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Abstract

Network pruning is widely used for reducing the heavy computational cost of
deep models. A typical pruning algorithm is a three-stage pipeline, i.e., training (a
large model), pruning and fine-tuning. In this work, we make a rather surprising
observation: fine-tuning a pruned model only gives comparable or even worse
performance than training that model with randomly initialized weights. Our
results have several implications: 1) training a large, over-parameterized model is
not necessary to obtain an efficient final model, 2) learned “important” weights
of the large model are not necessarily useful for the small pruned model, 3) the
pruned architecture itself, rather than a set of inherited weights, is what leads to the
efficiency benefit in the final model, which suggests that some pruning algorithms
could be seen as performing network architecture search.

1 Introduction

Network pruning is a commonly used approach for obtaining an efficient neural network. A typical
procedure of network pruning consists of three stages: 1) train a large, over-parameterized model, 2)
prune the unimportant weights according to a certain criterion, and 3) fine-tune the pruned model to
regain accuracy. Generally, there are two common beliefs behind this pruning procedure. First, it is
believed that training a large network first is important [1]] and the three-stage pipeline can outperform
directly training the small model from scratch. Second, both the architectures and the weights of the
pruned model are believed to be essential for the final efficient model, which is why most existing
pruning methods choose to fine-tune the pruned model instead of training it from scratch. Also
because of this, how to select the set of important weights is a very active research topic [, 2} 13} 4].
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automatic network pruning methods may lie in identifying
efficient architectures and performing implicit architecture search.

2 Methodology

Target Pruned Architectures. We divide pruning methods by whether the target pruned architecture
is determined by either human or the pruning algorithm (see [Figure T). An example of designing
predefined target architecture is specifying how many channels to prune in each layer. In contrast,
when the target architecture is automatically discovered, the pruning algorithm determines how many
channels to prune in each layer, by comparing the importance of channels across layers.

Training from scratch. Because the pruned model requires less computation, it may be unfair to
train the pruned model for the same number of epochs as the large model. In our experiments, we
use Scratch-E to denote training the small pruned models for the same epochs, and Scratch-B to
denote training for the same amount of computation budget (measured by FLOPs). We use standard
training hyper-parameters and data-augmentation schemes. The optimization method used is SGD
with Nesterov momentum.

3 Experiments

In this section we present our experimental results comparing training pruned models from scratch
with fine-tuning. For method with predefined architectures, we evaluate L1-norm based channel
pruning method [3]]. For method with automatically discovered target architectures, we use Network
Slimming [5]. The models, datasets and the number of epochs for fine-tuning are the same as those
in the original paper. More results for other pruning methods and transfer learning can be found in

Appendix [B]
3.1 Predefined Target Architectures

L;-norm based Channel Pruning [3] is one of the earliest work on channel pruning for convolu-
tional networks. In each layer, a certain percentage of channels with smaller L;-norm of its filter
weights will be pruned. shows our results. The Pruned Model column shows the list of
predefined target models. We observe that in each row, scratch-trained models achieve at least the
same level of accuracy as fine-tuned models, with Scratch-B slightly higher than Scratch-E in most
cases. On ImageNet, both Scratch-B models are better than the fine-tuned ones.

Dataset Model Unpruned Pruned Model Fine-tuned Scratch-E Scratch-B

VGG-16 | 93.63 (£0.16)  VGG-16-A 9341 (£0.12) 93.62 (+0.11) 93.78 (£0.15)
ResNet-56 | 93.14 (4£0.12) ResNet-56-A  92.97 (£0.17) 92.96 (£0.26) 93.09 (£0.14)
CIFAR-10 ResNet-56-B  92.67 (£0.14) 92.54 (£0.19)  93.05 (+0.18)
ResNet-110 | 93.14 (+0.24) ResNet-110-A  93.14 (£0.16)  93.25 (£0.29) 93.22 (£0.22)
ResNet-110-B 92.69 (£0.09) 92.89 (+0.43) 93.60 (£0.25)

ImageNet | ResNet-34 7331 ResNet-34-A 72.56 72.77 73.03

ResNet-34-B 72.29 72.55 7291

Table 1: Results (accuracy) for L;-norm based channel pruning [3]]. “Pruned Model” is the model pruned from
the large model. Names such as ‘VGG-16-A’ refer to pruned models whose configurations are defined in [3].

3.2 Automatically Discovered Target Architectures

Network Slimming [5] imposes L1 -sparsity regularization on channel-wise scaling factors from
Batch Normalization layers [[6] during training, and prunes channels with lower scaling factors
afterward. Since the channel scaling factors are compared across layers, this method produces
automatically discovered target architectures. As shown in for all networks, the small
models trained from scratch can reach the same accuracy as the fine-tuned models, where Scratch-B
consistently outperforms the fine-tuned models. Morever, when we extend the standard training of
large model, the above observation still holds.

4 Network Pruning as Architecture Search

In this section, we demonstrate that the value of automatic network pruning methods actually lies in
searching efficient architectures. We use Network Slimming [S]] as an example automatic method.

Parameter Efficiency of Pruned Architectures. In [Figure 2(left), we compare the parameter
efficiency of architectures obtained by Network Slimming with a naive predefined pruning strategy



Dataset Model Unpruned Prune Ratio  Fine-tuned Scratch-E Scratch-B
VGG-19 93.53 (+0.16) 70% 93.60 (+0.16) 93.30 (+0.11)  93.81 (+0.14)
ProResNet-164 | 95.04 (£0.16) 40% 94.77 (£0.12) 94.70 (£0.11) 94.90 (+0.04)
CIFAR-10 60% 94.23 (£0.21) 94.58 (£0.18) 94.71 (+0.21)
40% 94.00 (£0.20) 93.68 (+0.18) 94.06 (£0.12)
60% 93.87 (£0.13)  93.58 (£0.21)  93.85 (£0.25)
VGG-19 72.63 (£0.21) 50% 72.32 (£0.28) 71.94 (+£0.17) 73.08 (£0.22)
40% 76.22 (£0.20) 76.36 (+£0.32)  76.68 (£0.35)
CIFAR-100 | PrEResNet164 | TO80 G019 fog 7417 (£033) 75.05 (+0.08) 7573 (£0.29)
40% 7335 (£0.17) 73.24 (£0.29) 73.19 (£0.26)
60% 72.46 (£0.22) 72.62 (+£0.36) 72.91 (£0.34)
ImageNet VGG-11 70.84 50% 68.62 70.00 71.18

DenseNet-40 | 94.10 (£0.12)

DenseNet-40 | 73.82 (£0.34)

Table 2: Results (accuracy) for Network Slimming [S)]. “Prune ratio” stands for total percentage of channels
that are pruned in the whole network. The same ratios for each model are used as the original paper.

that uniformly prunes the same percentage of channels in all layer. All architectures are trained from
random initialization for the same number of epochs without sparsity regularization. We see that the
architectures obtained by Network Slimming are more parameter efficient, as they could achieve the
same level of accuracy using 5x fewer parameters than uniformly pruning architectures.
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Figure 2: Pruned architectures obtained by Network Slimming [S] and different other design strategies, all
trained from scratch. Left: Results for VGG-16 on CIFAR-10, Right: Results for VGG-19 on CIFAR-100.

Generalizable Design Principles from Pruned Architectures. Given that the automatically discov-
ered architectures tend to be parameter efficient, here we show a generalizable principle on designing
better architectures. We show two design strategies: 1) “Guided Pruning”: use the average number
of channels in each layer stage (layers with the same feature map size) from pruned architectures
to construct a new set of architectures. 2) “Transferred Guided Pruning”: use these patterns from a
different architecture on a different dataset. Figure 2[right) shows our results. Here for “Transferred
Guided Pruning”, we use the patterns obtained by a pruned VGG-16 on CIFAR-10, to design the net-
work for VGG-19 on CIFAR-100. We observe that both “Guided Pruning” (green) and “Transferred
Guided Pruning” (brown) can both perform on par architectures directly pruned on the VGG-19 and
CIFAR-100 (blue), and are significantly better than uniform pruning (red). This means we could
distill generalizable design principles from pruned architectures.

5 Discussion and Conclusion

In practice, for methods with predefined target architectures, training from scratch is more computa-
tionally efficient and saves us from implementing the pruning procedure and tuning the additional
hyper-parameters. Still, pruning methods are useful when a pretrained large model is already given,
in this case fine-tuning is much faster. Also, obtaining multiple models of different sizes can be done
quickly by pruning from a large model by different ratios.

In summary, our experiments have shown that training the small pruned model from scratch can almost
always achieve comparable or higher level of accuracy than the model obtained from the typical “train-
ing, pruning and fine-tuning” procedure. This changed our previous belief that over-parameterization



is necessary for obtaining a final efficient model, and the understanding on effectiveness of inheriting
weights that are considered important by the pruning criteria. We further demonstrated the value
of automatic pruning algorithms could be regarded as finding efficient architectures and providing
architecture design guidelines.
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Appendix

A Experiment Setups

Here we provide additional details on our experiment setups.

Datasets, Network Architectures and Pruning Methods. In the network pruning literature, CIFAR-
10, CIFAR-100 [7]], and ImageNet [8] datasets are the de-facto benchmarks, while VGG [9], ResNet
[10] and DenseNet [[11] are the common network architectures. We evaluate three pruning methods
with predefined target architectures, 1} 3} 4], and three which automatically discover target models,
[2, 5L [12]. For the first five methods, we evaluate using the same (target model, dataset) pairs as
presented in the original paper to keep our results comparable. For the last one [2l], we use the
aforementioned architectures instead, since the ones in the original paper are no longer state-of-the-
art. On CIFAR datasets, we run each experiment with 5 random seeds, and report the mean and
standard deviation of the accuracy.

Implementation. In order to keep our setup as close to the original paper as possible, we use the
following protocols: 1) If a previous pruning method’s training setup is publicly available, e.g.
[S] and [12], we adopt the original implementation; 2) Otherwise, for simpler pruning methods,
e.g., [2L 3], we re-implement the three-stage pruning procedure and achieve similar results to the
original paper; 3) For the remaining two methods [1, 4], the pruned models are publicly available
but without the training setup, thus we choose to re-train both large and small target models from
scratch. Interestingly, the accuracy of our re-trained large model is higher than what is reported in the
original papelﬂ In this case, to accommodate the effects of different frameworks and training setups,
we report the relative accuracy drop from the unpruned large model.

For random weight initialization, we adopt the scheme proposed in [[15]. For results of models
fine-tuned from inherited weights, we either use the released models from original papers (for case 3
above) or follow the common practice of fine-tuning the model using the lowest learning rate when
training the large model [3, 4]]. The code to reproduce the results and trained ImageNet models are
publicly available in the following anonymous link: https://drive.google.com/open?id=1HB_
1FphsWtbuMAdgHbODSLAAMn j3B6TM.

B Additional Experiment Results

The results of two pruning methods are already shown in the extended abstract, here in appendix we
provide results of the remaining four pruning methods. We also include an experiment on transfer
learning from image classification to object detection.

B.1 Predefined Target Architectures

ThiNet [1] greedily prunes the channel that has the smallest effect on the next layer’s activation
values. As shown in[Table 3} for VGG-16 and ResNet-50, both Scratch-E and Scratch-B can almost
always achieve better performance than the fine-tuned model, often by a significant margin. The only
exception is Scratch-E for VGG-Tiny, where the model is pruned very aggressively from VGG-16
(FLOPs reduced by 15x), and as a result, drastically reducing the training budget for Scratch-E. The
training budget of Scratch-B for this model is also 7 times smaller than the original large model, yet
it can achieve the same level of accuracy as the fine-tuned model.

Regression based Feature Reconstruction [4] prunes channels by minimizing the feature map
reconstruction error of the next layer. Different from ThiNet [1]], this optimization problem is solved
by LASSO regression. Results are shown in Again, in terms of relative accuracy drop from
the large models, scratch-trained models are better than the fine-tuned models.

In summary, for pruning methods with predefined target architectures, training the small models
for the same number of epochs as the large model (Scratch-E), is often enough to achieve the
same accuracy as models output by the three-stage pipeline. Combined with the fact that the target
architecture is predefined, in practice one would prefer to train the small model from scratch directly.

3This could be due to the difference in the deep learning frameworks: we used Pytorch [13] while the original
papers used Caffe [[14]


https://drive.google.com/open?id=1HB_1FphsWtbuMAdgHbODSLdAMnj3B6TM
https://drive.google.com/open?id=1HB_1FphsWtbuMAdgHbODSLdAMnj3B6TM

Dataset Unpruned Strategy Pruned Model
VGG-16 VGG-Conv VGG-GAP VGG-Tiny
71.03 Fine-tuned —1.23 -3.67 —11.61
7151 Scratch-E —2.75 —4.66 —14.36
' Scratch-B +0.21 —2.85 —11.58
ImageNet
ResNet-50 ResNet50-30% ResNet50-50% ResNet50-70%
75.15 Fine-tuned —6.72 —4.13 -3.10
76.13 Scratch-E —5.21 —2.82 —-1.71
Scratch-B —4.56 —2.23 —1.01

Table 3: Results (accuracy) for ThiNet [1]. Names such as “VGG-GAP” and “ResNet50-30%" are pruned
models whose configurations are defined in [1]]. To accommodate the effects of different frameworks between
our implementation and the original paper’s, we compare relative accuracy drop from the unpruned large model.
For example, for the pruned model VGG-Conv, —1.23 is relative to 71.03 on the left, which is the reported
accuracy of the unpruned large model VGG-16 in the original paper; —2.75 is relative to 71.51 on the left, which
is VGG-16’s accuracy in our implementation.

Dataset | Unpruned Strategy ~ Pruned Model
VGG-16 VGG-16-5x

71.03 Fine-tuned —2.67

7151 Scratch-E —3.46

Scratch-B —0.51

ImageNet

ResNet-50 ResNet-50-2x

75.51 Fine-tuned —3.25

76.13 Scratch-E —1.55

Scratch-B —1.07

Table 4: Results (accuracy) for Regression based Feature Reconstruction [4]. Pruned models such as “VGG-16-
5x” are defined in [4]. Similar to[Table 3] we compare relative accuracy drop from unpruned large models.

Moreover, when provided with the same amount of computation budget (measured by FLOPs) as the
large model, scratch-trained models can even lead to better performance than the fine-tuned models.

B.2 Automatically Discovered Target Architectures

Sparse Structure Selection [12] also imposes sparsity regularization on the scaling factors during
training to prune structures, and can be seen as a generalization of Network Slimming. Other than
channels, pruning can be on residual blocks in ResNet or groups in ResNeXt [16]. We examine
residual blocks pruning, where ResNet-50 are pruned to be ResNet-41, ResNet-32 and ResNet-26.
[Table 7| shows our results. On average Scratch-E outperforms pruned models, and for all models
Scratch-B is better than both.

Dataset Model Unpruned Pruned Model Pruned Scratch-E  Scratch-B
ResNet-41 75.44 75.61 76.17

ImageNet | ResNet-50 76.12 ResNet-32 74.18 73.77 74.67
ResNet-26 71.82 72.55 7341

Table 5: Results (accuracy) for residual block pruning using Sparse Structure Selection [12]. In the original
paper no fine-tuning is required so there is a “Pruned” column instead of “Fine-tuned” as before.

Non-structured Weight Pruning [2] prunes individual weights that have small magnitudes. This
pruning granularity leaves the weight matrices sparse, hence it is commonly referred to as non-
structured weight pruning. Because all the network architectures we evaluated are fully-convolutional
(except for the last fully-connected layer), for simplicity, we only prune weights in convolution layers
here. Before training the pruned sparse model from scratch, we re-scale the standard deviation of
the Gaussian distribution for weight initialization, based on how many non-zero weights remain in
this layer. This is to keep a constant scale of backward gradient signal [15]. As shown in
on CIFAR datasets, Scratch-E sometimes falls short of the fine-tuned results, but Scratch-B is able



to perform at least on par with the latter. On ImageNet, we note that sometimes even Scratch-B
is slightly worse than fine-tuned result. This is the only case where Scratch-B does not achieve
comparable accuracy in our attempts. We hypothesize this could be due to the task complexity of
ImageNet and the fine pruning granularity.

Dataset Model Unpruned Prune Ratio  Fine-tuned Scratch-E Scratch-B
VOO | B0GOID e oih 010 samt o0 9562009

e pstonec [osmcar i R S
DemseNet BC-100 | 524 (R0 4oe) 550 4015) aas (£o0.12) 9512200

R I i v

et e [secosn B O T )
DemseNetBC-100 | 7159 (5019 Soer 77301 Loy 77165 (£09) 7780 02

e BT e me ns e
ResNet-50 76.15 30% 76.06 74.77 75.70

60% 76.09 73.69 7491

Table 6: Results (accuracy) for non-structured pruning [2]]. “Prune Ratio” denotes the percentage of parameters
pruned in the set of all convolutional weights.

Effects of Sparsity Regularization. Some methods [5| [12] use sparsity regularization during the
training of large, over-parameterized models, to smooth the following pruning process, and in fine-
tuning, no such sparsity is imposed. In all of our experiments presented above, no sparsity is used for
training the pruned models from scratch. Here we analyze the effects of using sparsity regularization
(or not) for Network Slimming [5]. Table|7|shows the results when all training procedures are with
sparsity regularization. We can see that Scratch-B are still able to be on par with the fine-tuned models.
Table [§] shows the results when we do not use sparsity regularization in any training procedures,
including large model training. We can see that when no sparsity is induced, Scratch-B can also
consistently achieve comparable results with the fine-tuned models.

Dataset Model Unpruned  Prune Ratio  Fine-tuned Scratch-E Scratch-B
VGG-19 | 93.59 (£0.19) 70% 93.51 (£0.23) 93.36 (£0.23) 93.62 (£+0.10)
TFAR-1 . . . . . .
C 0 DenseNet-40 | 94.00 (0.17) 40% 94.01 (£0.23) 93.76 (£0.06) 93.91 (£0.23)
60% 93.86 (£0.12) 93.62 (£0.22) 93.93 (£+0.20)

Table 7: Results for training with both with sparsity for VGG-19 and DenseNet-40 on CIFAR-10.

Dataset Model Unpruned  Prune Ratio  Fine-tuned Scratch-E Scratch-B
40% 94.00 (£0.12) 93.79 (£0.19) 94.07 (£0.14)
CIFAR-10 | DenseNet-40 | 94.10 (£0.12
ensene G022 60k 93.77(£0.12) 9373 (£0.20) 94.01 (£0.11)

Table 8: Results for training without sparsity for DenseNet-40 on CIFAR-10. We found a whole layer in
VGG-19 is pruned when we try to prue 70% channels, thus the network gets destroyed and we do not have the
results here.

B.3 Transfer Learning to Object Detection

We have shown that the small pruned model can be trained from scratch to match the accuracy of the
fine-tuned model in classification tasks. To see whether this phenomenon would also hold for transfer
learning to other vision tasks, we evaluate the L;-norm based pruning method [3] on the PASCAL
VOC object detection task, using Faster-RCNN [[17].



Object detection frameworks usually require transferring model weights pre-trained on ImageNet
classification, and one can perform pruning either before or after the weight transfer. More specifically,
the former could be described as “train on classification, prune on classification, fine-tune on
classification, transfer to detection”, while the latter is “train on classification, transfer to detection,
prune on detection, fine-tune on detection”. We call these two approaches Prune-C (classification)
and Prune-D (detection) respectively, and report the results in[Table 9] With a slight abuse of notation,
here Scratch-E/B denotes "train the small model on classification, transfer to detection", and is
different from the setup of detection without ImageNet pre-training as in [[18]].

Dataset Model | Unpruned | Pruned Model Prune-C Prune-D Scratch-E Scratch-B

ResNe34-A 7147 7099  71.64 71.90
PASCALVOCO7 | ResNet-34 | 7169 =0 Netia B 7084 69.62 7168 71.26

Table 9: Results (mAP) for pruning on detection task. The pruned models are chosen from (author?) [3].
Prune-C refers to pruning on classifcation pre-trained weights, Prune-D refers to pruning after the weights are
transferred to detection task. Scratch-E/B means pre-training the pruned model from scratch on classification
and transfer to detection.

For this experiment, we adopt the code and default hyper-parameters from [19]], and use PASCAL
VOC 07 trainval/test set as our training/test set. For backbone networks, we evaluate ResNet-34-A
and ResNet-34-B from the L;-norm based channel pruning [3]], which are pruned from ResNet-
34. shows our result, and we can see that the model trained from scratch can surpass the
performance of fine-tuned models under the transfer setting.

Another interesting observation from is that Prune-C is able to outperform Prune-D, which
is surprising since if our goal task is detection, directly pruning away weights that are considered
unimportant for detection should presumably be better than pruning on the pre-trained classification
models. We hypothesize that this might be because pruning early in the classification stage makes the
final model less prone to being trapped in a bad local minimum caused by inheriting weights from the
large model. This is in line with our observation that Scratch-E/B, which trains the small models from
scratch starting even earlier at the classification stage, can achieve further performance improvement.

C Network Pruning as Architecture Search

Here we provide results that complements Section [] for non-structured weight pruning [2]. The
networks and datasets used are the same as those used in Section 4l We also discuss the relation with
conventional architecture search methods at the end.

[Figure 3|left) shows our results on parameter efficiency of architectures obtained by non-structured
pruning. Here “Uniform Sparsifying” means uniformly sparsifying individual weights in the network
at a fixed probability. It can be seen that pruned architectures are more parameter-efficient than
uniform sparsified architectures.
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Figure 3: Pruned architectures obtained by non-structured pruning [2] and different design strategies. Left:
Results for VGG-16 on CIFAR-10, Right: Results for VGG-19 on CIFAR-100.



Figure 3(right) shows our results for architectures obtained by other different design strategies. For
“Guided Sparsifying” and “Transferred Guided Sparsifying”, we use the average sparsity patterns
of 3 x 3 kernel in each layer stage to design new structures. Similar to Network Slimming, both
“Guided Sparsifying” (green) and “Transferred Guided Sparsifying” (brown) are significantly more
parameter-efficient than uniform sparsifying (red).

Comparison with Traditional Architecture Search Methods. Conventional techniques for net-
work architecture search include reinforcement learning [20,21]] and evolutionary algorithms [22,23]].
In each iteration, a randomly initialized network is trained and evaluated to guide the search, and the
search process usually requires thousands of iterations to find the goal architecture. In contrast, using
network pruning as architecture search only requires a one-pass training, however the search space is
restricted to the set of all “sub-networks” inside a large network, whereas traditional methods can
search for more variations, e.g., activation functions or different layer orders.

Recently, [24] uses a similar pruning technique to Network Slimming [5] to automate the design of net-
work architectures; [25] prune channels using reinforcement learning and automatically compresses
the architecture. On the other hand, in the network architecture search literature, sharing/inheriting
trained parameters [26} 27]] has become a popular approach to accelerate the convergence and reduce
the training budget during searching, though it would be interesting to investigate whether training
from scratch would sometimes yield better results as we observed in network pruning. We can see
that these two areas, namely network pruning and architecture search, share many common traits and
start to borrow wisdom from each other.
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Figure 4: Weight distribution of convolutional layers for different pruning methods. We use DenseNet-40 and
CIFAR-10 dataset. We compare the weight distribution of unpruned models, fine-tuned models and scratch-
trained models. Top: Results for Network Slimming [5]. Botfom: Results for non-structured weight-level pruning

2.

We show the weight distribution of unpruned large models, fine-tuned pruned models and scratch-
trained pruned models, for two pruning methods: Network Slimming [5] and non-structured weight
level pruning [2]. We choose DenseNet-40 and CIFAR-10 for visualization and compare the weight
distribution of unpruned models, fine-tuned models and scratch-trained models. For Network Slim-
ming, the prune ratio is chosen to be 60%. For non-structured weight level pruning, the prune ratio is
chosen to be 80%. Figure 4] shows our result. We can see that the weight distribution of fine-tuned
models and scratch-trained pruned models are different from the unpruned large models — the weights
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that are close to zero are much fewer. This seems to imply that there are less redundant structures in
the found pruned architecture, and support the effect of architecture search for automatic pruning
methods.
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