
Under review as a conference paper at ICLR 2019

TABNN: A UNIVERSAL NEURAL NETWORK
SOLUTION FOR TABULAR DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Networks (NN) have achieved state-of-the-art performance in many tasks
within image, speech, and text domains. Such great success is mainly due to
special structure design to fit the particular data patterns, such as CNN captur-
ing spatial locality and RNN modeling sequential dependency. Essentially, these
specific NNs achieve good performance by leveraging the prior knowledge over
corresponding domain data. Nevertheless, there are many applications with all
kinds of tabular data in other domains. Since there are no shared patterns among
these diverse tabular data, it is hard to design specific structures to fit them all.
Without careful architecture design based on domain knowledge, it is quite chal-
lenging for NN to reach satisfactory performance in these tabular data domains.
To fill the gap of NN in tabular data learning, we propose a universal neural net-
work solution, called TabNN, to derive effective NN architectures for tabular data
in all kinds of tasks automatically. Specifically, the design of TabNN follows two
principles: to explicitly leverage expressive feature combinations and to reduce
model complexity. Since GBDT has empirically proven its strength in modeling
tabular data, we use GBDT to power the implementation of TabNN. Comprehen-
sive experimental analysis on a variety of tabular datasets demonstrate that TabNN
can achieve much better performance than many baseline solutions.

1 INTRODUCTION

Recent years have witnessed the extraordinary success of Neural Networks (NN), especially Deep
Neural Networks, in achieving state-of-the-art performances in many domains, such as image clas-
sification (He et al., 2016), speech recognition (Graves et al., 2013), and text mining (Goodfellow
et al., 2016). Beside enlarged model capacity, such great achievement of NN is mainly due to the
deliberate design of its structures derived from prior knowledge over the certain domain data. For
example, Convolutional Neural Networks (CNN) (LeCun et al., 1998) have become the standard
solution to address image classification since it can capture the spatial locality by using “Local Re-
ceptive Field” (LeCun et al., 1998), which is a common pattern in image data. Recurrent Neural
Networks (RNN) (Hochreiter & Schmidhuber, 1997), as another example, has been widely-used on
speech recognition and language modeling because its recurrent structure can effectively model the
sequential dependency among speech and text data.

In contrast to most of tasks in image, speech, or text domains whose input yields natural spatial or
temporal dimension, many other real-world applications, e.g., click through rate prediction (Graepel
et al., 2010), time series forecasting (Montgomery et al., 1990; Chatfield, 2000), web search ranking
(Agichtein et al., 2006; Cao et al., 2007), etc, bear structured input consisting of multi-dimension
meaningful features. Typically, such input data can be generalized as the tabular data, as each row
of the tabular corresponds to one data example and each column denotes an individual meaningful
feature. Despite the success of CNN and RNN over computer vision, speech recognition, and natural
language process, adopting NN over tabular data receives far less attention and yet remains quite
challenging. In particular, as illustrated in previous studies (Fernández-Delgado et al., 2014), it
usually leads to unsatisfactory performance on tabular data by directly using Fully Connected Neural
Network (FCNN), because its fully connected model structure leads to very complex optimization
hyper-planes with a high risk of falling into local optimums. Moreover, since different applications
usually indicate various effective feature combinations within their respective tabular data, it is quite
beneficial to recognize such feature combinations and take advantage of them to design the effective
NN model on their tabular data, which however has not been well studied yet.

1

Under review as a conference paper at ICLR 2019

To address these challenges, we identify two principles for the purpose of designing effective NN
models on tabular data: (1) To explicitly leverage expressive feature combinations. Rather than
blindly pouring all features together into FCNN and learning via back-propagation to discover the
implicit feature combinations, it will be beneficial to let NN explicitly leverage the expressive feature
combinations. (2) To reduce model complexity. Contrary to highly-complex FCNN with too many
parameters leading to higher risk of over-fitting or falling into local optimums, it is vital to reduce the
complexity of NN models by removing unnecessary parameters and encouraging parameter sharing.

Inspired by these two principles, we propose a universal neural network solution, called TabNN,
to derive effective NN architectures for tabular data in all kinds of tasks automatically, by leverag-
ing the knowledge learned by GBDT model (Gradient Boosting Decision Tree) (Friedman, 2001;
De’Ath, 2007; Chen & Guestrin, 2016), which has empirically proven its strength in modeling tab-
ular data (Chen & Guestrin, 2016). More specifically, the GBDT-powered TabNN consists of four
major steps: (1) Automatic Feature Grouping (AFG) automatically discovers feature groups imply-
ing effective partial combinations based on GBDT-powered knowledge. (2) Feature Group Reduc-
tion (FGR) attempts to further cluster feature groups in order to encourage parameter sharing within
the same clusters, which can accordingly reduce the complexity of the resulting NN models. (3)
Recursive Encoder with Shared Embedding (RESE) aims at designing a both effective and efficient
NN architecture over clustered tabular feature groups, based on the results of FGR and the feature
group importance powered by GBDT. (4) Transfer Structured Knowledge from GBDT (TSKG) fur-
ther leverages structured knowledge within GBDT model to provide an effective initialization for
the obtained NN architecture.

To illustrate the effectiveness of the proposed TabNN solution, we conduct extensive experiments
on various publicly available datasets with tabular data. Comprehensive experimental analysis has
shown that TabNN cannot only create effective NN architectures for various tabular data but also
achieves much better performance than other solutions.

In summary, the contributions of this paper are multi-fold:
• We identify two principles for the purpose of designing effective NN models on tabular data.
• We propose TabNN, a general solution for deriving effective NN models for tabular data by lever-

aging the data knowledge learned by GBDT.
• Extensive experiments show that the proposed method is an off-of-shelf model, which can be

ready to use in any kinds of tabular data efficiently and achieves state-of-the-art performance.

2 RELATED WORK

Tabular Data Learning by Tree-Based Models. Tree-based methods, such as GBDT and Ran-
dom Forest (Barandiaran, 1998), have been widely applied in many real-world applications, e.g.,
click through rate prediction (Ling et al., 2017) and web search ranking (Burges, 2010), etc., and
have become the first choice in various well-recognized data mining competitions (Chen & Guestrin,
2016). The success of GBDT and other tree-based methods over tabular data majorly relies on
their capability on iteratively picking the features with the most statistical information gain to build
the trees (Grabczewski & Jankowski, 2005; Sugumaran et al., 2007). Therefore, even if there are
amounts of features in the tabular data, GBDT can automatically choose the most useful features
to fit the targets well. However, tree-based models still yield two obvious shortages: (1) Hard
to be integrated into complex end-to-end frameworks. GBDT or other tree-based models cannot
back-propagate the error directly to their inputs, thus they cannot be easily plugged into a com-
plex end-to-end framework. To solve this problem, soft decision trees or neural decision trees have
been proposed (Breslow & Aha, 1997; Murthy, 1998; Rokach & Maimon, 2005; Irsoy et al., 2012;
Kontschieder et al., 2015; Frosst & Hinton, 2017; Wang et al., 2017) by using differentiable decision
functions, instead of non-differentiable axis aligned splits, to construct trees. However, abandoning
axis aligned splits will lose the automatic feature selection ability, which is important for learning
from tabular data. Feng et al. (2018) propose to use target propagation to pass back the error for non-
differentiable functions. However, target propagation is inefficient compared with back-propagation
as it needs to learn many additional models to propagate the errors. (2) Hard to learn from stream-
ing data. Many real-world applications, such as online advertising, continuously generate the large
scale of streaming data. Unfortunately, learning tree-based click prediction and recommendation
models over streaming data is quite difficult since it usually needs global statistical information to
select split points. There have been some works that try to efficiently learn trees from streaming data
(Jin & Agrawal, 2003; Gaber et al., 2005; Ben-Haim & Tom-Tov, 2010). However, these models

2

Under review as a conference paper at ICLR 2019

are specifically designed for the single tree model and their performance cannot achieve the same
accuracy as using full data at once. XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al.,
2017) also provided a simple solution: they learn the structures of trees at first, then, keep the tree
structures fixed and update the leaf outputs by the streaming data. Although this solution is simple
and efficient, the performance is still worse than learning from all data at once.
Tabular Data Learning by NN. These obvious shortages of tree-based methods encourage in-
creasing efforts in applying NN to learn the model over tabular data. Many recent studies attempt
to use NN in a variety of applications with tabular data, including the click-through rate prediction
(Zhang et al., 2016; Qu et al., 2016; Guo et al., 2017) and recommendation system (Wang et al.,
2015; Cheng et al., 2016; Covington et al., 2016; Zhang et al., 2017). Most of them, in fact, focus on
how to pre-process categorical features to better adapt to NN. Meanwhile, many numerical features,
which are also very important in tabular data, are not well utilized in these works. To sum up, there
has no universal NN solution to fit all kinds of tabular data well. The method proposed in this paper
aims to fill in this gap and provide an off-of-shelf and universal NN solution.
Combine NNs with Trees. Due to the respective pros and cons of NN and tree-based methods,
there have been emerging efforts that proposed to combine the NNs and tree-based methods. In
general, these efforts can be categorized into two classes: (1) Tree-like NN. As pointed by Ioannou
et al. (2016), there have been some tree-like NNs, which have decision ability like decision trees
to some extent, e.g. GoogLeNet (Szegedy et al., 2015). Rota Bulo & Kontschieder (2014) and
Kontschieder et al. (2015) also introduced the tree-like structure and decision ability into NN. How-
ever, these works mainly focused on computer vision tasks without attention to tabular data. Yang
et al. (2018) proposed the soft binning function to simulate decision trees in NN, which is, however,
very inefficient as it enumerates all possible decisions. Wang et al. (2017) proposed NNRF, which
used tree-like NN and random feature selection to improve the learning from tabular data. Neverthe-
less, NNRF simply uses random feature combinations, without leveraging the information from data
itself. (2) Convert Trees to NN. Another track of works tried to convert the trained decision trees to
NNs (Sethi, 1990; Banerjee, 1997; Richmond et al., 2015; Biau et al., 2016; Humbird et al., 2017).
However, these works are inefficient as they use a redundant and usually very sparse NN to represent
a simple decision tree. When there are many trees, such conversion solution has to construct a very
wide NN to represent them, which is unfortunately hard to be applied to realistic scenarios.
Network Architecture Search. Apart from converting the tree-based model to NN, other major
efforts (Zoph & Le, 2016; Liu et al., 2017; Pham et al., 2018; Luo et al., 2018) proposed to search
neural architectures towards a better performance for NNs. However, most of them merely focused
on the non-tabular data in computer vision, speech recognition, and natural language process. Par-
ticularly, their search space just includes specific structures like convolutional layers or pool layers,
which are hardly migrated to the learning from tabular data. Furthermore, such search methods are
quite time-consuming they often enumerate the combinations in a large search space.

Given the aforementioned challenges in building or search NN architecture for tabular data, in this
paper, we propose an efficient and strategical way to automatically derive effective NN architecture
for tabular data, which will be described in details in the following section.

3 TABNN
To derive effective NN architecture for tabular data, the design of TabNN follows two key principles:
(1) To explicitly leverage expressive feature combinations. Rather than blindly pouring all features
together into FCNN and learning via back-propagation to discover the implicit feature combinations,
it will be beneficial to let TabNN explicitly leverage the expressive feature combinations, meaning
that the combination of a certain set of features yields great information gain with respect to the
learning task. Compared to learned implicit feature combinations in FCNN, such explicit feature
combinations are more robust and can significantly increase the generalization ability of TabNN. (2)
To reduce model complexity. Too many parameters (i.e. weights or trainable variables) to learn, like
FCNN, usually lead to complex optimization hyper-planes so as to result in a high risk of over-fitting.
Therefore, to improve the efficiency as well as the effectiveness of learned NN model, it is critical
for TabNN to reduce the complexity of designed NN architecture by removing the unnecessary
parameters and encouraging parameter sharing.

In this paper, based on these two principles, we propose a GBDT-powered TabNN. Specifically,
as shown in Alg. 1, TabNN contains four major steps: (1) Automatic Feature Grouping (AFG,

3

Under review as a conference paper at ICLR 2019

Line 2-3): to follow the first principle, this step automatically discovers the effective feature groups
(i.e. expressive feature combinations) from a tabular dataset D by leveraging GBDT. Therefore, the
designed NN model can explicitly leverage the feature combinations derived from feature groups.
We employ G to stand for the set of all feature groups. The cardinal of G, i.e. the number feature
groups, may be very large as GBDT often requires many trees to achieve good performance. (2)
Feature Group Reduction (FGR, Line 4): AFG may produce many feature groups and therefore
results in too many parameters. To reduce the parameters and encourage the parameter sharing as
guided by the second principle, we cluster these feature groups into k sets, i.e. G1, · · · , Gk, based
on the similarity over these feature groups. Since there are common features over the clustered
feature groups, we can leverage this characteristic to significantly reduce the parameters, by reusing
the embedding of these common features in the derived architecture. (3) Recursive Encoder with
Shared Embedding (RESE, Line 6): we design a both effective and efficient NN architecture over
clustered tabular feature groups, based on the results of FGR step and the feature group importance
powered by GBDT. (4) Transfer Structural Knowledge from GBDT (TSKG, Line 8-10): beside
feature grouping knowledge, trees in GBDT also contain rich structural knowledge. This step aims
at transferring the structural knowledge in GBDT to the obtained NN architecture.

In the rest of this section, we will dive into more details of these steps one by one.

Algorithm 1: TABNN
1 Donate the dataset as D, and the number of

feature group sets as k
2 Trees T ← TRAINGBDT(D)
3 G←

⋃
ti∈T FEATUREGROUP(ti)

4 execute GREEDY FGR algorithm with G
5 for j ← 1 : k do
6 Construct RESE module for Gj with θj
7 Tj ← TREESET(Gj)
8 Leaf prediction Lj ← PREDLEAF(D, Tj)
9 Leaf embedding Hj ← EMB(Lj)

10 Use (D,Hj) to initialize θj

11 Assemble k RESE modules and train it with D

Algorithm 2: GREEDY FGR
1 Initialize all sets G1, · · · , Gk to be empty set
2 Initialize hyper-parameters n and α
3 for l← 1 : n do
4 G

(l)
j ← ∅, ∀1 ≤ j ≤ k

5 Randomly initialize a processing order π(G)
6 foreach feature group g in π(G) do
7 j ← argmaxi

(∥∥∥G(l)
i ∪ {g}

∥∥∥
α
−

∥∥∥G(l)
i

∥∥∥
α

)
8 G

(l)
j ← G

(l)
j ∪ {g}

9 i← argmaxlminj

∥∥∥G(l)
j

∥∥∥
α

10 Gj ← G
(i)
j , ∀1 ≤ j ≤ k

Automatic Feature Grouping. The AFG component is designed under the guidance of the
first principle to determine which expressive feature combinations should be explicitly utilized by
TabNN. Since different tabular data may indicate various expressive feature combinations, it is in-
appropriate to recognize a predefined static feature grouping for all kinds of tabular data. Therefore,
it is necessary to design a dynamical and automatic approach to identify important feature combina-
tions for tabular data. Although many popular methods, such as correlation test, feature clustering,
principal component analysis, etc., can be applied to obtain the feature groups dynamically, they
fail to identify expressive complex combination among features within the same group. On the
other hand, the tree-based models provide a goldmine for discovering rich non-linear dependencies
among features (Sugumaran et al., 2007). Specifically, those features within one tree is indeed a
well-processed feature group with rich expressiveness. Inspired by that, it becomes quite natural to
use the tree-based model to automatically find expressive feature groups. Among various options
of tree-based method, in this paper, we adopt GBDT for two major reasons: first, GBDT has been
widely used to model tabular data of many real-world applications; moreover, as gradient boosting
will adjust the learning targets for different trees as latest residuals, GBDT can learn many diverse
trees such that it can create many diverse feature groups.
More formally, suppose the set of trees trained in the GBDT model is T , we will use the features
within the same tree t ∈ T as a feature group g ∈ G. Since a GBDT often contains many trees to
achieve good performance, there will be many feature groups. The characteristics of GBDT have
decided that such feature groups can have many overlapping features, which enable us to merge these
feature groups into much compact sets to reduce the complexity by parameter sharing in TabNN.

Feature Group Reduction. To find similar feature groups for parameter sharing, FGR is designed
to merge all feature groups into k sets with the minimum number of common features in one set max-
imized. More formally, the objective of the FGR is to maximize the value of min1≤j≤k |

⋂
g∈Gj g|,

where | · | stands for the number of features in the set. Indeed, there are two major challenges to

4

Under review as a conference paper at ICLR 2019

address FGR. The first one is the computational complexity, i.e., the FGR problem is NP-hard. In
fact, we have following theorem:

Theorem 1. The NP-hard Pm||Cmax schedule problem can be reduced to the FGR problem.

Proof. (Sketch.) In the well known Pm||Cmax problem (Lawler et al., 1993), there are n jobs
to be scheduled on m identical machines. Each job j has a process time pj . The objective is to
design a schedule plan to minimize the max load Cmax of all machines. To show the hardness of
FGR problem, we proof that any instance of Pm||Cmax problem can be reduced to a instance of
FGR problem. W.l.g., we suppose all the process time are integers and their summation is N , i.e.
N =

∑n
j=1 pj . Now we set k = m and construct an instance of FGR problem. We define the total

feature sets as F = {1, 2, · · · , N}. The j-th feature group gj = F \ {Nj−1 + 1, · · · , Nj}, where
Nj =

∑j
i=1 pi. These feature groups satisfy the following property: the size of gj1 ∩ gj2 ∩ · · · ∩ gjt

is exactly N − pj1 − · · · − pjt . According to this property, we can find that minimizing the load on
one machine is equivalent to maximizing the intersection of corresponding feature groups. Thus, the
Pm||Cmax problem can be reduced to the FGR problem, which means the FGR problem is harder
than the Pm|Cmax problem. Consequently, the FGR problem is NP-hard.

Another challenge lies in that, with the increasing number of feature groups, their intersections usu-
ally keep shrinking, which unfortunately makes it hard to share weights for similar feature groups.
To address this challenge, we adopt soft intersections instead of the origin one. We define the α-soft
intersection as the set of features which are covered by α fraction of all feature groups. For conve-
nience, the operator ‖ · ‖α is used to calculate the size of α-soft intersection of feature groups. As
the origin FGR is a special case with α = 1, thus, the soft intersection version of FGR is also an
NP-hard problem. Due to the NP-hardness of this problem, it is impossible to compute an optimal
solution efficiently even when k is given in advance. Thus, we take a heuristic approach for the effi-
ciency purpose. Our algorithm is shown in Alg. 2. In this algorithm, we enumerate all feature groups
in a random order and add it greedily into the feature group set with the greatest gain (Line 7 and
8). This procedure will be repeated n times and the one with largest minimum α-soft intersection
will be selected as the final sets of feature groups (Line 9 and 10). Although such a simple solution
cannot guarantee an optimal solution, it is very efficient and can provide a sub-optimal solution.

Recursive Encoder with Shared Embedding. After FGR generates k sets of feature groups, it
still remains challenging to organize many feature groups within a single set into an efficient NN
architecture. Fortunately, the resulting sets of FGR yield two characteristics that can inspire an
efficient design. In particular, the first one corresponds to diverse importance of different feature
groups within one set due to the varying importance of trees in GBDT, and such important difference
can stimulate a more efficient recursive NN architecture to let more important feature groups have the
more direct impact on the task. Furthermore, the second characteristic correlates to many common
features within one resulting set of FGR caused by the α-soft intersection, and such common features
can share parameters for the purpose of efficient learning when constructing the NN architecture.
Inspired by these two characteristics, we propose a recursive encoder with shared embedding (RESE)
approach to constructing NN architectures based on feature group sets generated by FGR. The whole
RESE architecture is summarized in Fig. 1, in which the circles stand for the neurons and all arrows
stand for fully connections to these neurons; and, for convenience, we use smaller indices to repre-
sent the layers closer to the output layer.
As shown in this figure, RESE takes advantage of a recursive NN architecture to allow more impor-
tant feature groups to contribute more directly on the task. In particular, we first reorder the feature
group in each set according to the descending importance of corresponding trees, and define the i-th
important feature group in set Gj as Gj,i. Then, we arrange more important group as the input of
layers closer to the output. To further reduce the model complexity, RESE is designed to exponen-
tially increase the number of feature groups in layer li along with increasing i. For example, RESE
can put Gj,1 (the most important feature group in Gj) as input in layer l1, {Gj,2, Gj,3} in layer l2,
{Gj,4, · · · , Gj,7} in layer l3, and so on. In this way, the designed recursive architecture will be quite
compact since it has reduced the number of layers logarithmically.
To encourage using sharing parameters for common features within each feature group set, we first
extract the common features from Gj and concatenate them as a vector x̂j and use it with corre-
sponding embedding component (green circles) as shared input to all layers. More specifically, as
illustrated in Fig. 1, the input of each layers consists of the common features x̂j with their embed-
ding components, external feature vector (for layers except l0), and the output of previous layer (the

5

Under review as a conference paper at ICLR 2019

𝒙𝑗,2 𝒙𝑗,1

ෝ𝒙𝑗

𝑙0:𝑙1:𝑙2:

Concatenation

Fully Connection

…

Multiple FC Layers

ෝ𝒙𝑗
Shared Neurons

…

Neurons

More layers

RESE j

RESE 1

RESE k

…
…

output

Figure 1: Architecture of TabNN, which contains k Recursive Encoder with Shared Embedding
(RESE) modules. The embedding of common features x̂j (green blocks) is shared in these layers.

layer with larger index). For layers li with 1 ≤ i ≤ dlog2(|Gj |+1)e, the external feature vector xj,i
is a concatenation of features in {Gj,p ∪Gj,p+1 ∪ . . . ∪Gj,2p−1} \ x̂j , for p = 2i−1. Note that the
size of xj,i is small in practice as the common features are excluded.

In summary, the designed architecture arranges the feature groups in an efficient way by leveraging
their importance. Moreover, as shown in Fig. 1, the embedding of common features x̂j are reused.
By employing share embedding, we can not only reduce the number of parameters but also result in
more efficient back-propagation over common features in the deeper layers.

REMARK: For the completeness of content without disturbing the elaboration of the main design,
we organize more details in this remark part. (1) Shrink of feature representation: for the purpose
of information extraction and parameters reduction, the output dimension of each layer is set to be a
fraction of the dimension of its input. Specifically, this fraction is set to 0.25 for raw feature inputs
(such as x̂j and xj,i), and to 0.5 for other inputs (such as the output of concatenation components).
(2) Non-linear activation: for all neurons, we use batch normalization (Ioffe & Szegedy, 2015)
following by a ReLU (Nair & Hinton, 2010) as the non-linear activation. (3) Multiple FC layers
before output: to enhance the expressiveness ability, there are multiple fully connected layers, which
is defined by hyper-parameter, between layer l0 and the output layer. (4) Final combination: as
shown in Fig. 1, all outputs of k RESE modules will be concatenated as the inputs of a final fully
connected layer.

Transfer Structural Knowledge from GBDT. Besides the knowledge of expressive feature com-
bination, the GBDT model also contains rich structural knowledge which is quite invaluable to
further improve the learning efficiency and model effectiveness. In this paper, we adopt the knowl-
edge distillation technology (Hinton et al., 2015) to transfer GBDT’s structural knowledge into more
effective model initialization for TabNN.

Formally, we define corresponding trees of Gj in set j as an ordered set Tj , and Tj,i represents the
i-th important tree in Gj . To transfer structural knowledge of these trees, we first use the training
data D to go through these trees one by one. For each data sample, we will get a set of leaf indices
output by trees in Gj . As the categorical data are hard to handle by NN, we extend these indices
with one-hot representation and denote it as a vector Lj,d for the d-th sample in D. Let Lj stand for
the one-hot vectors for all data samples. In fact, the pairwise data (D,Lj) can sufficiently represent
the structural knowledge over the training data, since different data samples will go through the
different paths in trees according to their feature values and finally reach a leaf node. This part is
corresponding to the Line 8 in the Alg. 1.

However, as there are many leaf node in the tree set Tj , the dimension of Lj,d could be very high.
Thus, learning from it could be extremely inefficient. So we adopt embedding technology (Mikolov
et al., 2013) to reduce the dimension while retain important information in Lj,d. To speed up the
embedding learning, rather than using the unsupervised AutoEncoder (Bengio et al., 2009) method,
we use a FCNN with one hidden layer to learn the embedding supervised. More specifically, based
on bijection relations between leaf indices and leaf values, the one-hot coding Lj,d of leaf index is
taken as input, while the corresponding leaf value is taken as the training label. Then the output
of the hidden layer is the embedding of Lj,d, which is defined as Hj,d. We denote the whole
embedding set as Hj . The Line 9 in Alg. 1 is corresponding to this part. After Hj is prepared, we
use the data (D,Hj) to pre-train the parameter θj of the RESE module corresponding to Gj . After
all RESE modules are initialized, we can concatenate these modules together and normally train the
whole architecture from the ground truths.

6

Under review as a conference paper at ICLR 2019

5 10 15 20 25
Epoch

0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70

M
SE

TabNN
TabNN(R)
TabNN(S)
FCNN

(a) YAHOO

10 20 30 40 50 60 70 80 90
Epoch

0.30

0.32

0.34

0.36

0.38

0.40

Er
ro
r

TabNN
TabNN(R)
TabNN(S)
FCNN

(b) PROTEIN

2 4 6 8 10 12 14
Epoch

0.15

0.16

0.17

0.18

Er
ro
r

TabNN
TabNN(R)
TabNN(S)
FCNN

(c) A9A

Figure 2: Epoch-Metric Curves2.

Table 1: Details of datasets used in experiments.

Name #Train #Test #Feature Task Metric
YAHOO 0.47M 0.17M 699 Regression MSE
LETOR 2.27M 0.75M 136 Regression MSE
PROTEIN 14.8K 6.62K 357 Classification Error
A9A 32.6K 16.3K 123 Classification Error
FLIGHT 7.29M 0.50M 52 Classification Error

Table 2: The #parameter in LETOR data
when deal with many trees (feature groups).
“Concat” refer to the concatenation of multi-
ple FCNNs, each of which models from one
feature group.
#Trees 20 50 100 500 1000
Concat 268K 670K 1.34M 6.7M 13M
RESE 154K 175K 197K 240K 261K

4 EXPERIMENTS

In this section, we conduct thorough evaluations on TabNN1 by comparing its performance with
several baseline methods over a couple of public tabular datasets. Through the experiments, we
mainly demonstrate the advantages of TabNN over the tabular data with numerical features and low-
cardinality categorical ones, since high-dimension and sparse data, on the other hand, has been well
modeled by existing Deep-and-Wide NN methods Cheng et al. (2016). The basic information of the
used tabular datasets are listed in Table 1 and more details can be found in A.1. We can find that these
datasets cover diverse real-world applications. To ensure an efficient learning of NN over tabular
features, we normalize all numerical features and convert categorical features to numerical vectors
by tool “categorical-encoding” (Scikit-learn, 2018) with “binary” and “leave-one-out” encoding.

In the following experiments, we compare TabNN with the following baselines: (1) GBDT is a
widely used tree-based learning algorithm for modeling tabular data. (2) FCNN is the traditional
NN solution for tabular data. To achieve the best performance, we use NNI (Microsoft, 2018b) to
search the best hyper-parameter settings. (3) NRF (GBDT) (Biau et al., 2016) converts the regression
trees to NN. For the fair comparison with other baselines, we convert from GBDT to NN, rather than
Random Forest (Barandiaran, 1998). As NRF (GBDT) only work for regression tasks, we cannot
compare its performance on some classification tasks. (4) NNRF (Wang et al., 2017) is a recent NN
solution for the tabular data. As NNRF is only designed for classification tasks, we cannot compare
with it on all datasets. Since these baselines are introduced in Sec. 2, we do not provide more details
about them in this section due to the space restriction.

To further evaluate the effectiveness of knowledge brought from GBDT, we add two simplified vari-
ants of TabNN for comparison: (1) TabNN (R) randomly clusters features into several groups without
using any knowledge from GBDT; (2) TabNN (S) only uses structural tree knowledge while keeps
using random feature combinations. Except for FCNN, we did not search the hyper-parameters for
TabNN and other baselines. And for TabNN, we set the learning rate as 0.001, k = 10, and α = 0.5
in all experiments. More setting details are available in A.2.

Overall Performance Comparison. Table 3 compares the performance of TabNN with all base-
lines on five tabular datasets. From this table, we can find that TabNN outperforms all other baselines
on all datasets. In particular, even though we did not search the hyper-parameters for TabNN, it is
still much better than well-tuned FCNN. A further comparison of training curves between TabNN
and FCNN, as shown in Fig. 2, illustrates that TabNN convergences much faster than FCNN. More-
over, though both NRF (GBDT) and TabNN can leverage the knowledge learned by GBDT, TabNN
can further improve the performance and outperform GBDT, while NRF (GBDT) will be over-fitting
when continued training the NN converted from GBDT. In addition, while we have tried many set-
tings to fine-tune NNRF, the performance of it remains even worse than FCNN. Since NNRF paper

1The codes will be released to GitHub after acceptance.
2Due to space restriction, we put the curves of rest two datasets in Appendix A.3.

7

Under review as a conference paper at ICLR 2019

Table 3: Overall comparison on test data. The results are run by 5 different random seeds.
YAHOO LETOR PROTEIN A9A FLIGHT

GBDT 0.5700 0.5493 0.3031 0.1475 0.1826
FCNN 0.5905 ±1e-3 0.5569 ±4e-4 0.3358 ±3e-3 0.1531 ±2e-3 0.1850 ±7e-4
NRF (GBDT) 0.6010 ±9e-3 0.5665 ±2e-3 N/A N/A N/A
NNRF N/A N/A 0.5066 ±3e-3 0.1869 ±2e-3 0.1932 ±1e-5
TabNN (R) 0.5955 ±2e-3 0.5543 ±4e-4 0.3407 ±3e-3 0.1571 ±2e-3 0.1866 ±1e-3
TabNN (S) 0.5711 ±2e-3 0.5478 ±5e-4 0.3187 ±3e-3 0.1488 ±1e-3 0.1799 ±1e-3
TabNN 0.5612 ±8e-4 0.5461 ±5e-4 0.3022 ±2e-3 0.1473 ±6e-4 0.1764 ±3e-3

Table 4: Comparison on streaming data learning, on FLIGHT data.
Batch 1 2 3 4 5 6 7
GBDT 0.2399 0.2383 0.2245 0.1567 0.1745 0.1646 0.2655

GBDT with leaf updates 0.2395 0.2335 0.2182 0.1569 0.1648 0.1585 0.2679
TabNN 0.2344 0.2297 0.2135 0.1563 0.1607 0.1527 0.2598

only reports experiment results on small datasets (less than ten thousand samples), we hypothesize
that NNRF may work well for small datasets but not suitable for large datasets as used in our ex-
periments. To summarize, all these experimental results demonstrate that TabNN can outperform all
kinds of baselines and achieve superior performance in tabular data learning.

Analysis of TabNN. In this part, we further investigate the importance of key components in
TabNN. The performance gap between TabNN (S) and TabNN, as shown in Table 3, indicates that
feature grouping knowledge from GBDT plays a vital role in TabNN. Similarly, the comparison
between TabNN (S) and TabNN (R), as shown in Table 3, implies that the structural knowledge
from GBDT also yields a large contribution to the performance of TabNN. Besides the gaps in fi-
nal performance, tree knowledge also boosts TabNN with faster convergence, as shown in Fig. 2.
Obviously, these results reveal the importance of tree knowledge brought by GBDT in TabNN. To
disclose the importance of RESE module in parameters reduction, Table 2 shows the number of pa-
rameters used for one feature group set with varying number of trees (i.e. feature groups). The basic
approach Concat simply concatenate many FCNNs, each of which is learned based on one feature
group. From this table, we can find that the parameters in Concat increases linearly with growing
number of trees, while RESE can significantly reduce the size of parameters logarithmically. Thus,
RESE module indeed plays an important role to reduce the model complexity. To sum up, these re-
sults demonstrate that the key components in TabNN are indispensable to enhance the effectiveness
and efficiency in tabular data learning.

Compared with GBDT in Streaming Data Learning. As mentioned in Sec. 2, one shortage of
GBDT is the difficulty in learning from streaming data. To demonstrate the advantage of TabNN
in streaming data, we design a simulation experiment based on FLIGHT data. Specifically, we use
the data samples of the first 4 months in the year 2007 to train an initial model, and then update
it once a month, i.e. one batch contains the data corresponding to one month. On the other hand,
we train two GBDT baselines: one is only trained by the data of first 4 months without further
learning from steaming data, while another one will continued use streaming data to update leaf
values (‘refit’ function in LightGBM (Microsoft, 2018a)). As shown in Table 4, GBDT without the
sequential update is the worst as expected, while TabNN achieves the best results in streaming data
learning. Furthermore, this table also implies that, with using more data, TabNN can give rise to
more significant performance improvement. These results demonstrate the advantage of TabNN in
streaming data learning.

5 CONCLUSION
To fill the gap of NN in tabular data learning, we propose a universal neural network solution, called
TabNN, which can derive the effective neural architectures automatically for tabular data. The design
of TabNN follows two principles, one as explicitly leveraging expressive feature combinations and
the other as reducing model complexity. Since GBDT is proven to be effective in tabular data,
we leverage GBDT to power the implementation of TabNN. Specifically, TabNN first leverages
GBDT to automatically identify expressive feature groups and then clusters feature groups into
sets to encourage parameter sharing. After that, TabNN utilizes tree importance knowledge from
GBDT to construct recursive NN architectures. To enhance the training efficiency and learning
performance, tree structural knowledge is also utilized to provide an effective initialization for the
derived architecture. Extensive experiments on various tabular datasets show the advantages of
TabNN in modeling tabular data and demonstrate the necessity of designed components in TabNN.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search ranking by incorporating
user behavior information. In Proceedings of the 29th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pp. 19–26. ACM, 2006.

Arunava Banerjee. Initializing neural networks using decision trees. Computational learning theory
and natural learning systems, 4:3–15, 1997.

Iñigo Barandiaran. The random subspace method for constructing decision forests. IEEE transac-
tions on pattern analysis and machine intelligence, 20(8), 1998.

Yael Ben-Haim and Elad Tom-Tov. A streaming parallel decision tree algorithm. Journal of Machine
Learning Research, 11(Feb):849–872, 2010.

Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009.

Gérard Biau, Erwan Scornet, and Johannes Welbl. Neural random forests. Sankhya A, pp. 1–40,
2016.

Leonard A Breslow and David W Aha. Simplifying decision trees: A survey. The Knowledge
Engineering Review, 12(1):1–40, 1997.

Christopher JC Burges. From ranknet to lambdarank to lambdamart: An overview. Learning, 11
(23-581):81, 2010.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pp. 129–136. ACM, 2007.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2(3):27, 2011.

Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In Proceedings of the
Learning to Rank Challenge, pp. 1–24, 2011.

Chris Chatfield. Time-series forecasting. Chapman and Hall/CRC, 2000.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794.
ACM, 2016.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for rec-
ommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender
Systems, pp. 7–10. ACM, 2016.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198. ACM, 2016.

Glenn De’Ath. Boosted trees for ecological modeling and prediction. Ecology, 88(1):243–251,
2007.

ASA Data Expo. Airline on-time performance, asa section on: Statistical computing statistical
graphics, 2009.

Ji Feng, Yang Yu, and Zhi-Hua Zhou. Multi-layered gradient boosting decision trees. arXiv preprint
arXiv:1806.00007, 2018.

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hun-
dreds of classifiers to solve real world classification problems? The Journal of Machine Learning
Research, 15(1):3133–3181, 2014.

9

Under review as a conference paper at ICLR 2019

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784, 2017.

Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining data streams: a
review. ACM Sigmod Record, 34(2):18–26, 2005.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Krzysztof Grabczewski and Norbert Jankowski. Feature selection with decision tree criterion. In
null, pp. 212–217. IEEE, 2005.

Thore Graepel, Joaquin Quinonero Candela, Thomas Borchert, and Ralf Herbrich. Web-scale
bayesian click-through rate prediction for sponsored search advertising in microsoft’s bing search
engine. Omnipress, 2010.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international
conference on, pp. 6645–6649. IEEE, 2013.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

K. D. Humbird, J. L. Peterson, and R. G. McClarren. Deep neural network initialization with deci-
sion trees. ArXiv e-prints, July 2017.

Yani Ioannou, Duncan Robertson, Darko Zikic, Peter Kontschieder, Jamie Shotton, Matthew Brown,
and Antonio Criminisi. Decision forests, convolutional networks and the models in-between.
arXiv preprint arXiv:1603.01250, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Ozan Irsoy, Olcay Taner Yıldız, and Ethem Alpaydın. Soft decision trees. In Pattern Recognition
(ICPR), 2012 21st International Conference on, pp. 1819–1822. IEEE, 2012.

Ruoming Jin and Gagan Agrawal. Efficient decision tree construction on streaming data. In Pro-
ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 571–576. ACM, 2003.

JohannesMaxWel. Neural random forests. https://github.com/JohannesMaxWel/
neural_random_forests, 2018.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems, pp. 3146–3154, 2017.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In KDD,
volume 96, pp. 202–207. Citeseer, 1996.

10

https://github.com/JohannesMaxWel/neural_random_forests
https://github.com/JohannesMaxWel/neural_random_forests

Under review as a conference paper at ICLR 2019

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In Proceedings of the IEEE international conference on computer vision, pp.
1467–1475, 2015.

Eugene L Lawler, Jan Karel Lenstra, Alexander HG Rinnooy Kan, and David B Shmoys. Se-
quencing and scheduling: Algorithms and complexity. Handbooks in operations research and
management science, 4:445–522, 1993.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun. Model ensemble
for click prediction in bing search ads. In Proceedings of the 26th International Conference on
World Wide Web Companion, pp. 689–698. International World Wide Web Conferences Steering
Committee, 2017.

Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. arXiv preprint
arXiv:1712.00559, 2017.

Tie-Yan Liu, Jun Xu, Tao Qin, Wenying Xiong, and Hang Li. Letor: Benchmark dataset for research
on learning to rank for information retrieval. In Proceedings of SIGIR 2007 workshop on learning
to rank for information retrieval, volume 310. ACM Amsterdam, The Netherlands, 2007.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 2017.

Renqian Luo, Fei Tian, Tao Qin, and Tie-Yan Liu. Neural architecture optimization. arXiv preprint
arXiv:1808.07233, 2018.

Microsoft. Lightgbm. https://github.com/Microsoft/LightGBM, 2018a.

Microsoft. Nni. https://github.com/Microsoft/nni, 2018b.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Douglas C Montgomery, Lynwood A Johnson, and John S Gardiner. Forecasting and time series
analysis. McGraw-Hill New York etc., 1990.

Sreerama K Murthy. Automatic construction of decision trees from data: A multi-disciplinary sur-
vey. Data mining and knowledge discovery, 2(4):345–389, 1998.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

John C Platt. 12 fast training of support vector machines using sequential minimal optimization.
Advances in kernel methods, pp. 185–208, 1999.

Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang. Product-based
neural networks for user response prediction. In Data Mining (ICDM), 2016 IEEE 16th Interna-
tional Conference on, pp. 1149–1154. IEEE, 2016.

David L Richmond, Dagmar Kainmueller, Michael Y Yang, Eugene W Myers, and Carsten Rother.
Relating cascaded random forests to deep convolutional neural networks for semantic segmenta-
tion. arXiv preprint arXiv:1507.07583, 2015.

Lior Rokach and Oded Maimon. Top-down induction of decision trees classifiers-a survey. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(4):476–
487, 2005.

11

https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/nni

Under review as a conference paper at ICLR 2019

Samuel Rota Bulo and Peter Kontschieder. Neural decision forests for semantic image labelling.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 81–88,
2014.

Scikit-learn. categorical encoding. https://github.com/scikit-learn-contrib/
categorical-encoding, 2018.

Ishwar Krishnan Sethi. Entropy nets: from decision trees to neural networks. Proceedings of the
IEEE, 78(10):1605–1613, 1990.

V Sugumaran, V Muralidharan, and KI Ramachandran. Feature selection using decision tree and
classification through proximal support vector machine for fault diagnostics of roller bearing.
Mechanical systems and signal processing, 21(2):930–942, 2007.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender sys-
tems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 1235–1244. ACM, 2015.

Jung-Ying Wang. Application of support vector machines in bioinformatics. Taipei: Department of
Computer Science and Information Engineering, National Taiwan University, 2002.

Suhang Wang, Charu Aggarwal, and Huan Liu. Using a random forest to inspire a neural network
and improving on it. In Proceedings of the 2017 SIAM International Conference on Data Mining,
pp. 1–9. SIAM, 2017.

Yongxin Yang, Irene Garcia Morillo, and Timothy M Hospedales. Deep neural decision trees. arXiv
preprint arXiv:1806.06988, 2018.

Shuai Zhang, Lina Yao, and Aixin Sun. Deep learning based recommender system: A survey and
new perspectives. arXiv preprint arXiv:1707.07435, 2017.

Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data. In
European conference on information retrieval, pp. 45–57. Springer, 2016.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

12

https://github.com/scikit-learn-contrib/categorical-encoding
https://github.com/scikit-learn-contrib/categorical-encoding

Under review as a conference paper at ICLR 2019

APPENDIX A MORE DETAILS IN EXPERIMENTS

A.1 DATASET DETAILS.

The information of the selected tabular datasets are listed in Table 1. Among these datasets, YAHOO
(Chapelle & Chang, 2011) and LETOR (Liu et al., 2007) are both the learning-to-rank datasets, and
we solve them as regression problems (i.e. the pointwise ranking problems). PROTEIN (Wang,
2002) and A9A (Kohavi, 1996; Platt, 1999) are the classification datasets, which are downloaded
from LIBSVM website (Chang & Lin, 2011). And we use FLIGHT (Expo, 2009) as a classification
data by forecasting the flights are delayed (more than 15 minutes) or not. Specifically, we use the
data in the year 2007 for the training and the 50k samples in the year 2008 for the test. For the data
without test sets, we randomly sample 80% for the training, and use the rest for the test.

A.2 MODEL DETAILS

The concrete model setting for all used models is listed in Table 5.

Table 5: Model Setting Details.

Model Setting Details
GBDT For all the experiments, we use the released LightGBM (Microsoft, 2018a) with

learning rate 0.15 and strict 100 trees even when meeting multi-class classifica-
tion dataset. Besides, the leaf number is set to 0.5 × #feature on most datasets
(except 0.4 on A9A), and is limited to the range [32, 128] to avoid underfitting
or overfitting. By the way, the GBDT used in all the other models is set as same.

FCNN We use batch normalization and ReLU as activation, and AdamW (Loshchilov
& Hutter, 2017) as optimizer for FCNN. As for the hyper-parameters and struc-
tures setting, we use NNI (Microsoft, 2018b) toolkit to run various models with
different settings 64 times on each dataset, then select the best one among all
models to be our baseline. The hyper-parameter searching in NNI contains
learning rate, batch size and FCNN structure (the number of layers and cor-
responding hidden units). The searched best model on each dataset is listed in
Table 6, all of which outperform the human setting one.

NRF(GBDT) Based on the author’s released code (JohannesMaxWel, 2018), we change the
Random Forest with GBDT in NRF for the fair comparison. Besides, consid-
ering the tree dependency in GBDT, we train the whole sparse neural network
converted by NRF at once.

NNRF According to the original paper (Wang et al., 2017), we set the depth of NNRF
to dlog2(#class)e + 1, set the sampled input feature dimension to

√
#feature

and use 150 NNs with bootstrapping for ensemble.
TabNN
TabNN(R)
TabNN(S)

In all experiments, we set the learning rate to 0.001, batch size to 128, optimizer
to AdamW, k = 10, α = 0.5 and add three hidden layers with 200, 100, 50
units correspondingly before the 20-dimension output of RESE module.

Table 6: The best setting of FCNN on each dataset.

Dataset Learning rate Batch size Inputs Hidden units Outputs
YAHOO 1.87e-3 128 699 [1048, 524, 262, 131] 1
LETOR 6.58e-4 128 136 [204, 163, 130, 104, 83] 1

PROTEIN 1.89e-3 64 357 [535, 374] 3
A9A 2.53e-4 128 123 [92, 64, 44] 2

FLIGHT 8.47e-3 128 52 [78, 70, 63] 2

A.3 MORE EPOCH-METRIC CURVES

13

Under review as a conference paper at ICLR 2019

2 4 6 8 10 12 14 16 18
Epoch

0.55

0.56

0.57

0.58

0.59

0.60

M
SE

TabNN
TabNN(R)
TabNN(S)
FCNN

(a) LETOR

2 4 6 8 10
Epoch

0.18

0.19

0.20

0.21

Er
ro
r

TabNN
TabNN(R)
TabNN(S)
FCNN

(b) FLIGHT

Figure 3: More Epoch-Metric Curves.

14

	Introduction
	Related Work
	TabNN
	Experiments
	Conclusion
	More Details in Experiments
	Dataset Details.
	Model Details
	More Epoch-Metric Curves

