge
et al. (2018), without having to explicitely declare graph structures. The transformation
is implemented as a custom part of the compilation process. Its result is passed on to the
compiler, where it can be optimised further. At run time, both data and control path are
tracked alongside the original calculations, in the form of a so-called extended Wengert list.
Such a list holds sub-lists of all functions called during execution, enriched by recorded control
flow decisions and meta information that can be used to analyse the execution. Thus, the
system combines a source transformation with a tape-based runtime approach. This allows
us to exploit the model structure for applications such as automatic conjugacy detection.

Among probabilistic programming systems, the automatic extraction of extended Wengert
lists is most comparable to recording “computation traces” in Church (Goodman et al., 2012).
The latter represent a directed graph of the function evaluations and intermediate values in
a whole program run, but can only be used for inference in the pure, LISP-like programs the
language allows. Similarly, “probabilistic execution traces” in Venture (Mansinghka et al.,
2014) are automatically constructed dynamic graph structures representating relationships
between random variables. Both kinds of structures are then analysed and modified during in-
ference. Accordingly, both are specialized only for probabilistic programming, while extended
Wengert lists are a mechanism to track all execution information in general programs, includ-
ing mutabilitily and imperative control structures. They can therefore be applied to other
tasks as well, including automatic differentiation. Other systems use variants of explicitely
defined graphs, to support compilation to static factor graphs in Infer.NET (Minka et al.,
2018), runtime message-passing in Pyro (Bingham et al., 2018), or building up continuations
in WebPPL and Anglican (Goodman and Stuhlmüller, 2014; Wood et al., 2015).

2. Dynamic Graph Tracking

Julia is a dynamic, JIT-compiled programming language with a strong and expressive type
system, using multiple dispatch as its main means of abstraction. The compiler’s intermediate
representation (IR) resembles a control flow graph in a single static assignment (SSA) form
(Muchnick, 1997). It consists of blocks, each containing a list of SSA definitions, followed

1. An implementation of our method in the form of a Julia package is available at https://github.com/
phipsgabler/DynamicComputationGraphs.jl.
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by at least one branching instruction. SSA definitions are unique immutable assignments of
variables to the value of a non-nested expression. This SSA form representation can already
be considered a natural generalization of Wengert lists (Innes, 2018a).

To track dynamic computation graphs, we perform a transformation of the IR implemented
as a so-called generated function, which is Julia’s mechanism for staged programming (Rompf
and Odersky, 2010; Bolewski, 2015). Such generated functions, instead of being directly
translated into machine code, emit new IR to the compiler, which is then compiled. Our
transformation extends its input with additional statements to record the operations and
jumps executed at runtime as nodes on an extended Wengert list, together with relevant
metadata. The resulting IR consists of about three to five times as many statements as the
original. Note that the transformation, due to JIT compilation, is done at most once per
method and then stored as compiled code. However, the tracking happens at every execution
during runtime.

Figure 1 illustrates the extended Wengert list for one run of a short stochastic function
geom (for readability, it is expanded to only three levels). The geom function draws a sample
from the geometric distribution with parameter beta, starting to count at value n. On
the left, we have its IR in textual form, consisting of two blocks. The central part is the
graph of nested nodes. There, values and jumps from the top-level call are recorded in their
encountered order, as nodes with “tape references” @1 to @9. SSA variables (%i) occurring in
expressions of SSA definitions are also replaced in the nodes by the respective tape references.
Each node is linked to the original IR statement it records, as indicated by the red arrows.

In the highlighted part, we see the node corresponding to the statement %7 = geom(%6,

%3). It is recorded at reference @8 with expression geom(@7, @3) and value 3. The values of
the arguments of this call can be inspected by following the respective references, indicated
by the solid blue arrows to nodes @7 and @3. Since geom is not a primitive function, the
node holds tape of child nodes as well. In this case, it is equivalent to the top level, due to
the recursivity of geom. We can see the three arguments @1, @2, and @3, corresponding to
the block arguments %1, %2, and %3, with the value of @2 being now 2 instead of 1. Further
we can see function calls of rand and < as well as a conditional jump, corresponding to the
branch the original IR, followed by calls of + and geom. Going back the tape references from
the result value @9, the data path of the trace, recreated on the lower right, can be extracted.
Note that the data path can be used for reverse-mode AD, and only these nodes would be
recorded in a conventional Wengert list. In our system, however, we also record the nodes
on the control path, consisting of @6 and the nodes it depends on.

Recording an extended Wengert list requires to record all block arguments, SSA definitions,
and taken branches, with their actual values and metadata. This is achieved by extending the
IR with new statements creating nodes and recording them on a helper data structure. Care
needs to be taken to properly record function calls, since we need to ensure that non-primitive
functions are recursively tracked. As a special case, all return branches are converted to
unconditional jumps to one new block at the end, which contains a single unified return
statement. This way, they can be treated in the same way as other branches. Please see the
appendix for a pseudo-code specification of the IR transformation in Algorithm 1, and the
transformed code for the geom function in Figure 3.
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Figure 1: Extended Wengert list for one run of the stochastic function geom (only three
levels shown). The central box is the tracked graph of the call geom(1, 0.6). The
other boxes show the original IR of the called non-primitive functions, to which
the nodes are linked. The highlighted part is described in detail in the text.

3. Applications

Our system can be combined with universal probabilistic programming libraries, such as
Turing.jl (Ge et al., 2018), to perform efficient inference in dynamic probabilistic models.
In particular, once we extracted the extended Wengert list, it is possible to utilise message-
passing algorithms such as expectation propagation (Minka, 2001) and variational message
passing (Winn and Bishop, 2005) for approximate posterior inference in a dynamic model.
Further, we can apply the extracted graphs to obtain and cache conditionals for efficient
Gibbs sampling as in WinBUGS (Lunn et al., 2000) and JAGS (Plummer, 2003). Another
important avenue is the automatic detection and exploitation of conjugacy relationships. It
has been shown that conjugacy exploitation can lead to more efficient posterior inference
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C ∼ Bernoulli(p) , p ∼ Beta(α, β)

µ0 ∼ Normal(M + 2, σ20) , M ∼

{
Normal(m, s), if C = 1

Gamma(a, b), otherwise
,

Xi
iid∼ Normal(µ0, σ

2
0)

Figure 2: Generative model for data Xi with dynamic, long-range conjugacy in the priors.

for continuous models (Hoffman et al., 2018) and, in case of particle-based inference, for
universal probabilistic programs (Wigren et al., 2019).

We want to emphasise that, in contrast to simple source transformations of conjugate
priors, our approach allows us to account for long-range relationships by tracing trough
arithmetic operations and function calls, cf. the model in Figure 2. The illustrated model
combines simple conjugacy relationships, e.g. Beta being a conjugate prior of Bernoulli, with
more complex scenarios. In particular, we see that the conjugacy relationship of µ0 and
M depends on the value of C, thus requiring any conjugacy detection algorithm to handle
stochastic control flow. Further note that we additionally need to be able to correctly handle
transformations of stable distributions, as illustrated by M + 2, to successfully detect the
existing conjugacy. All of those challenges, dynamic models and tracing through transforma-
tions of stable distributions, can be overcome by extending existing literature on conjugacy
detection to extended Wengert lists.

4. Future Work

The implementation we work on is not yet completely finished, and currently undergoing an
internal redesign. As soon as it is final, we plan to implement a range of test applications.
Among those will be backward-mode AD for a probabilistic model using Hamiltonian Monte
Carlo methods for inference, and and a system to extract and analyze dependency graphs
of random variables, including conjugacy detection. These test cases will then be compared
against other existing implementation for comparable tasks with respect to usability and
performance.

To provide a more flexible implementation of our approach, we are working a context
system, allowing to use Julia’s dispatch mechanism to specialise the tracking behaviour for
different use cases. Further, we will optimise the implementation for efficiency by inspecting
the compiler optimisations on the emitted code and tune the transformation to maximally
profit from them.
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Appendix

Algorithm 1: IR transformation to record an extended Wengert list (simplified)

This transformation happens inside a generated function called by trackcall, which assembles the
resulting value and IR into a new node with the correct metadata.

Missing from the description are the recording of metadata, the exact constructions of nodes, and the
mechanisms to correctly rename SSA variables during the transformation and tape references at
runtime.

input :Original ir object of the tracked function
output :Transformed new ir

initialize emtpy IR new ir;

for old block in blocks(ir) do
add block new block to new ir;

if old block is the first block then
add statement %recorder to new block, setting up a recorder data structure;

for arg in arguments(old block) do
// copy all arguments

add argument to new block;

if there are branches to old block then
// record branches jumping to this block after they happened

add argument %branch node to new block;
add statement to new block, recording %branch node on %recorder;

for arg in arguments(old block) do
// record argument values

add statement %node to new block, creating a node for arg;
add statement to new block, recording %node on %recorder;

for stmt in statements(old block) do
if stmt is a normal call then

add statement %call node to new block, calling trackcall on stmt;
add statement to new block, recording %call node on the %recorder;

else if stmt is a “special” call or constant then
add statement %node to new block, creating a node for stmt;
add statement to new block, recording %node on the %recorder;

for branch in branches(old block) do
if branch is a return branch then

// substitute return by a branch to the ‘‘return block’’

add statement %return node to new block, creating a return node corresponding to branch;
add branch to new block, targeting the return block, copying branch’s argument, with
%return node as extra argument;

else
add statement %branch node to new block, creating branch node for branch;
add branch to new block, copying branch, with %branch node as extra argument;

begin set up “return block”
add block return block to new ir;
add arguments %return value, %return node to return block;
add statement to return block, recording %return node on the %recorder;
add statement %result to return block, creating a tuple of %return value and the %recorder;
add return to return block, returning %result;
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1: (%1, %2, %3)

%4 = rand()

%5 = %4 < %3

br 2 unless %5

return %2

2:

%6 = %2 + 1

%7 = geom(%6, %3)

return %7

1: (%4, %1, %2, %3)

%5 = GraphRecorder(<original IR>, %4)

%6 = TapeConstant(%1)

%11 = record!(%5, ArgumentNode(%6, <metadata>))

%12 = TapeConstant(%2)

%17 = record!(%5, ArgumentNode(%12, <metadata>))

%18 = TapeConstant(%3)

%23 = record!(%5, ArgumentNode(%18, <metadata>))

%25 = TapeConstant(rand)

%26 = tuple()

%27 = getindex(TapeValue)

%31 = trackcall(<ctx>, rand, %25, %26, %27, <metadata>)

%32 = record!(%5, %31)

%34 = TapeConstant(:<)

%35 = tuple(%32, %3)

%36 = tapeify(%5, :(%4))

%37 = tapeify(%5, :(%3))

%38 = getindex(TapeValue, %36, %37)

%42 = trackcall(<ctx>, :<, %34, %35, %38, <metadata>)

%43 = record!(%5, %42)

%44 = getindex(TapeValue)

%45 = tapeify(%5, :(%5))

%49 = JumpNode(2, %44, %45, <metadata>)

%50 = tapeify(%5, :(%2))

%54 = ReturnNode(%50, <metadata>)

br 2 (%49) unless %43

br 3 (%2, %54)

2: (%55)

%56 = record!(%5, %55)

%58 = TapeConstant(:+)

%59 = tuple(%2, 1)

%60 = tapeify(%5, :(%2))

%61 = TapeConstant(1)

%62 = getindex(TapeValue, %60, %61)

%66 = trackcall(<ctx>, :+, %58, %59, %62, <metadata>)

%67 = record!(%5, %66)

%69 = TapeConstant(geom)

%70 = tuple(%67, %3)

%71 = tapeify(%5, :(%6))

%72 = tapeify(%5, :(%3))

%73 = getindex(TapeValue, %71, %72)

%77 = trackcall(<ctx>, geom, %69, %70, %73, <metadata>)

%78 = record!(%5, %77)

%79 = tapeify(%5, :(%7))

%83 = ReturnNode(%79, <metadata>)

br 3 (%78, %83)

3: (%84, %85)

%86 = record!(%5, %85)

%87 = tuple(%84, %5)

return %87

Figure 3: Left: Original IR of the function geom(n, beta) = rand() < beta ? n :

geom(n + 1, beta) (some details left out for readability, hence the missing vari-
able numbers). Right: transformation of the original IR of geom. This code is
heavily inlined and made more compact for display purposes, and therefore not in
proper SSA form anymore, but very close to the actual IR.
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