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ABSTRACT
The Amazon video homepage is the primary gateway for customers
looking to explore the large collection of content, and finding some-
thing interesting to watch. Typically, the page is personalized for
a customer, and consists of a series of widgets or carousels, with
each widget containing multiple items (e.g., movies, TV shows etc).
Ranking the widgets needs to maximize relevance, and maintain
diversity, while simultaneously satisfying business constraints. We
present the first unified framework for dealing with relevance, di-
versity, and business constraints simultaneously. Towards this end,
we derive a novel primal-dual algorithm which incorporates lo-
cal diversity constraints as well as global business constraints for
whole page optimization. Through extensive offline experiments
and an online A/B test, we show that our proposed method achieves
significantly higher user engagement compared to existing meth-
ods, while also simultaneously satisfying business constraints. For
instance, in an online A/B test, our framework improved key met-
rics such as customer streaming minutes by 0.77% and customer
distinct streaming days by 0.32% over a state-of-the-art submodular
diversity model.

1 INTRODUCTION
Video services like Netflix, Amazon Video, or Youtube offer a vast
and diverse selection of digital content for consumption. Users
typically start from the home page to explore and find something
interesting to watch. Since, different users have different tastes,
the home page is usually personalized. One effective strategy for
personalization is to group content logically, and present them as
carousels or widgets to the user. For instance, documentaries may
be grouped in a widget, and trending TV shows can appear together
in another widget. Grouping content into widgets and providing
interpretable labels for them is an interesting problem with existing
literature [23], but is not the focus of this paper. We assume that a
large selection of widgets is available for display on the homepage
presented to a user, and we focus on the problem of whole page
optimization by selecting and ranking of the widgets.

Most widgets to display on homepage are aimed at improving
user engagement, but some widgets are used to create awareness
of new type of digital content, and upcoming blockbuster shows,
or to meet other business objectives such as promoting certain
kinds of content. It is also well known (see e.g., [7, 14, 18, 26–28])
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that user engagement increases when they are shown a diverse
selection of content. In summary, widget ranking entails satisfying
three, somewhat conflicting requirements: 1) Relevance – present
relevant widgets higher in the page to maximize engagement, 2)
Diversity– compose the page with diverse set of widgets and 3)
Constraints– satisfy any business requirements or constraints.
There is a vast literature on relevance ranking [2, 11, 12, 15, 17],
and somewhat less has been written about diversity and whole-
page effects [7, 10, 14, 18, 20, 26–28], and even fewer papers address
enforcing business constraints [1, 8, 9, 16, 19, 29]. However, to
the best of our knowledge, there is no existing work that focuses
on satisfying all three constraints simultaneously within a unified
framework. In this paper, we present a unified framework for dealing
with relevance, diversity, and business constraints simultaneously.
Before we proceed, we very briefly review existing literature on
these three aspects and position our contributions.

The simplest way to optimize for user engagement is to predict
point-wise relevance ranking scores, and sort widgets according
to this score. Towards this end, much of existing research assumes
that user interaction with a widget is independent of other wid-
gets on the page [2, 11, 12, 15, 17]. Furthermore, proxies such as
click-through rate (CTR) or conversion rate (CVR) are used for
computing relevance scores. Unfortunately, estimating relevance
scores independent of other content leads to a sub-optimal user
experience where similar contents are presented to user that leads
to monotony and decrease in user satisfaction [10, 14, 20, 26]. Re-
cent studies have confirmed that the interactions between widgets
impact the user conversion rate[1, 14, 18, 27]. The other end of
the spectrum is to score every single page layout, and select the
best [6, 18, 27] which is the globally optimal strategy. Unfortunately,
this requires evaluating a combinatorially large number of layouts,
which is rarely, if ever, possible for a high throughput production
service. To approximate the combinatorial space, efficient diversity
models have been adopted in a number of applications due to its
statistical and computational efficiency [7, 10, 14, 20, 26]. Diversity
models aims to select a subset of widgets that are diverse and max-
imize the relevance. These models capture the whole-page effect
through the number of similar widgets on the page.

Another important problem in widget ranking is the trade-off
between relevance versus discovery, which in turn manifests itself
as the balance between short term engagement vs long-term satis-
faction. If we display the most relevant content to the user, they will
engage with it, and this will drive up short-term metrics. However,
if users do not discover new and interesting types of content, they
will quickly get bored with the service, and long-term business
growth will stall [1, 9, 29]. For example, consider Amazon Video,
where users can watch multiple different types of video contents:
a) Subscription Video On-Demand (SVOD) content that is included
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and has no additional cost for Prime subscribed users, b) Transac-
tional Video On-Demand (TVOD) that is available for purchase or
rental, and c) Third Party Channels (3P) that users can subscribe to,
by paying a monthly fee. To facilitate discovery, we need to display
all three categories to customers. However, these multiple product
lines are competing for the same user budget (either money or en-
tertainment time spent), and their success metrics are often at-odds
with each other. One simple solution to the problem is to use local
mechanisms such as slotting, which allocates certain fraction of
slots to each category for each homepage impression. While cer-
tainly attractive, due to its simplicity and ease of implementation,
slotting often leads to a sub-optimal user experience. For instance,
consider a user who never purchases TVOD content and another
who subscribes to many 3P channels. Slotting wastes real-estate in
the case of the first user and is missing an opportunity in the case
of the second, while also decreasing user satisfaction.

In this paper, we study the problem of whole page optimization
with global constraints of the type that require a certain number of
impressions for certain widgets across all home page impressions.
Our key insight is that instead of enforcing the business constraints
on a per-user basis, one can enforce them in expectation, globally
across all users. To consider a grossly simplified example, suppose
we have 20 users and 10 of them engage heavily with SVOD content,
and 10 of them engage primarily with TVOD content. Moreover,
suppose the global constraints specify 20 SVOD impressions and
20 TVOD impression. A slotting model would have displayed 1
TVOD and 1 SVOD widget per user. Instead, our algorithm will try
to display 2 TVOD widgets to the TVOD users and 2 SVOD widgets
to the SVOD users, thereby both increasing user satisfaction while
also satisfying global constraints. Similar approaches have been
developed in the special cases either when there is only one widget
to display [8, 16, 19] or assuming there is no interactions among
widgets [1, 29].

To formalize the above intuition, we learn the trade-off between
the page reward and the regret for constraints in the dual opti-
mization formulation [1, 19]. We develop novel prime-dual algo-
rithm that decoupled online page-composition from offline dual-
optimization. The resulting on-line composition module inherits
the same sub-modular property as the constraint-free counterpart.
This enables the greedy approximation suitable for production
implementation. Summing up, we propose a holistic framework
for constrained whole page optimization to tackle both whole-page
diversity and global constraints. We conducted extensive offline
analysis and implemented A/B testing. Our model achieved 25%
higher page reward and satisfied impression constrained compared
to slotting approach. Online A/B testing improved our key metrics
such as minutes watched by 0.77% and customer distinct streaming
days by 0.32% over state-of-the-art sub-modular diversity model.

2 PROBLEM FORMULATION
To help customer browse and discover digital products, the Amazon
Prime Video homepage consists of rows, where each row contains
a collection of digital contents; the rows are called carousels or
widgets. See Figure 1 for an illustration. Each row is designed based
on a single strategy such as popularity, genre, theme or personalized
recommendations. Moreover, the content in each widget has the

Figure 1: Sample AmazonVideo homepagewith top-5 widgets. The
“Prime popular movies” are SVOD content, “rent or buy new re-
leases movies” is TVOD content, and “Starz channel movies” is a
3P channel, available for subscription. Our goal is to optimize and
personalize the vertical composition of all widget.

same content type (e.g., TV show ormovie) and the same purchasing
option (e.g., prime subscription required, or transactional video on
demand ). We define product category (or simply "category") of a
widget as a combination of content type and purchasing option.1
We will assume that for a given user visiting Prime Video, we
have access to several hundred widgets that are of interest, and the
problem we will deal with in this paper is how to select the top-n
rows of widgets for each homepage.
Notations: We will use the calligraphic script, e.g., A to denote a
set and |·| to indicate its size. If the set is ordered, then An is used
to denote its first n elements. We will use boldface letters, e.g., x for
vectors and ⟨·, ·⟩ to denote the Euclidean inner product.

Every time we need to render a homepage, we are provided with
a page context u that encapsulates customer information, device
type, and time of day.U denotes the universe of all page context.
Every widget that needs to be ranked is also represented by a widget
context c. c encapsulates information such as widget-id, the content
in the row, and product category meta-data. Given a page context u,
we denote by Cu the set of available widgets to display and denote
by Cun the top-n widgets. We use cui to represent the widget in
the i-th slot of the page. We assume a feature function ϕ (c, u) is
given to us which takes the page and widget context and produces
a feature vector. The design of ϕ (·, ·) is application and business
specific, and our proposed approach is agnostic to the choice of the
feature functions used.

We assume each widget belongs to one of them distinct product
categories and denote this mapping by an indicator function I (c) ∈
{0, 1}m . We will slightly abuse the notation, and define I

(
Cun

)
=

1For instance, the category defined by ‘prime subscription’ and ‘movie’ contains
widgets like ‘Prime Recommended Movies’, ‘Prime top-rated Movies’, ‘Prime Drama
Movies’. In Fig 1, the 3rd row ‘Prime Popular Movies’ falls into this category.

2



Whole Page Optimization with Global Constraints KDD’19, August 2019, Anchorage, Alaska USA

∑n
i=1 I

(
cui
)
. In other words, the k-th dimension of I

(
Cun

)
∈ Rm

counts how many times the k-th product category appeared in the
first n-slots of the ordered set Cun .

2.1 Joint Page Optimization with Global
Constraints

Suppose we have access to a scoring function f
(
Cun |u,w

)
that,

given an page context u returns the utility of any ordered subset,
Cun , of the candidate widget set Cu. w are the model parameters
of f . Also assume that we know ahead of time all the homepage
contexts Ut to be rendered during a time period t . The unit of
time period can be a hour, a day, or a week, etc. We impose global
constraints as functions of all the |Ut | pages with a separable form∑
u∈U g(Cun ) ≤ 0 for some function g(·) to be specified later. The

inequality is element-wise. With these notations in place, our goal
is to jointly optimize the |Ut | pages,

argmax
{Cun :u∈Ut }

∑
u∈Ut

f
(
Cun |u,w

)
(1a)

s.t.
∑

u∈Ut

g
(
Cun

)
≤ 0 (1b)

such that not only is the utility maximized but also the constraints
are satisfied. We model the widget relevance and the whole-page
diversity aspects in f (·|u,w), and account for the overall business
requirements through enforcing g(·).

2.2 Related Works
We connect two different threads of prior art to our problem state-
ment in Eq (1a, 1b) and show how they can be viewed as special
cases of Eq. (1a, 1b). In various applications such as widget selection
[1, 5, 24], sponsored advertisement [8, 19, 21], information retrieval
[13, 14], and multi-arm bandits [3, 22, 25, 29], global constraints
have been used to model business targets, monetary budgets, risk
capacities, etc. Most of the prior art optimize the modular objective
function f (·) which can be viewed as assuming n = 1 or no widgets
interactions in f (·) in Eq. (1a). These formulation models relevance
through linear function and incorporates either local or global con-
straints. These prior art fails to capture the whole-page interactions
or diversity of contents.

Another line of research on whole-page optimization attempts
to design page objective function f (·|u,w) to model whole-page
widgets interactions. Onewidely adopted approach is to incorporate
widget or item diversity into f (·) [4, 7, 20, 26, 28]. These approaches
optimize a submodular function that measures the diversity degree
of a collection of items. Recent work in [18, 27] explicitly included
pair-wise widget interactions as features in f (·). These approaches
formulate the problem as multivariate optimization to compose the
page holistically. All these studies, however, ignore constraints g(·)
in Eq. (1b). In this case, the problem in Eq. (1a) reduces to optimizing
|Ut | number of pages independently.

We also note that in contrast to Eq. (1a, 1b), one can formulate
the constraints as penalty term in the loss function when learning
f (·) [9]. The key difference is that the model parameters w are
trained to optimize a mixed objective of both predicting page scores
and meeting the global constraints. Therefore, the scoring function
need to be trained from scratch whenever the global targets g(·)

change. In contrast, in Eq. 1,w is only optimized for approximating
the targeted page values. Therefore, we can set different business
targets g(·) for different time periods t without re-training the page
reward model f (·).

2.3 Our Contribution and Approach Overview
In this paper, we model f (·|u,w) as a sub-modular function and
developed a prime-dual algorithm for handling global constraints
g(·) . We explicitly incorporate sub-modular utilities as features in
f (·|u,w) to promote whole-page diversity. We define the diversity
along the dimension of widget categories but the proposed frame is
generic to the diversity dimensions. We use f (·|u,w) to model the
value of a page and learn the model parameters from homepage and
customer streaming data. To solve Eq. 1, we develop a primal-dual
algorithm that decouples the online page-composition from offline
dual optimization. By assuming a smooth change in the distribution
ofUt across different t ’s, the optimal dual variable learned from
the previous time period t − 1, i.e., Ut−1, could be used for the
online composition in the upcoming time period t . As such, we
approximately solved Eq. (1a, 1b) without unrealistically knowing
allUt ahead of time.

For the rest of the paper, we discuss our model-based diversity
approach for f (·|u,w) in Section 3. We then discuss the primal-dual
approach for the joint page optimization in Section 4. We present
offline analysis against various baselines and other whole-page
models in Section 5, and summarize online A/B testing results in
Section 6.

3 MODEL-BASED SUB-MODULAR DIVERSITY
We begin by illustrating how one can design a scoring model of
a page taking widget diversity into consideration, and learn the
model from data. In this section, since only a single page with a
fixed context u is considered, we drop the superscript u in Cun for
simplicity and represent a page as Cn .

Given a page Cn , the simplest way to predict its value (to be
defined later) is one that decomposes into widget-independent com-
ponents: f (Cn |u,w) =

∑n
i=1 f (ci |u,w) , hence the widget in each

slot is scored independently of all other widgets. To take into ac-
count interactions between widgets, we model the value of the
whole page as:

f (Cn |u,w) =
n∑
i=1

f (ci |Ci−1, u,w) (2)

In other words, the value or utility of the i-th item in the list depends
on the user context and the previous i − 1 items. By modeling the
utility of ci as function of the i − 1 widget displayed above the
i-th slots, we are implicitly assuming that the customers scan the
home-page from top to bottom.

Now we turn our attention to the design of the scoring function
f (). Intuitively, we want f (ci |Ci−1, u,w) to predict the utility of
a widget, for instance, by modeling conversion probability, min-
utes streamed, or revenue generated. For simplicity we consider
the binary conversion as page/widget value in this paper, and let
yi denote a random variable that yi = 1 if a customer stream
any piece of content in a widget and 0 otherwise. We will define
f (ci |Ci−1, u,w) := Pr (y = 1|ci , u,w) and formulate the problem in
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a regression framework so that f (ci |Ci−1, u,w) ≈ yi . We point out
that during a homepage visit, customers can stream from multiple
widgets so multiple yi ’s from the same page can be 1.

Scoring Model with widget interaction features
We posit a simple linear model for f (·) where f (ci |Ci−1, u,w) =
x⊤w and design features x to model both widget relevance as well
as widget interactions. Recall that we have access to a feature
vector ϕ (c, u) for contextual widgets relevance, we will focus on
the interaction/diversity features.

We model the widget interactions via promoting diversity, and
define diversity with respect to the widget product categories.
Recall that I (Cn ) ∈ Rm counts the number of widgets in each
of the m categories in the top-n rows, one can promote the di-
versity of Cn by maximizing non-decreasing and sub-modular
[4, 7, 26, 28] function 1⊤ρ (I (Cn )). For each widget, we consider
the incremental diversity gains induced by ρ and create features
∆ρ (ci ,Ci−1) = ρ (I (Ci )) − ρ (I (Ci−1)). We design ρ (·) as a func-
tion that applies the one dimensional sub-modular function ρ(·) to
each component of the input vector with ρ(n+1)−ρ(n) diminishing
as n increases. This captures the intuition that the incremental util-
ity of displaying a widget ci diminishes if more widgets of the same
category have been displayed in Ci−1. We set ρ(x) = log(1 + x)
following suggestions in [4, 7, 26].

We concatenate the widget features ϕ and the diversity features
∆ρ to form the linear features for f (ci |Ci−1, u,w). For the diversity
features, we use their interaction with context features denoted by
u × ∆ρ. dto Overall, our scoring model f is

f (ci |Ci−1, u,w) =
[
ϕ(ci , u)⊤, u × ∆ρ(ci ,Ci−1)⊤

]
w (3)

where [·, ·] represents feature concatenation. At a high level, Eq (3)
models the score of a widget as function of the individual relevance
(contribution from ϕ) as well as interactions with widgets shown
above the widget (contribution from features u × ∆ρ). Note that
the dependence of ∆ρ on Ci−1 is fully captured through I (Ci−1)
in Eq (3). In another word, the widgets interactions are modeled
through the accumulative counts of widgets for different categories.
Model Based Diversity: Our approach can be viewed a model
based approach for the standard diversity recommendation lit-
erature. To better interpret this, note that

∑n
i=1 ∆ρ(ci ,Ci−1) =

ρ(I (Cn )), and the interaction u × ∆ρ is linear in ∆ρ, therefore,∑n
i=1 u × ∆ρ(ci ,Ci−1) = u × ρ(I (Cn )). We can sum up all the wid-

get score model Eq. (2) and get the page level scoring model as,

f (Cn |u,w) =

[∑
i
ϕ(ci , u)⊤, u × ρ(I (Cn ))⊤

]
w

which is equivalent to the standard relevance-diversity formulation
for selecting top-n items from a set [4, 7, 14, 26]. The subset of
weights w corresponding to u × ρ can be viewed as context-aware
diversity regularization weights that can be seen in [4, 7, 14, 26].
Having the context-aware u×ρ diversity features allows our model
to promote different product category diversity for different cus-
tomer segments and page-visit contexts. For instance, for customers
who have firmly demonstrated no interest in some category, it is
less appropriate to promote diversity in that dimension.
Probability Model: We now turn to state our probability model
for yi given the linear model in Eq (3). We posit the following

likelihood probability

p(yi |w, ci ,Ci−1) = N(
[
ϕ⊤, u × ∆ρ⊤

]
w), β20 ) (4)

with Gaussian prior p(w) = ΠdN(wd ; µ0,σ 2
0 ) for w. β0, µ0, and σ 2

0
are the hyper- parameters in our Bayesian formulation.

We learn the posterior distribution of w given all the page im-
pression and corresponding customer activities for i = 1, . . . ,n, u ∈
U. The posterior mean and variance of each dimension of w are
learned through the online message passing update algorithm
[15, 17]. We point out that Eq. (3) is sub-modular only when the
subset of w corresponding to u × ρ is non-negative. As we posit
Gaussian prior on w and learn the model by fitting the actual data,
the non-negativity is not guaranteed. One can ideally impose a
non-negative prior on the model parameter. However, we have em-
pirically found that the non-negativity holds with Gaussian prior
when model is learned from real-world home page data.

4 ONLINE PAGE OPTIMIZATIONWITH
GLOBAL CONSTRAINTS

Now that we have learned model f (Cun |u,w) to score a page, we
turn to solving the joint page optimization problem in Eq. (1a, 1b)
with global constants in this section. We restrict the constraint
function g(·) to be separable in widgets hence g(Cun ) =

∑n
i=1 g(c

u
i ).

As we shall discuss later, most of the constraints we are interested
in have this format.

4.1 Impression Constraints
Recall that one of the major challenge in homepage optimization
is to balance the impression of widgets from different categories.
While displaying the most relevance widgets with highest con-
version probability drives up short-term engagement, presenting
diversified categories of widgets can help customers discover new
content and engage for the long-term. Simply maximizing for im-
mediate engagement (e.g., modeled by Eq (3)) often fails to achieve
proper category balance. This is because the conversion nature
of different product categories are distinct. For instance, the fre-
quency of customer starting a new TV season is much less than a
movie, and it is even rare for customer to subscribe a new third-
party channel. We proposed to use global impression constraints
to achieve balanced exposure of different categories. The key as-
sumption is that if we achieve the same widget impression balance
aggregated across all customers and contexts, the targeted down-
stream business targets would be properly maintained. Prior arts
[1, 8, 19, 21, 24] proposed to adopt similar constraints in presence
of a number of distinct categories of items. Formally, recall thatUt

denotes the set of homepage contexts and recall that I
(
Cun

)
∈ Rm

counts the number of widgets in the top n-slots in each categories.
We define our global impression constraints as,

1
|Ut |

∑
u ∈Ut

(
bt − I

(
Cun

) )
= bt −

1
|Ut |

∑
u ∈Ut

I
(
Cun

)
≤ 0 (5)

Here bt represents the minimum number of widgets from each
category to impress across all contexts. It defines the targeted bal-
ance among categories. We assumed bt ’s are given for each time
period t . Note that to satisfy this average balance, each individual
pages can deviate from bt . In other word, our formulation allows
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the degree-of-freedom to distribute the desired impressions to the
most relevant customers and context withinUt .

Now we plug in Eq. (5) and Eq. (2) to the general formulation in
Eq. (1), and restate our optimization problem as,

min
cui ,u∈U

t ,i=1, ...,n
−
∑
u∈Ut

∑n
i=1 f

(
cui |C

u
i−1, u,w

)
(6)

s .t ., bt − 1
|Ut |

∑
u ∈Ut

∑n
i=1 I

(
cui
)
≤ 0 (7)

Alternative Approaches: Slotting and Calibration are two com-
monly adopted alternatives to global constraints to achieve category
balance in real-world applications. The slotting method dedicates
certain row positions for widgets from each product category for
every homepage. Standard widget relevance predictions can be
used to rank widgets within each category. While this can perfectly
achieve the impression balance, the one-size-fits-all approach is
often sub-optimal. The Calibration method resorts to quantifying
the value of a single conversion in each category using the same cur-
rency unit. One can then combine the conversion probability with
the calibrated value to score each widgets. While this approach is
straightforward, the values for different categories are often derived
from long-term regression models and it is difficult to react to the
dynamically changing content quality and customer distribution.
Other Constraints: Similar to Eq (7), we can define expected con-
version constraints as b −

∑
u
∑
n p

(
cui
)
I
(
cui
)
≤ 0 where p(·) is

the widget conversion probability. We also note that we used the
same category mapping I

(
Cun

)
for both diversity and constraint

functions. One could use different dimensions and our proposed
algorithm is agnostic to such choices as well.

We next focus on two main challenges that prevent one from
directly applying Eq (6) and (7) for rendering homepages in pro-
duction: 1) to decouple the joint page optimization to individual
problems and 2) to optimize without knowingUt ahead of time.

4.2 Primal-Dual Algorithm
Since the algorithm needs to render a homepage whenever a page
context u is requested, we need to decouple the proposed joint op-
timization problem into individual page optimization tasks. Primal-
dual formulation provides a tool for such decoupling. Note that
Eq (6) and (7) is equivalent to its dual-form,

max
ξ ≥0

min
{cui }

−
∑
u∈Ut

{∑
i f (cui |Ci−1, u,w) + ξ

⊤(b −
∑
i I

(
cui
)
)

}
(8)

Here ξ ∈ Rm are the dual variables. The primal-dual approach
solves this min-max dual problem by alternating between: a) as-
suming dual variables ξ are fixed, update the optimal pages Cun to
minimize the inner layer problem; b) fix the pages Cun , find the best
dual variables ξ to maximize the outer layer optimization task. The
key benefit of adopting this framework is the fact that given dual
variables ξ ≥ 0, each of the pages Cun can be optimized indepen-
dently as, argmaxcui

∑n
i=1 f (c

u
i |Ci−1, u,w)+ ξ

⊤I (cui ) One can view
Eq (4.2) as regularized page value of the non-constrained version
in Eq (2) where the dual variables ξ ’s control the trade-off between
maximizing the expected value of a page and the need to meet
the global balance. We will discuss how Eq. (4.2) can be solved
efficiently in Section 4.2 with greedy approximation thanks to the
sub-modular property of f (·).

On the other hand, optimize ξ given Cun ’s in the dual formulation
Eq. (8) can be solved by gradient updates. We add a ℓ2 regularization
term γ ∥ξ ∥2 for some γj in Eq (8) to prevent ξ from being too large.
This technical modification has been adopted in similar works in
[8, 16, 19]. The gradient update for ξ is given in Algorithm 1 (line
6) with gradient stepsize η ≥ 0 and [x]+ = max(x , 0) being applied
element-wise. Recall that

∑
u∈Ut (bt −

∑
i I (cui )) measures the miss

in satisfying the impression target, the gradient update can be
interpreted as attempting to increase the corresponding weight in
ξ if some categories fail to meet the global targets.

Algorithm 1 Primal-dual algorithm

Require: Page model f (·|·, u,w); Page context Ut
n ; Impression

target bt ; Stepsize ηj ; Stopping threshold ϵ ; Max Iteration J ;
Initial duals ξ ≥ 0;

Ensure: Dual variables ξ ∈ Rm , Optimal Pages Cun , u ∈ Ut ;
1: for each iteration j = 1, . . . , J do
2: for each page i do
3: Cun ← argmaxcui

∑n
i=1 f (c

u
i |C

u
i−1, u,w) + ξ

⊤I (cui ) (see Al-
gorithm 2)

4: end for
5: for m=1,. . . , M do
6: ξ ←

[
ξ + ηj

1
|U |

∑
u∈U (b −

∑
i I (cui )) − ηjγjξ

]
+

7: end for
8: If 1

|Ut |

∑
u 1⊤

[
b −

∑
i I (cui )

]
+
≤ ϵ , Break;

9: end for

We summarize the primal-dual approach in Algorithm 1. For
each iteration, we first find the best pages and then apply gradient
update to the dual variables. We use the miss in global constraints
as stopping criteria. Since |Ut | is typically very large, for numerical
stability we re-normalized η and γ by |Ut | in Alg. 1. To be more
specific, we use diminishing step-size ηj and γj in the algorithm.
We will discuss these details later in the offline experiment section.
We point out Alg. 1 does not solve the challenge of rendering home-
pages online since it assumes knowing all the Ut ahead of time
period t . The decoupling of the page optimization task still requires
the knowledge of ξ . We next focus on how we approximate the
dual variable from historical data. On the convergence of Algo-
rithm 1: When n = 1 and f () is linear, Algorithm 1 reduces to the
algorithm in [1, 8, 13, 16, 19] with convergence and regret bounds
established. With empirical evaluations, we found Algorithm 1 can
converge to desired stationary point (see Section 5) but defer the
analysis to future work.

We next focus on the challenge that the universe of contextsUt

is not known to us ahead of time. To address this, we used historical
data to approximate the optimization of dual variables ξ . Let ξ t
be the optimal dual variable estimated from Algorithm 1 using
Ut . Since we can calculate the optimal ξ t−1 from Ut−1 before
the t-th time period, we can assume ξ t ≈ ξ t−1. During the time
period t , we could compose page for each context u independently
by optimize Eq. (4.2) with ξ = ξ t−1. Our approximation ξ t ≈
ξ t−1 implicitly assumed a smooth transition between the context
distribution ofUt−1 andUt , and bt−1 ≈ bt . Similar strategies have
been suggested in [1, 13, 16]. In Section 5, we empirically validated
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this assumption and showed that offline dual approximation can
achieve the expected target balances with very small deviation.

4.3 Greedy Page Composition
We next discuss how to solve the regularized page optimization
problem in Eq (4.2). Note that f (Cn ) is submodular and ξ⊤I (Cn ) is
linear, the overall objective in Eq (4.2) is sub-modular. We therefore
apply the greedy algorithm to approximately solve it. The detail
of the greedy steps are summarized in Algorithm 2. The greedy

Algorithm 2 Greedy Page Composition with Dual Variables
Require: Page size n; Candidate Widgets C; Page context u; Con-

straints b. Pre-estimated Dual Variables ξ ;
Ensure: Page Cun (i.e., cui , i = 1, . . . ,n)
1: Sample page scoring model w from learned posterior distribu-

tion;
2: Cu0 = ∅;
3: for i = 1, . . . ,n do
4: bestscore = 0,a∗ = null
5: for a ∈ C do
6: sa = f (a |Cui−1, u,w) + ξ

⊤I (a)
7: If sa > bestscore, bestscore ← sa , a∗ ← a
8: end for
9: cui ← a∗

10: C ← C \ {a∗}
11: end for

solution of Algorithm 2 is no less than 1 − 1/e of the optimal
solution Eq (4.2). We note that more general constraints can be solve
similarly if g(Cn ) is submodular. We also note that when ξ = 0,
Algorithm 2 reduces to the constraint-free special case which has
been widely used for diversified recommendation tasks [4, 7, 26, 28].
To conclude this section, there are overall three modules of our
system: 1) a training module that learns the page scoring function
f (·|·,w); 2) a dual-optimal module that estimate the optimal dual-
variables (Algorithm. 1) from dataUt−1 and bt−1; and 3) the online
page optimizationmodule (Algorithm. 2) that renders the homepage
requests inUt with dual variables ξ t−1.

5 OFFLINE EXPERIMENTS
We conducted a number of offline experiments to demonstrate
the key benefits of proposed framework. We collect two weeks’
of Amazon Prime Video homepage request data in August 2018
for all the offline analysis. We consider “per day” as the unit for
time periodsUt . We incrementally update the page scoring model
(Eq (3)) after collecting page impressions and customer interactions
from the current dayUt , and test the performance on the pages in
next dayUt+1. We aggregated metrics from only the second week.
Dual variables ξ t were estimated and applied in similar fashion
(see Section 4.2). The whole page model Eq (3) was trained using a
distributed variation of the online message passing algorithm [15].
We set the Bayesian hyper-parameters as β0 = 1.0, µ0 = 0.001, and
σ 2
0 = 1.0 in Eq (4).

Impression Constraints: We set the target impression balance
bt in Eq. (7) to replicate the average balance in current production
model. It also ensures the feasibility of bt . Empirically, the variation

of bt for different days is insignificant and is mostly due to the
difference between weekdays and weekend.
Evaluation Metrics: We measure the prediction accuracy and
the homepage quality of whole page models using standard AUC
and Precision@K. Precision@K is defined as the number of posi-
tive widgets in top-K slot of each homepage (K ≤ n) and is then
normalized by K . We measure the diversity degree of composed
homepages using the standard pair-wise similarity (Div-pair@n)
metrics [7]. Recall that I (Cn ) ∈ Rm counts the number of widgets
from each of them-categories on each page Cn and let Î (Cn ) be
its ℓ1 normalized version. The diversity metrics is formally defined
as, Div-pair@n = 1 −

∑
1≤s<t ≤N Is (Cn )It (Cn )/0.5n(n − 1) where

Is is the s − th dimension of I . Intuitively, Div-pair@n measures
the average pair-wise dis-similarity between all widgets on the
page, higher value indicates more diverse homepages. To quantify
the violation of the imposed constraints, i.e., the derivation from
targeted product category balance bt , we calculate the percentage
miss of all the constraints as

miss@n = 1
m

m∑
s=1

[
1 −

∑
u∈Ut

Is (C
u
n )/b

t
s |U

t |

]
+

(9)

We note that this has been used in Algorithm 1 as the stopping
condition for the primal-dual optimization. We point out that we
focused on the performance of the models and the quality of the
homepages composed. We did not include standard multi-arm ban-
dit feedback metrics such as regrets in this paper.

5.1 Validating the Primal-Dual Algorithm 1
Convergence: We first validate that the proposed Algorithm 1 can
empirically converge to a stationary point as expected. To show
this we take |Ut | = 1MM homepages randomly sampled from
one day production pages and use the whole page scoring model
parameters w after training with the same day’s data. We then
applied Alg. 1 on this collections of pages |Ut | and focused on
the convergence of dual variables ξ t . We initialize ξ = 0 and set a
diminishing learning rate ηj = 0.01/j,γj = 0.1/

√
j . We set ϵ = 0.05

and J = 50 as stopping conditions. To monitor the convergence,

Figure 2: Convergence of Alternating Optimization Algorithm 1.
The average percent miss of constraints after each iteration are re-
ported as well as the percent miss and dual variable value of an ex-
ample constraint (corresponding to category s ). The figure is best
visualized in color.

we report miss@n in Figure 2. We also illustrate the percentage
6
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loss and the dual variable value ξs of a particular constraint di-
mension s in Figure 2. As expected,miss@n converged to 0 and
all the constraints are approximately satisfied after a number of
iterations. The particular percentage loss of constraint dimension s
also diminished and the corresponding dual variable ξs reached a
stationary point. In sum, our alternative optimization approach in
Algorithm 1 does converge to a feasible stationary point. In most
online and offline analysis, we found that our algorithm meets the
stopping condition after 30 iterations.

Recall that we propose to learn ξ t−1 fromUt−1, bt−1 and use
that as approximation for composing pages fromUt , we next val-
idate how this approximation works in practice. Let each t be a
day and scoring models are updated daily. We simulate this pro-
cedure on one week’s evaluation data. We calculate themiss@n
using ξ t−1 to predict and compose pages onUt ( will refer to this
as testing miss@n) which is different from the curves shown in
Figure 2. We report the testingmiss@n in Figure 3 as a function
of t (the solid-line curve). We also include the testing miss for the
category with highest overall miss in the same Figure (the dash-line
curve in Fig 3). We note that the average testingmiss@n is very
small and is suitable for online homepage composition task. This
shows that the underlying distribution ofUt does change slowly
w.r.t t . In Figure 3, day-4 and 5 are weekends, and the underlying
customer/context distributionsUt are slightly different. Hence we
observe an increase in the testingmiss@n transiting from day-3 to
4 and from day-5 to 6. We note that the constraint with maximum
testing deviation, as indicated in Figure 2, has a high deviation.
This is due to the very small absolute average impression for that
category.

Figure 3: The average testing miss@N per hour and testing
miss@n for the constraints with maximum miss. Day-4 and 5 are
weekend.

5.2 Benefit of Incorporating Whole-Page
Diversity Features

We next study the empirical impact of having the whole-page view
in ourmodel-based diversity approach.We ignore all the constraints
in this section. Our primary baseline (CVR) is to compose home-
page by ranking based on the CVR of each individual widget where
CVR is predicted without the whole-page view. Baseline CVRmodel
has no page-level features ( only ϕ in Eq (3)) and uses the Bayesian
Linear Probit model [15, 17, 26]. The same customer, context and
widget meta-data are used for both CVR and our model to ensure
that the only difference between them is the context-aware diversity

features (the additional u × ρ in Eq (3)). For our model, we do not
consider any constraints in this experiment, we simply set ξ t = 0
in Algorithm 2. We report the quality of models using AUC, Pre-
cision@K, as well as the diversity entropy metrics to quantify the
page diversity degree. We also reportmiss@n metrics to quantify
the deviation for constraint-free models. All metrics are reported
in percentage difference compared to a baseline indicated by (B) in
Table 1. As summarized in Table 1, AUC and Precision@K metrics

Table 1: Performance metric of our model without any
global constraints (WPO-free) against various baselines. (B)
indicates the baseline for percentage calculation. All num-
bers are reported in percentage lift w.r.t. baseline(s).

CVR WPO-Free DIV MVT
AUC (B) 4.03% 0% -

Precision@10 (B) 2.22% -1.06% 0.56%
Precision@20 (B) 1.56% 1.26% 0.12%
Div-pair@20 (B) 5.91% 34.4% 17.3%
miss@10 10% 8.9% 0% 4.5%
miss@20 9.4% 10.0% 0% 5.5%

of our model outperformed the CVR baseline. This demonstrates
that having a whole-page view can improve the prediction accu-
racy for each individual widget. We also observed that the entropy
metric improves over the CVR baseline. Given a context, there is al-
ways a particular type of widget with higher conversion probability
so simply ranking widgets leads to less diverse pages. In contrast,
our model learns positive contribution from the diversity features
which forces the greedy approach to compose diverse pages. But
percentage constraint miss metrics is significantly large. Therefore
both CVR and our constraint-free model requires additional treat-
ment to meet the desired impression targets. To further explore the
impact of other whole-page modeling choices, we compared our ap-
proach against the diversity based algorithm [26] (DIV) where the
sub-modular diversity contribution of each dimension are manually
tuned to meet constraints. We also compare against the state-of-
the-art whole page model [18, 27] (MVT) where pair-wise widget
interaction features are constructed for predicting conversion. The
CVR probabilities are consumed by DIV algorithm for the joint
relevance and diversity optimization. The AUC for DIV is defined
based on relevance probabilities hence it is the same as CVR. For
MVT, we only consider the interactions between slots within a
window of 2 (i.e., the two widgets impressed before and below),
and run the hill-climbing algorithm for 20 epochs for each page
optimization as suggested in [18]. CVR is also used as features for
MVT. Note that MVT model is on page-level, so we did not report
AUC since it is not comparable with other models whose AUC
is calculated at widget level. As shown in Table 1, DIV achieved
slightly lower Precision and the highest diversity degree. This is
expected as DIV enforces high diversity on top of the conversion
probabilities with the manually tuning of regularization weights.
The precision metrics for MVT are similar to the CVR baseline. This
could be attributed to the offline data collection bias since MVT
tends to compose novel combinations of widgets that are much
different from the other approaches. We note that MVT model also
deviate from the targeted impression distribution (i.e., % difference
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10 and 20). We did not select MVT for further online experiment
since it is not straightforward to incorporate global constraints in
the hill-climbing based optimization framework. Overall, our model
achieved the best prediction accuracy among all the whole-page
view models. We conclude this section by pointing out that the
constraint-free model fails to achieve the global constraints. It is
necessary to have constrained optimization to avoid changing the
constrained overall balance. We next discuss the effect of our global
constraints and its impact on the individual pages.

5.3 Performance of Global Constraints
We compared our global constraint approach (Global) against pages
without any constraints (Free), and the slotting approach (Slot)
which enforces the impression proportion at every page. To avoid
the problem of determining the best slotting assignments on the
page, we took the set of actual slotting assignments based on our
production setting and global constraints are estimated accordingly.
We report the Precision@K and miss@n for all the approaches. We
also report the overall page reward value (the average of Eq (6)
across all the pages) with the learned model parameters w. We
use this page-reward to quantify the quality of a page and the
percentage of relevance loss by introducing constraints. 2 All the
metrics are summarized in Table 2. The results are reported in
percentage difference and baselines are indicated as (B) in table 2.

Table 2: Performance metric of global constraints opti-
mization (WPO-Global) against pure model-based diversity
(WPO-Free) and slotting/pinning approach (Slot). All met-
rics are reported in percentage lift w.r.t baseline(s) indicated
as (B).

WPO-Free WPO-Global Slot DIV
Precision@10 (B) -0.07% -9.08% -2.36%
Precision@20 (B) -1.47% 0.77% 0.3%
Div-pair@20 (B) 17.6% 22.1% 19.3%
miss@10 15.9% 1.5% 0% (B) 0.4%

Page reward (B) -1.31% -25.6% -4.9%

As shown in Table 2, our Global constraint approach can achieve
the average constraints closely (1.5% miss) with minimum impacts
on the value of the each page ( -1.31% decrease of the average page
rewards and less than 1% drop in Precision@K’s). In other words,
the global constraints could achieve most of the page values of the
optimal constraint-free page. In contrast, while the slotting based
approach can perfectly achieve the product balance, it significantly
decreased the overall page value (-25.6% decrease in page reward).
This validates that the local constraints are sub-optimal. We note
that page-level slotting has the highest pair-wise and logarithm en-
tropy metrics since diversity is enforced on every page. To compare
our approach against other whole-page models in the presence of
global constraints, we choosed the DIV [26] approach since one
can manually adjust the diversity weights for different categories
2The pinning assignment specified all the purchasing type requirement for each of
the top-10 slots on the page. The CVR probabilities are used to select actual widgets.
As an illustrating example, one can specify that all odd-number slots to display TV
widgets and ranking algorithm should select the most relevance TV widget to display
in the 1st row, the second relevance TV widget in the 3rd row, etc.

to achieve the target impression balance bt .Results are also listed
in Table 2. We note that DIV with specifically calibrated diversity
weights could achieve the target impression balance (with only 0.4%
miss). Compared to the Slotting approach it achieves a higher page
reward value and precision metrics. Compared to our approach,
DIV is still sub-optimal in achieving page-level personalization
with a lower page reward and precision metrics. We hypothesize
this is due to the one-size-fits-all diversity regularization weights
in the DIV weights hence the contextual difference is not taken
into account. We did not include MVT in this experiment since it is
not straightforward to enforce constraints within the hill-climbing
based optimization approach.

Table 3: Coverage of a product category X by the customer
streaming propensity in product category X.

Customer propensity for X DIV WPO-Global
0 -3.0% -15.2%

low 1.0% 7.9%
moderate 15.1% 32.7%
high 18.1% 59.2%

extremely high 27.5% 67.7%

To further illustrate the impact of our global constraints, we
report in Table 3 how we distribute the overall targeted impression
of a particular category (X) for different customer segments. The
percentage difference compared to the overall category (X) impres-
sions (i.e., bX ) are reported in Table 3. As indicated in Table 3, our
approach distributed the impression of the category (X) correctly
to the most relevant customer segment for e.g., fewer category (X)
widgets are shown to customers with 0 propensities. Note that cus-
tomer propensity for category X is calculated as number of video
streams by the customer in category X in last 28 days.

6 ONLINE EXPERIMENTS
We have implemented both submodular diversity algorithm (DIV)
[26] and our whole-page model with global constraints (WPO-
Global) in production and conducted A/B testing experiments. We
manually tuned diversity model (DIV) to achieve the same prod-
uct category coverage as existing production model. We derived
impression constraints for WPO-Global from the same category
balance. We evaluated improvement of DIV and WPO-Global on
our customer engagement metrics: 1) overall streaming minutes
and 2) Distinct Streaming Days (DSDs). The total streamingminutes
reflects short-term customer activeness while DSDs represents the
customer stickiness with the platform. DIV improved minutes by
0.44% and DSDs by 0.12% over the existing production model with
constraints were closely matched with no impact to any particular
product categories. Our proposed WPO-Global approach further
improved minutes by 0.77% and DSDs by 0.32% metrics on top of
DIV model with a significant margin. At the same time, the global
constraints have also achieved the business targets.

7 CONCLUSION
We present a primal-dual framework that encompasses relevance,
diversity and global constraints for ranking widgets. We have em-
pirical shown that our framework increases diversity of widgets
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and satisfy constraints but at the same time improve relevance.
Extensive online A/B testing showed that our framework can in-
deed improve customer engagement without affecting any product
categories.
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