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ABSTRACT

Learning rate decay (lrDecay) is a de facto technique for training modern neural
networks. It starts with a large learning rate and then decays it multiple times. It
is empirically observed to help both optimization and generalization. Common
beliefs in how lrDecay works come from the optimization analysis of (Stochas-
tic) Gradient Descent: 1) an initially large learning rate accelerates training or
helps the network escape spurious local minima; 2) decaying the learning rate
helps the network converge to a local minimum and avoid oscillation. Despite the
popularity of these common beliefs, experiments suggest that they are insufficient
in explaining the general effectiveness of lrDecay in training modern neural net-
works that are deep, wide, and nonconvex. We provide another novel explanation:
an initially large learning rate suppresses the network from memorizing noisy data
while decaying the learning rate improves the learning of complex patterns. The
proposed explanation is validated on a carefully-constructed dataset with tractable
pattern complexity. And its implication, that additional patterns learned in later
stages of lrDecay are more complex and thus less transferable, is justified in real-
world datasets. We believe that this alternative explanation will shed light into the
design of better training strategies for modern neural networks.

1 INTRODUCTION

Modern neural networks are deep, wide, and nonconvex. They are powerful tools for representation
learning and serve as core components of deep learning systems. They are top-performing models
in language translation (Sutskever et al., 2014), visual recognition (He et al., 2016), and decision
making (Silver et al., 2018). However, the understanding of modern neural networks is way behind
their broad applications. A series of pioneering works (Zhang et al., 2017; Belkin et al., 2019;
Locatello et al., 2019) reveal the difficulty of applying conventional machine learning wisdom to
deep learning. A better understanding of deep learning is a major mission in the AI field.

One obstacle in the way of understanding deep learning is the existence of magic modules in modern
neural networks and magic tricks to train them. Take batch normalization module (Ioffe & Szegedy,
2015) for example, its pervasiveness in both academia and industry is undoubted. The exact reason
why it expedites training and helps generalization, however, remains mysterious and is actively
studied in recent years (Bjorck et al., 2018; Santurkar et al., 2018; Kohler et al., 2019). Only when we
clearly understand these magical practices can we promote the theoretical understanding of modern
neural networks.

Learning rate is “the single most important hyper-parameter” (Bengio, 2012) in training neural net-
works. Learning rate decay (lrDecay) is a de facto technique for training modern neural networks,
where we adopt an initially large learning rate and then decay it by a certain factor after pre-defined
epochs. Popular deep networks such as ResNet (He et al., 2016), DenseNet (Huang et al., 2017b)
are all trained by Stochastic Gradient Descent (SGD) with lrDecay. Figure 1(a) is an example of
lrDecay, with the learning rate decayed by 10 every 30 epochs. The training is divided into several
stages by the moments of decay. These stages can be easily identified in learning curves (such as
Figure 1(b)), where the performance boosts sharply shortly after the learning rate is decayed. The
lrDecay enjoys great popularity due to its simplicity and general effectiveness.

Common beliefs in how lrDecay works are derived from the optimization analysis in (Stochastic)
Gradient Descent (LeCun et al., 1991; Kleinberg et al., 2018). They attribute the effect of an initially
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Figure 1: Training error in (b) is shown by thin curves, while test error in (b) by bold curves.

explanation perspective initially large lr supported lr decay supported

LeCun et al. (1991) optimization accelerates training 3 avoids oscillation 7
Kleinberg et al. (2018) optimization escapes bad local minima 3 converges to local minimum 7

Proposed pattern complexity avoids fitting noisy data 3 learns more complex patterns 3

Table 1: Comparison of explanations on why lrDecay helps training neural networks. The column
“supported” means whether the explanation is supported by the empirical experiments in this paper.

large learning rate to escaping spurious local minima or accelerating training and attribute the effect
of decaying the learning rate to avoiding oscillation around local minima. However, these common
beliefs are insufficient to explain our empirical observations from a series of carefully-designed
experiments in Section 4.

In this paper, we provide an alternative view: the magnitude of the learning rate is closely related to
the complexity of learnable patterns. From this perspective, we propose a novel explanation for the
efficacy of lrDecay: an initially large learning rate suppresses the memorization of noisy data
while decaying the learning rate improves the learning of complex patterns. This is validated
on a carefully-constructed dataset with tractable pattern complexity. The pattern complexity in real-
world datasets is often intractable. We thus validate the explanation by testing its implication on
real-world datasets. The implication that additional patterns learned in later stages of lrDecay are
more complex and thus less transferable across different datasets, is also justified empirically. A
comparison between the proposed explanation and the common beliefs is summarized in Table 1.
Our explanation is supported by carefully-designed experiments and provides a new perspective on
analyzing learning rate decay.

The contribution of this paper is two-fold:

• We demonstrate by experiments that existing explanations of how lrDecay works are insuf-
ficient in explaining the training behaviors in modern neural networks.

• We propose a novel explanation based on pattern complexity, which is validated on a dataset
with tractable pattern complexity, and its implication is validated on real-world datasets.

The explanation also suggests that complex patterns are only learnable after learning rate decay.
Thus, when the model learns all simple patterns, but the epoch to decay has not reached, immediately
decaying the learning rate will not hurt the performance. This implication is validated in Section A.1.

2 RELATED WORK

2.1 UNDERSTANDING THE BEHAVIOR OF SGD

Recently, researchers reveal the behavior of SGD from multiple perspectives (Li et al., 2019; Man-
galam & Prabhu, 2019; Nakkiran et al., 2019). They respect the difference among data items rather
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than treat them as identical samples from a distribution. They study the behavior of SGD in a given
dataset. In Mangalam & Prabhu (2019), they show that deep models first learn easy examples
classifiable by shallow methods. The mutual information between deep models and linear models
is measured in Nakkiran et al. (2019), which suggests deep models first learn data explainable by
linear models. Note that they are not relevant to learning rates. Li et al. (2019) analyze a toy problem
to uncover the regularization effect of an initially large learning rate. Their theoretical explanation
is, however, based on a specific two-layer neural network they design. Different from these works,
Section 5 studies the behavior of SGD induced by lrDecay in a modern WideResNet (Zagoruyko &
Komodakis, 2016), finding that learning rate decay improves learning of complex patterns. We for-
mally define pattern complexity by expected class conditional entropy, while the measure of pattern
complexity in Mangalam & Prabhu (2019); Nakkiran et al. (2019) relies on an auxiliary model.

2.2 ADAPTIVE LEARNING RATE METHODS

Adaptive learning rate methods such as AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
and ADAM (Kingma & Ba, 2015) are sophisticated optimization algorithms for training modern
neural networks. It remains an active research field to study their behaviors and underlying mech-
anisms (Reddi et al., 2018; Luo et al., 2019). However, we focus on learning rate decay in SGD
rather than on the adaptive learning rate methods. On the one hand, SGD is the de facto training
algorithm for popular models (He et al., 2016; Huang et al., 2017b) while lrDecay is not common
in the adaptive methods; On the other hand, many adaptive methods are not as simple as SGD
and even degenerate in convergence in some scenarios (Wilson et al., 2017; Liu et al., 2019). We
choose to study SGD with lrDecay, without introducing adaptive learning rate to keep away from its
confounding factors.

2.3 OTHER LEARNING RATE STRATEGIES

Besides the commonly used lrDecay, there are other learning rate strategies. Smith (2017) proposes
a cyclic strategy, claiming to dismiss the need for tuning learning rates. Warm restart of learning
rate is explored in Loshchilov & Hutter (2017). They achieve better results when combined with
Snapshot Ensemble (Huang et al., 2017a). These learning rate strategies often yield better results at
the cost of additional hyperparameters that are not intuitive. Consequently, it is still the de facto to
decay the learning rate after pre-defined epochs as in Figure 1(a). We stick our analysis to lrDecay
rather than to other fancy ones because of its simplicity and general effectiveness.

2.4 TRANSFERABILITY OF DEEP MODELS

Training a model on one dataset that can be transferred to other datasets has long been a goal of
AI researches. The exploration of model transferability has attracted extensive attention. In Oquab
et al. (2014), deep features trained for classification are transferred to improve object detection
successfully. Yosinski et al. (2014) study the transferability of different modules in pre-trained net-
works, indicating that higher layers are more task-specific and less transferable across datasets. By
varying network architectures, Kornblith et al. (2019) show architectures with a better ImageNet ac-
curacy generally transfer better. Raghu et al. (2019) explore transfer learning in the field of medical
imaging to address domain-specific difficulties. Different from these works that only consider the
transferability of models after training, we investigate another dimension of model transferability in
Section 6: the evolution of transferability during training with lrDecay.

3 COMMON BELIEFS IN EXPLAINING LRDECAY

3.1 GRADIENT DESCENT EXPLANATION

The practice of lrDecay in training neural networks dates back to LeCun et al. (1998). The most
popular belief in the effect of lrDecay comes from the optimization analysis of Gradient Descent
(GD) (LeCun et al., 1991). Although SGD is more practical in deep learning, researchers are usually
satisfied with the analysis of GD considering that SGD is a stochastic variant of GD.
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Figure 2: Gradient Descent explanation. From left to right: 1) learning rate is small enough to
converge around a minimum, 2) moderate so that it bounces among minima, 3) too large to converge.

Specifically, LeCun et al. (1991) analyze the property of a quadratic loss surface which can be seen
as a second-order approximation around a local minimum in nonconvex optimization. Learning rates
are characterized by the relationship with eigenvalues of the Hessian at a local minimum. Denote η
the learning rate, H the Hessian, λ an eigenvalue of H , and v an eigenvector of λ. The behavior of
the network along the direction v can be characterized as (1 − ηλ)kv, with k the iteration number.
Convergence in the direction of v requires 0 < η < 2/λ, while η > 2/λ leads to divergence in the
direction of v. If 0 < η < 2/λ holds for every eigenvalue of the Hessian, the network will converge
quickly (Figure 2 left). If it holds for some directions but not for all directions, the network will
diverge in some directions and thus jump into the neighborhood of another local minimum (Figure 2
middle). If the learning rate is too large, the network will not converge (Figure 2 right). In particular,
when oscillation happens, it means the learning rate is too large and should be decayed. The effect of
lrDecay hence is to avoid oscillation and to obtain faster convergence. Note LeCun et al. (1991) only
analyze a simple one-layer network. It may not hold for modern neural networks (see Section 4.1).

3.2 STOCHASTIC GRADIENT DESCENT EXPLANATION

Another common belief is the Stochastic Gradient Descent explanation, arguing that “with a high
learning rate, the system is unable to settle down into deeper, but narrower parts of the loss func-
tion.” 1 Although it is common, this argument has not been formally analyzed until very recently.
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Figure 3: SGD explanation (taken from Kleinberg et al. (2018)). The first plot: an initially large
learning rate helps escape spurious local minima. From the second to the fourth plots: after more
rounds of learning rate decay, the probability of reaching the minimum becomes larger.

Under some assumptions, Kleinberg et al. (2018) prove SGD is equivalent to the convolution of loss
surface, with the learning rate serving as the conceptual kernel size of the convolution. With an
appropriate learning rate, spurious local minima can be smoothed out, thus helping neural networks
escape bad local minima. The decay of learning rate later helps the network converge around the
minimum. Figure 3 is an intuitive one-dimensional example. The first plot shows that a large
learning rate helps escape bad local minima in both sides. The lrDecay in subsequent plots increases
the probability of reaching the global minimum. Although intuitive, the explanation requires some
assumptions that may not hold for modern neural networks (see Section 4.2).

1http://cs231n.github.io/neural-networks-3/#anneal
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4 EXPERIMENTS AGAINST EXISTING EXPLANATIONS

Although the (Stochastic) Gradient Descent explanations in Section 3 account for the effect of lrDe-
cay to some extent, in this section, we show by carefully-designed experiments that they are insuffi-
cient to explain the efficacy of lrDecay in modern neural networks. In all the experiments except for
Section 6, we use a modern neural network named WideResNet (Zagoruyko & Komodakis, 2016).
It is deep, wide, nonconvex, and suitable for datasets like CIFAR10 (Krizhevsky & Hinton, 2009).

4.1 EXPERIMENTS AGAINST THE GRADIENT DESCENT EXPLANATION

We train a WideResNet on CIFAR10 dataset with GD, decay the learning rate at different epochs,
and report the training loss (optimization) as well as the test accuracy (generalization) in Figure 4.
WideResNet and CIFAR10 are commonly used for studying deep learning (Zhang et al., 2017).
CIFAR10 is not too large so that we can feed the whole dataset as a single batch using distributed
training, computing the exact gradient rather than estimating it in mini-batches. Experiments show
that lrDecay brings negligible benefit to either optimization or generalization. No matter when the
learning rate is decayed, the final performances are almost the same. The instability in the beginning
is related to the high loss wall described in Pascanu et al. (2013), which is not the focus of this paper.
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Figure 4: Training of WideResNet on CIFAR10 with Gradient Descent. X-axis indicates the number
of epochs (in 103). Arrows indicate the epoch with learning rate decay.

The above observation contradicts directly with the GD explanation in Section 3.1. The contradic-
tion arises from the fact that LeCun et al. (1991) only analyze simple linear networks, and no wonder
the explanation fails in modern non-linear deep networks. Recent studies (Keskar et al., 2017; Yao
et al., 2018) reveal that large-batch training of modern networks can lead to very sharp local minima.
Gradient Descent (the extreme of large batch training) can lead to even sharper local minima. In Fig-
ure 5, we calculate the largest ten eigenvalues2 of the Hessian as well as the convergence interval
(0 < η < 2/λ) for each eigenvalue for a trained WideResNet. The top eigenvalues reach the order
of ≈ 200. By contrast, eigenvalues of simple networks in LeCun et al. (1991) often lie in [0, 10]
(Figure 1 in their original paper). The spectrum of eigenvalues in modern networks is very different
from that in simple networks analyzed by LeCun et al. (1991): the Hessian of modern networks has
a much larger spectral norm.

The GD explanation in Section 3.1 attributes the effect of lrDecay to avoiding oscillation. Oscillation
means there is a small divergence in some directions of the landscape so that the network bounces
among nearby minima. However, the divergence factor 1 − ηλ for the largest eigenvalue (≈ 200)
is too large even for a small growth of learning rate. Thus, the learning rate is either small enough
to converge in a local minimum or large enough to diverge. It is hardly possible to observe the
oscillation in learning curves (Figure 2 middle), and diverging learning curves (Figure 2 right) can
be discarded during hyperparameter tuning. Therefore, only stable solutions are observable where
η is small enough (Figure 2 left), leaving no necessity for learning rate decay. Indeed, when the

2Thanks to the advances of Xu et al. (2018); Yao et al. (2018), we can compute the eigenvalues directly.
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learning rate is increased mildly, we immediately observe diverging learning curves (Section A.2).
In short, the GD explanation cannot explain the effect of lrDecay in training modern neural networks.
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WideResNet trained with Gradient Descent.
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Figure 6: Expected behavior (but not observed)
induced by the SGD explanation: best perfor-
mances before and after decay are comparable.

4.2 EXPERIMENTS AGAINST THE STOCHASTIC GRADIENT DESCENT EXPLANATION

We follow the experiment setups in Section 4.1, but replace GD with SGD in Figure 7. According to
the SGD explanation in Section 3.2, the effect of learning rate decay is to increase the probability of
reaching a good minimum. If it is true, the model trained before decay can also reach minima, only
by a smaller probability compared to the model after decay. In other words, the SGD explanation
indicates the best performances before and after decay are the same. It predicts learning curves like
Figure 6. However, Figure 7 does not comply with the SGD explanation: the best performances be-
fore and after lrDecay are different by a noticeable margin. Without lrDecay (the rightmost column
in Figure 7), the performance plateaus and oscillates, with no chance reaching the performance of
the other columns after decay. The performance boost after learning rate decay is widely observed
(Figure 1(b) for example). However, possibly due to the violation of its assumptions (Kleinberg
et al., 2018), the SGD explanation cannot explain the underlying effect of lrDecay.
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Figure 7: Training of WideResNet on CIFAR10 with SGD. X-axis indicates the number of epochs.
Arrows show the moment of learning rate decay. The rightmost plots show results without decay.

5 AN EXPLANATION FROM THE VIEW OF PATTERN COMPLEXITY

Section 4 uncovers the insufficiency of common beliefs in explaining lrDecay. We thus set off to find
a better explanation. Mangalam & Prabhu (2019); Nakkiran et al. (2019) reveal that SGD (without
learning rate decay) learns from easy to complex. As learning rates often change from large to small
in typical learning rate strategies, we hypothesize that the complexity of learned patterns is related
to the magnitude of learning rates. Based on this, we provide a novel explanation from the view
of pattern complexity: the effect of learning rate decay is to improve the learning of complex
patterns while the effect of an initially large learning rate is to avoid memorization of noisy
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data. To justify this explanation, we carefully construct a dataset with tractable pattern complexity,
and record model accuracies in simple and complex patterns separately with and without lrDecay.

5.1 PATTERN SEPARATION 10 (PS10) DATASET WITH TRACTABLE PATTERN COMPLEXITY

The explanation we propose involves pattern complexity, which is generally conceptual and some-
times measured with the help of a simple auxiliary model as in Mangalam & Prabhu (2019); Nakki-
ran et al. (2019). Here we try to formalize the idea of pattern complexity: the complexity of a dataset
is defined as the expected class conditional entropy: C({(xi, yi)}ni=1) = EyH(P (x|y)), where H
denotes the entropy functional. The complexity of patterns depends on the complexity of the dataset
they belong to. Higher C means larger complexity because there are averagely more patterns in each
class to be recognized (consider an animal dataset with 10 subspecies in each species vs. an animal
dataset with 100 subspecies in each species).
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Figure 8: The PS10 dataset. (a) Simple patterns: 10 patterns per category, complexity log2 10. (b)
Complex patterns: 100 patterns per category, complexity log2 100. (c) Data composition: half of the
data only contain simple patterns while another half only contain complex patterns.

Equipped with the formal definition of complexity, we construct a Pattern Separation 10 (PS10)
dataset with ten categories and explicitly separated simple patterns and complex patterns. We first
generate a simple sub-dataset together with a complex sub-dataset in R3. As shown in Figure 8(a)
and Figure 8(b), patterns are visualized as colors because they lie in R3. The category label can be
identified by either simple patterns or complex patterns. We then merge the two sub-datasets into
one dataset. The merging method in Figure 8(c) is specifically designed such that the simple subset
and complex subset are fed into different channels of the WideResNet. This mimics the intuition of
patterns as the eye pattern and the nose pattern have different locations in an image of human face.
To be compatible with the sliding window fashion of convolutional computation, we make patterns
the same across spatial dimensions of height and weight to have the same image size as CIFAR10.
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5.2 THE EFFECT OF DECAY: IMPROVE LEARNING OF MORE COMPLEX PATTERNS

To reveal the effect of decaying the learning rate, we compare experiments with and without lrDecay.
For those without lrDecay, we set the learning rates equal to the learning rate of each stage in
lrDecay. We measure not only the total accuracy but also the accuracies on simple and complex
patterns separately. These accuracies are plotted in Figure 9.

The first plot in Figure 9 clearly shows the model first learns simple patterns quickly. The boost in
total accuracy mainly comes from the accuracy gain on complex patterns when the learning rate is
decayed. Plots 2, 3, and 4 show the network learns more complex patterns with a smaller learning
rate, leading to the conclusion that learning rate decay helps the network learn complex patterns.

5.3 THE EFFECT OF AN INITIALLY LARGE LEARNING RATE: AVOID FITTING NOISY DATA

Figure 9 seems to indicate that an initially large learning rate does nothing more than accelerating
training: in Plot 4, a small constant learning rate can achieve roughly the same accuracy compared
with lrDecay. However, by adding 10% noisy data to mimic real-world datasets, we observe some-
thing interesting. Figure 10 shows the accuracies on simple patterns, complex patterns, and noise
data when we add noise into the dataset. Plot 2 in Figure 10 shows an initially large learning rate
helps the accuracy on complex patterns. Plot 3 in Figure 10 further shows the accuracy gain on
complex patterns comes from the suppression of fitting noisy data. (Note that a larger accuracy on
noisy data implies overfitting the noisy data, which is undesirable.) In short, the memorizing noisy
data hurts the learning of complex patterns but can be suppressed by an initially large learning rate.
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Figure 10: Comparison between lrDecay and a constant small learning rate on the PS10 dataset with
10% noise. Accuracies on simple patterns, complex patterns, and noise data are plotted respectively.

Empirically, Li et al. (2019) report that an initially large learning rate with decay outperforms a small
and constant learning rate. They suspect that the network starting with an initially small learning
rate will be stuck at some spurious local minima. Our experiments provide an alternative view that
spurious local minima may stem from noisy data. And the regularization effect of an initially large
learning rate is to suppress the memorization of noisy data.

6 THE IMPLICATION OF LRDECAY ON MODEL TRANSFERABILITY

Section 5 examines the proposed explanation on the PS10 dataset. Now we further validate the
explanation on real-world datasets. Because there are no clearly separated simple and complex
patterns in real-world datasets, it is difficult to directly validate the explanation. The proposed
explanation suggests that SGD with lrDecay learns patterns of increasing complexity. Intuitively,
more complex patterns are less transferable, harder to generalize across datasets. Thus an immediate
implication is that SGD with lrDecay learns patterns of decreasing transferability. We validate it by
transfer-learning experiments on real-world datasets, to implicitly support the proposed explanation.

The transferability is measured by transferring a model from ImageNet to different target datasets.
To get models in different training stages, we train a ResNet-50 on ImageNet from scratch and
save checkpoints of models in different stages. The learning rate is decayed twice, leading to three

8
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stages. Target datasets for transferring are: (1) Caltech256 (Griffin et al., 2007) with 256 general
object classes; (2) CUB-200 (Wah et al., 2011) with 200 bird classes; (3) MITIndoors (Quattoni &
Torralba, 2009) with 67 indoor scenes; (4) Sketch250 (Eitz et al., 2012) with sketch painting in 250
general classes. Sketch250 is the most dissimilar to ImageNet because it contains sketch paintings.

We study two widely-used strategies of transfer learning: “fix” (ImageNet snapshot models are only
used as fixed feature extractors) and “finetune” (feature extractors are jointly trained together with
task-specific layers). Let acci denotes the accuracy of stage i snapshot model on ImageNet and
tacci denotes the accuracy of transferring the snapshot to the target dataset, then the transferability
of additional patterns learned in stage i is defined as tacci−tacci−1

acci−acci−1
, i = 2, 3. By definition, the

transferability of patterns from ImageNet to ImageNet is 1.0, complying with common sense. The
transferability is plotted in Figure 11. Table 2 contains the accuracies used to compute it.
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Figure 11: Transferability of additional patterns learned in each stage w.r.t different target datasets.

In all experiments, we find that the transferability of additional patterns learned in stage 3 is less than
that in stage 2. Besides, in Sketch250 dataset, the transferability of additional patterns learned in
stage 3 is negative. These findings support our claim that additional patterns learned in later stages of
lrDecay are more complex and thus less transferable. They also suggest deep model-zoo developer
provide pre-trained model snapshots in different stages so that downstream users can select the most
transferable snapshot model according to their tasks.

7 CONCLUSION

In this paper, we dive into how learning rate decay (lrDecay) helps modern neural networks. We
uncover the insufficiency of common beliefs and propose a novel explanation: the effect of decaying
learning rate is to improve the learning of complex patterns, and the effect of an initially large
learning rate is to avoid memorization of noisy data. It is supported by experiments on a dataset
with tractable pattern complexity as well as on real-world datasets. It would be interesting to further
bridge the proposed explanation and the formal analysis of optimization procedure.
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A APPENDIX

A.1 AUTODECAY

Experiments in Section 5.2 implies that not all complex patterns are learnable under a constant
learning rate. The training under a certain learning rate has no effect when the loss plateaus. This
indicates we can expedite the training process by killing the over-training of each stage (decay
the learning rate when the loss plateaus) with little influence on the performance. To validate the
implication, we propose AutoDecay to shorten the useless training and check if the performance of
the model can be untouched. In Figure 7, it appears obvious to decide the optimal moment to decay
when we have a big picture of the training process. The problem is, however, how can we make a
decision to decay depending on the current and past observations. It is a non-trivial problem given
that the statistics exhibit noticeable noise.

A.1.1 PROBLEM FORMULATION

We formalize the observed training loss into two parts: ˆ̀(t) = `(t)+ ε(t), with `(t) the ground truth
loss (unobservable) and ε(t) the noise introduced by SGD. Here t indicates the training process
(typically the epoch number) and takes value in N = {1, 2, 3, . . .}. To simplify the problem, we
assume ε(t) is independent with t and ε(t) is independent of ε(t′)(t′ 6= t) in SGD. The nature of
noise gives rise to the zero-expectation property E ε(t) = 0. Denote σ2 = Var ε(t) the variance
of the noise. Due to the noise of SGD, the observed training loss usually vibrates in a short time
window but decreases in a long time window. Our task is to find out whether the loss value is stable
in the presence of noise.

A.1.2 PROBLEM SOLUTION

Exponential Decay Moving Average (EDMA) with Bias Correction. Observations with lower
variance are more trustworthy. However, there is nothing we can do about the variance of ˆ̀(t).
We consider computing a low-variance statistic about ˆ̀(t). We adopt moving average with bias
correction(Kingma & Ba, 2015). Let g(t) be the moving average of `(t) and ĝ(t) be the moving
average of ˆ̀(t). The explicit form is in Equation 1, where β ∈ (0, 1) is the decay factor in EDMA.

g(t) =

∑t−1
i=0 β

i`(t− i)∑t−1
i=0 β

i
=

1− β
1− βt

t−1∑
i=0

βi`(t− i), t ≥ 1

ĝ(t) =

∑t−1
i=0 β

i ˆ̀(t− i)∑t−1
i=0 β

i
=

1− β
1− βt

t−1∑
i=0

βi ˆ̀(t− i), t ≥ 1

(1)

The recursive (and thus implicit) form is in Equation 2. It enables us to compute the statistic ĝ online
(without storing all the previous {ˆ̀(i)|i < t}) at the cost of maintaining f̂(t).

f(0) = 0, f(t) = βf(t− 1) + (1− β)`(t) =⇒ g(t) =
f(t)

1− βt (t ≥ 1)

f̂(0) = 0, f̂(t) = βf̂(t− 1) + (1− β)ˆ̀(t) =⇒ ĝ(t) =
f̂(t)

1− βt (t ≥ 1)

(2)

As ĝ(t) is a linear combination of {ˆ̀(i)|i ≤ t}, it is easy to show ĝ(t) is unbiased:

Eĝ(t) = E
∑t−1
i=0 β

i ˆ̀(t− i)∑t−1
i=0 β

i
=

∑t−1
i=0 β

iEˆ̀(t− i)∑t−1
i=0 β

i
=

∑t−1
i=0 β

i`(t− i)∑t−1
i=0 β

i
= g(t)

The variance of ĝ(t) is
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Varĝ(t) =
(1− β)2
(1− βt)2Var

t−1∑
i=0

βi ˆ̀(t− i) = (1− β)2σ2

(1− βt)2
t−1∑
i=0

β2i =
1− β
1 + β

1 + βt

1− βtσ
2 (3)

The fact that β ∈ (0, 1) indicates Varĝ(t) is monotonically decreasing. Typically β = 0.9 (Fig-
ure 13), and the variance can rapidly converge to 0.05σ2, much smaller than the variance of the
noise. ĝ(t) well represents the unobservable g(t). If `(t) gets stable, we shall observe that ĝ(t) is
stable, too.

Criterion of Being Stable. We only want to decay the learning rate when the loss plateaus, i.e. when
the loss is stable. For observed values of G = {ĝ(i)|i−W + 1 ≤ i ≤ t} within the window size of
W , we call them stable if maxG−minG

minG+ε < η, where ε is a small constant that prevents zero-division
error, and η indicates the tolerance of variation.

Criterion of Significant Drop. When we keep decaying the learning rate, there comes a time when
the learning rate is too small and the network cannot make any progress. When it happens, we should
terminate the training. Termination is adopted when their is no significant drop between the stable
value and the original value ĝ(0). To be specific, the criterion of significant drop is ĝ(t)+ε

ĝ(0)+ε ≤ ζ,
where ε is a small constant that prevents zero-division error, and ζ indicates the degree of drop.

The entire procedure of AutoDecay is described in Figure 12.

t � W?
<latexit sha1_base64="s9p7+h5J7Pj/Rcf5oUAcuE4REvM=">AAAB+XicbVDLSgNBEJyNrxhfqx69DAbBU9iNgt4MevEYwTwgu4TZSScZMvtgpjcYlvyJFw+KePVPvPk3TpI9aGJBQ1HVTXdXkEih0XG+rcLa+sbmVnG7tLO7t39gHx41dZwqDg0ey1i1A6ZBiggaKFBCO1HAwkBCKxjdzfzWGJQWcfSIkwT8kA0i0RecoZG6to3UGwBtUQ/hCbObadcuOxVnDrpK3JyUSY561/7yejFPQ4iQS6Z1x3US9DOmUHAJ05KXakgYH7EBdAyNWAjaz+aXT+mZUXq0HytTEdK5+nsiY6HWkzAwnSHDoV72ZuJ/XifF/rWfiShJESK+WNRPJcWYzmKgPaGAo5wYwrgS5lbKh0wxjiaskgnBXX55lTSrFfeiUn24LNdu8ziK5IScknPikitSI/ekThqEkzF5Jq/kzcqsF+vd+li0Fqx85pj8gfX5A5LSkvo=</latexit>

G stable?
<latexit sha1_base64="CXE4UwsPAWAtRBqtOXDScKnoiIY=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclaQKCi4sutBlBfuAJpTJdNIOnUzCzI1YQv0VNy4UceuHuPNvnLZZaOuBgcM593DvnCARXIPjfFtLyyura+uFjeLm1vbOrr2339Rxqihr0FjEqh0QzQSXrAEcBGsnipEoEKwVDK8nfuuBKc1jeQ+jhPkR6UseckrASF27dIO9C+wBe4RMAzGxy3HXLjsVZwq8SNyclFGOetf+8noxTSMmgQqidcd1EvAzooBTwcZFL9UsIXRI+qxjqCQR0342PX6Mj4zSw2GszJOAp+rvREYirUdRYCYjAgM9703E/7xOCuG5n3GZpMAknS0KU4EhxpMmcI8rRkGMDCFUcXMrpgOiCAXTV9GU4M5/eZE0qxX3pFK9Oy3XrvI6CugAHaJj5KIzVEO3qI4aiKIRekav6M16sl6sd+tjNrpk5ZkS+gPr8wcB4ZRe</latexit>

ˆ̀(t)
<latexit sha1_base64="YWHaGu1gms/eIQvdMYiy0qs+9hk=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BItQLyWpgh6LXjxWsLXQhLLZTtqlm03cnRRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgkRwjY7zbRXW1jc2t4rbpZ3dvf2D8uFRW8epYtBisYhVJ6AaBJfQQo4COokCGgUCHoPR7cx/HIPSPJYPOEnAj+hA8pAzikbyvSHFzAMhplU875UrTs2Zw14lbk4qJEezV/7y+jFLI5DIBNW66zoJ+hlVyJmAaclLNSSUjegAuoZKGoH2s/nRU/vMKH07jJUpifZc/T2R0UjrSRSYzojiUC97M/E/r5tieO1nXCYpgmSLRWEqbIztWQJ2nytgKCaGUKa4udVmQ6ooQ5NTyYTgLr+8Str1mntRq99fVho3eRxFckJOSZW45Io0yB1pkhZh5Ik8k1fyZo2tF+vd+li0Fqx85pj8gfX5A4cFke8=</latexit>
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Figure 12: Decision Procedure of AutoDecay. The counter t is reset to 0 at the action of “Decay”.

A.1.3 EXPERIMENTS

We try AutoDecay on ImageNet (Russakovsky et al., 2015) to test whether it can expedite the train-
ing without hurting the performance. We are not trying to set up a new state-of-the-art record. We
train a ResNet-50 model on ImageNet following the official code of PyTorch. The only change is
we replace the StepDecay strategy with the proposed AutoDecay strategy. Each experiment costs
roughly two days with 8 TITAN X GPUs. The results in Table 14 show that AutoDecay can shorten
the training time by 10% without hurting the performance (even bringing a slight improvement),
successfully vaidates the proposed explanation in this paper.
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Figure 13: Variance reduction when
β = 0.9

Method ImageNet

epochs top1 top5

StepDecay 90 75.80 92.76
AutoDecay 81 75.91 92.81

Figure 14: Results of AutoDecay.

A.2 LARGER LR LEADS TO DIVERGENCE IN GD FOR MODERN NEURAL NETWORKS

When we increase the learning rate mildly for Gradient Descent, we immediately observe diverging
learning curves (Figure 15), which echos with the reason mentioned in Section 4.1 why the Gradient
Descent explanation fails to work in modern neural networks: modern neural networks have a very
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large spectrum norm at a local minimum, and even a small growth of learning rate can lead to
divergence. In other words, training modern neural networks with GD must use a small enough
learning rate, dismissing the value of learning rate decay.
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Figure 15: Training of WideResNet on CIFAR10 by Gradient Descent with a mildly larger learning
rate. X-axis indicates number of epochs. Arrows and texts show the moment of learning rate decay.

A.3 ACCURACIES TO COMPUTE THE TRANSFERABILITY IN SECTION 6

Dataset Finetune Fix

stage1 stage2 stage2 stage3 stage3 stage1 stage2 stage2 stage3 stage3
ImageNet 54.01 69.33 1.00 75.91 1.00 54.01 69.33 1.00 75.91 1.00
Caltect256 77.87 82.73 0.32 84.20 0.22 74.10 79.79 0.37 81.95 0.33
CUB 200 75.89 79.74 0.25 81.34 0.24 58.11 63.95 0.38 66.09 0.33

MITIndoors 72.91 77.09 0.27 78.73 0.25 61.34 67.54 0.40 69.78 0.34
Sketch250 77.80 79.92 0.14 80.64 0.11 64.34 64.58 0.02 64.18 -0.06

Table 2: Accuracy and transferability of ImageNet models in different stages. Normal values indi-
cate accuracy and bold values indicate transferability.
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