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ABSTRACT

A point cloud is an agile 3D representation, efficiently modeling an object’s sur-
face geometry. However, these surface-centric properties also pose challenges
on designing tools to recognize and synthesize point clouds. This work presents
a novel autoregressive model, PointGrow, which generates realistic point cloud
samples from scratch or conditioned from given semantic contexts. Our model
operates recurrently, with each point sampled according to a conditional distri-
bution given its previously-generated points. Since point cloud object shapes are
typically encoded by long-range interpoint dependencies, we augment our model
with dedicated self-attention modules to capture these relations. Extensive evalua-
tion demonstrates that PointGrow achieves satisfying performance on both uncon-
ditional and conditional point cloud generation tasks, with respect to fidelity, di-
versity and semantic preservation. Further, conditional PointGrow learns a smooth
manifold of given images where 3D shape interpolation and arithmetic calculation
can be performed inside.

1 INTRODUCTION

3D visual understanding (Bogo et al. (2016); Zuffi et al. (2018)) is at the core of next-generation
vision systems. Specifically, point clouds, agile 3D representations, have emerged as indispensable
sensory data in applications including indoor navigation (Dı́az Vilariño et al. (2016)), immersive
technology (Stets et al. (2017); Sun et al. (2018a)) and autonomous driving (Yue et al. (2018)). There
is growing interest in integrating deep learning into point cloud processing (Klokov & Lempitsky
(2017); Lin et al. (2017a); Achlioptas et al. (2017b); Kurenkov et al. (2018); Yu et al. (2018); Xie
et al. (2018)). With the expressive power brought by modern deep models, unprecedented accuracy
has been achieved on high-level point cloud related tasks including classification, detection and
segmentation (Qi et al. (2017a;b); Wang et al. (2018); Li et al. (2018); You et al. (2018)). Yet,
existing point cloud research focuses primarily on developing effective discriminative models (Xie
et al. (2018); Shen et al. (2018)), rather than generative models.

This paper investigates the synthesis and processing of point clouds, presenting a novel genera-
tive model called PointGrow. We propose an autoregressive architecture (Oord et al. (2016); Van
Den Oord et al. (2016)) to accommodate the surface-centric nature of point clouds, generating ev-
ery single point recurrently. Within each step, PointGrow estimates a conditional distribution of the
point under consideration given all its preceding points, as illustrated in Figure 1. This approach
easily handles the irregularity of point clouds, and encodes diverse local structures relative to point
distance-based methods (Fan et al. (2017); Achlioptas et al. (2017b)).

However, to generate realistic point cloud samples, we also need long-range part configurations to
be plausible. We therefore introduce two self-attention modules (Lin et al. (2017b); Velickovic et al.
(2017); Zhang et al. (2018)) in the context of point cloud to capture these long-range relations. Each
dedicated self-attention module learns to dynamically aggregate long-range information during the
point generation process. In addition, our conditional PointGrow learns a smooth manifold of given
images where interpolation and arithmetic calculation can be performed on image embeddings.

Compared to prior art, PointGrow has appealing properties:

• Unlike traditional 3D generative models that rely on local regularities on grids (Wu et al.
(2016); Choy et al. (2016); Yang et al. (2017); Sun et al. (2018b)), PointGrow builds upon
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Figure 1: The point cloud generation process in PointGrow (best viewed in color). Given i − 1
generated points, our model first estimates a conditional distribution of zi, indicated as p(zi|s≤i−1),
and then samples a value (indicated as a red bar) according to it. The process is repeated to sample
yi and xi with previously sampled coordinates as additional conditions. The ith point (red point in
the last column) is obtained as {xi, yi, zi}. When i = 1, p(zi|s≤i−1) = p(zi).

autoregressive architecture that is inherently suitable for modeling point clouds, which are
irregular and surface-centric.
• Our proposed self-attention module successfully captures the long-range dependencies be-

tween points, helping to generate plausible part configurations within 3D objects.
• PointGrow, as a generative model, enables effective unsupervised feature learning, which

is useful for recognition tasks, especially in the low-data regime.

Extensive evaluations demonstrate that PointGrow can generate realistic and diverse point cloud
samples with high resolution, on both unconditional and conditional point cloud generation tasks.

2 POINTGROW

In this section, we introduce the formulation and implementation of PointGrow, a new generative
model for point cloud, which generates 3D shapes in a point-by-point manner.

Unconditional PointGrow. A point cloud, S, that consists of n points is defined as S =
{s1, s2, ..., sn}, and the ith point is expressed as si = {xi, yi, zi} in 3D space. Our goal is to
assign a probability p(S) to each point cloud. We do so by factorizing the joint probability of S as a
product of conditional probabilities over all its points:

p(S) =
n∏

i=1

p(si|s1, ..., si−1) =

n∏
i=1

p(si|s≤i−1) (1)

The value p(si|s≤i−1) is the probability of the ith point si given all its previous points, and can be
computed as the joint probability over its coordinates:

p(si|s≤i−1) = p(zi|s≤i−1) · p(yi|s≤i−1, zi) · p(xi|s≤i−1, zi, yi) (2)

, where each coordinate is conditioned on all the previously generated coordinates. To facilitate
the point cloud generation process, we sort points in the order of z, y and x, which forces a shape
to be generated in a “plane-sweep” manner along its primary axis (z axis). Following Oord et al.
(2016) and Van Den Oord et al. (2016), we model the conditional probability distribution of each
coordinate using a deep neural network. Prior art shows that a softmax discrete distribution works
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Figure 2: Context related operations. ⊗: element-wise production, ⊕: concatenation.

Figure 3: The self-attention fields in PointGrow for query locations (red points), visualized as Eu-
clidean distances between the context feature of a query point and the features of its accessible
points. The distances of inaccessible points (generated after the query point) are considered to be
infinitely far. Left: SACA-A; Right: SACA-B.

better than mixture models, even though the data are implicitly continuous. To obtain discrete point
coordinates, we scale all point clouds to fall within the range [0, 1], and quantize their coordinates
to uniformly distributed values. We use 200 values as a trade-off between generative performance
and minimizing quantization artifacts. Other advantages of adopting discrete coordinates include (1)
simplified implementation, (2) improved flexibility to approximate any arbitrary distribution, and (3)
it prevent generating distribution mass outside of the range, which is common for continuous cases.

Context Awareness Operation. Context awareness improves model inference. For example, in
Qi et al. (2017a) and Wang et al. (2018), a global feature is obtained by applying max pooling
along each feature dimension, and then used to provide context information for solving semantic
segmentation tasks. Similarly, we obtain “semi-global” features for all sets of available points in the
point cloud generation process, as illustrated in Figure 2 (left). Each row of the resultant features
aggregates the context information of all the previously generated points dynamically by fetching
and averaging. This Context Awareness (CA) operation is implemented as a plug-in module in our
model, and mean pooling is used in our experiments.

Self-Attention Context Awareness Operation. The CA operation summarizes point features in a
fixed way via pooling. For the same purpose, we propose two alternative learning-based operations
to determine the weights for aggregating point features. We define them as Self-Attention Context
Awareness (SACA) operations, and the weights as self-attention weights.

The first SACA operation, SACA-A, is shown in the middle of Figure 2. To generate self-attention
weights, the SACA-A first associates local and “semi-global” information by concatenating input
and “semi-global” features after CA operation, and then passes them to a Multi-Layer Perception
(MLP). Formally, given a n× f point feature matrix, F, with its ith row, fi, representing the feature
vector of the ith point for 1 ≤ i ≤ n, we compute the ith self-attention weight vector, wi, as below:

wi = MLP (Mean
1≤j≤i

{fj} ⊕ fi) (3)

3



Under review as a conference paper at ICLR 2019

Figure 4: The proposed model architecture to estimate conditional distributions of point coordinates.

, where Mean{·} is mean pooling,⊕ is concatenation, and MLP (·) is a sequence of fully connected
layers. The self-attention weight encodes information about the context change due to each newly
generated point, and is unique to that point. We then conduct element-wise multiplication between
input point features and self-attention weights to obtain weighted features, which are accumulated
sequentially to generate corresponding context features. The process to calculate the ith context
feature, ci, can be expressed as:

ci =
i∑

m=1

fm ⊗ wm =

i∑
m=1

fm ⊗MLP (Mean
1≤j≤m

{fj} ⊕ fm) (4)

, where ⊗ is element-wise multiplication. Finally, we shift context features downward by one row,
because when estimating the coordinate distribution for point, si, only its previous points, s≤i−1, are
available. A zero vector of the same size is attached to the beginning as the initial context feature,
since no previous point exists when computing features for the first point.

Figure 2 (right) shows the other SACA operation, SACA-B. SACA-B is similar to SACA-A, except
the way to compute and apply self-attention weights. In SACA-B, the ith “semi-global” feature after
CA operation is shared by the first i point features to obtain self-attention weights, which are then
used to compute ci. This process can be described mathematically as:

ci =
i∑

m=1

fm ⊗ wm =

i∑
m=1

fm ⊗MLP (Mean
1≤j≤i

{fj} ⊕ fm) (5)

Compared to SACA-A, SACA-B self-attention weights encode the importance of each point feature
under a common context, as highlighted in Eq. (4) and (5).

Learning happens only in MLP for both operations. In Figure 3, we plot the attention maps, which
visualize Euclidean distances between the context feature of a selected point and the point features
of its accessible points before SACA operation.

Model Architecture. Figure 4 shows the proposed network model to output conditional coordi-
nate distributions. The top, middle and bottom branches model p(zi|s≤i−1), p(yi|s≤i−1, zi) and
p(xi|s≤i−1, zi, yi), respectively, for i = 1, ..., n. The point coordinates are sampled according to
the estimated softmax probability distributions. Note that the input points in the latter two cases are
masked accordingly so that the network cannot see information that has not been generated. During
the training phase, points are available to compute all the context features, thus coordinate distribu-
tions can be estimated in parallel. However, the point cloud generation is a sequential procedure,
since each sampled coordinate needs to be fed as input back into the network, as demonstrated in
Figure 1.

Conditional PointGrow. Given a condition or embedding vector, h, we hope to generate a shape
satisfying the latent meaning of h. To achieve this, Eq. (1) and (2) are adapted to Eq. (6) and (7),
respectively, as below:

p(S) =
n∏

i=1

p(si|s1, ..., si−1,h) =
n∏

i=1

p(si|s≤i−1,h) (6)
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Figure 5: Generated point clouds for different categories from scratch by unconditional PointGrow.
From left to right for each set: table, car, airplane, chair and lamp.

p(si|s≤i−1,h) = p(zi|s≤i−1,h) · p(yi|s≤i−1, zi,h) · p(xi|s≤i−1, zi, yi,h) (7)

The additional condition, h, affects the coordinate distributions by adding biases in the generative
process. We implement this by changing the operation between adjacent fully-connected layers from
xi+1 = f(Wxi) to xi+1 = f(Wxi + Hh), where xi+1 and xi are feature vectors in the i + 1th and
ith layer, respectively, W is a weight matrix, H is a matrix that transforms h into a vector with the
same dimension as Wxi, and f(·) is a nonlinear activation function. In this paper, we experimented
with h as an one-hot categorical vector which adds class dependent bias, and an high-dimensional
embedding vector of a 2D image which adds geometric constraint.

3 EXPERIMENTS

Datasets. We evaluated the proposed framework on ShapeNet dataset (Chang et al. (2015)), which
is a collection of CAD models. We used a subset consisting of 17,687 models across 7 categories.
To generate corresponding point clouds, we first sample 10,000 points uniformly from each mesh,
and then use farthest point sampling to select 1,024 points among them representing the shape. Each
category follows a split ratio of 0.9/0.1 to separate training and testing sets. ModelNet40 (Wu et al.
(2015)) and PASCAL3D+ (Xiang et al. (2014)), are also used for further analysis. ModelNet40
contains CAD models from 40 categories, and we obtain their point clouds from Qi et al. (2017a).
PASCAL3D+ is composed of PASCAL 2012 detection images augmented with 3D CAD model
alignment, and used to demonstrate the generalization ability of conditional PointGrow.

3.1 UNCONDITIONAL POINT CLOUD GENERATION

Figure 5 shows point clouds generated by unconditional PointGrow. Since an unconditional model
lacks knowledge about the shape category to generate, we train separate models for each category.
Figure 1 demonstrates point cloud generation for an airplane category. Note that no semantic infor-
mation of discrete coordinates (i.e.scattered points in point cloud) is provided during training, but
the predicted distribution turns out to be categorically representative. (e.g.in the second row, the
network model outputs a roughly symmetric distribution along X axis, which describes the wings’
shape of an airplane.) The autoregressive architecture in PointGrow is capable of abstracting high-
level semantics even from unaligned point cloud samples.

Evaluation on Fidelity and Diversity. The negative log-likelihood is commonly used to evaluate
autoregressive models for image and audio generation (Oord et al. (2016); Van Den Oord et al.
(2016)). However, we observed inconsistency between its value and the visual quality of point
cloud generation. It is validated by the comparison of two baseline models: CA-Mean and CA-
Max, where the SACA operation is replaced with the CA operation implemented by mean and max
pooling, respectively. In Figure 6 (left), we report negative log-likelihoods in bits per coordinate
on ShapeNet testing sets of airplane and car categories, and visualize their representative results.
Despite CA-Max shows lower negative log-likelihoods values, it gives less visually plausible results
(i.e. airplanes lose wings and cars lose rear ends).
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Table 1: Classification accuracy using
PointNet (Qi et al. (2017a)). SG: Train on
ShapeNet training sets, and test on gen-
erated shapes; GS: Train on generated
shapes, and test on ShapeNet testing sets.

Methods SG GS
3D-GAN 82.7 83.4
Latent-GAN-CD 81.6 82.7
Baseline (CA-Max) 71.9 83.4
Baseline (CA-Mean) 82.1 84.4
Ours (SACA-A) 90.3 91.8
Ours (SACA-B) 89.4 91.9

Table 2: The comparison on classification accuracy
between our models and other unsupervised methods
on ModelNet40 dataset. All the methods train a lin-
ear SVM on the high-dimensional representations ob-
tained from unsupervised training.

Methods Accuracy
SPH (Kazhdan et al. (2003)) 68.2
LFD (Chen et al. (2003)) 75.2
T-L Network (Girdhar et al. (2016)) 74.4
VConv-DAE (Sharma et al. (2016)) 75.5
3D-GAN (Wu et al. (2016)) 83.3
Latent-GAN-EMD (Achlioptas et al. (2017a)) 84.0
Latent-GAN-CD (Achlioptas et al. (2017a)) 84.5
Ours (SACA-A) 85.8
Ours (SACA-B) 84.4

To faithfully evaluate the generation quality, we conduct user study w.r.t.two aspects, fidelity and
diversity, among CA-Max, CA-Mean and PointGrow (implemented with SACA-A). We randomly
select 10 generated airplane and car point clouds from each method. To calculate the fidelity score,
we ask the user to score 0, 0.5 or 1.0 for each shape, and take the average of them. The diversity score
is obtained by asking the user to scale from 0.1 to 1.0 with an interval of 0.1 about the generated
shape diversity within each method. 8 subjects without computer vision background participated
in this test. We observe that (1) CA-Mean is more favored than CA-Max, and (2) our PointGrow
receives the highest preference on both fidelity and diversity.

Figure 6: Left: Negative log-likelihood for CA-Max and CA-Mean baselines on ShapeNet airplane
and car testing sets. Right: User study results on fidelity and diversity of the generated point clouds.

Evaluation on Semantics Preserving. After generating point clouds, we perform classification
as a measure of semantics preserving. Original meshes are used for training while the generated
point clouds are used for testing. More specifically, after training on ShapeNet training sets, we
generated 300 point clouds per category (2,100 in total for 7 categories), and conducted two classi-
fication tasks: one is training on original ShapeNet training sets, and testing on generated shapes;
the other is training on generated shapes, and testing on original ShapeNet testing sets. PointNet
(Qi et al. (2017a)), a widely-uesd model, was chosen as the point cloud classifier. We implement
two GAN-based competing methods, 3D-GAN (Wu et al. (2016)) and latent-GAN (Achlioptas et al.
(2017a)), to sample different shapes for each category, and also include CA-Max and CA-Mean for
comparison. The results are reported in Table 1. Note that the CA-Mean baseline achieves compa-
rable performance against both GAN-based competing methods. In the first classification task, our
SACA-A model outperforms existing models by a relatively large margin, while in the second task,
SACA-A and SACA-B models show similar performance.

Unsupervised Feature Learning. We next evaluate the learned point feature representations of the
proposed framework, using them as features for classification. We obtain the feature representation
of a shape by applying different types of “symmetric” functions as illustrated in Qi et al. (2017a) (i.e.
min, max and mean pooling) on features of each layer before the SACA operation, and concatenate
them all. Following Wu et al. (2016), we first pre-train our model on 7 categories from the ShapeNet
dataset, and then use the model to extract feature vectors for both training and testing shapes of
ModelNet40 dataset. A linear SVM is used for feature classification. We report our best results
in Table 2. SACA-A model achieves the best performance, and SACA-B model performs slightly
worse than Latent-GAN-CD (Achlioptas et al. (2017a) uses 57,000 models from 55 categories of
ShapeNet dataset for pre-training, while we use 17,687 models across 7 categories).

Shape Completion. Our model can also perform shape completion. Given an initial set of points,
our model is capable of completing shapes multiple ways. Figure 7 visualizes example predictions.
The input points are sampled from ShapeNet testing sets, which are not seen during the training
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Figure 7: Shape completion results generated by PointGrow.

process. The shapes generated by our model are different from the original ground truth point
clouds, but look plausible. A current limitation of our model is that it works only when the input
point set is given as the beginning part of a shape along its primary axis, since our model is designed
and trained to generate point clouds along that direction. More investigation is required to complete
shapes when partial point clouds are given from other directions.

3.2 CONDITIONAL POINT CLOUD GENERATION

SACA-A is used to demonstrate conditional PointGrow here owing to its high performance.

Conditioned on Category Label. We first experiment with class-conditional modelling of point
clouds, given an one-hot vector h with its nonzero element hi indicating the ith shape category.
The one-hot condition provides categorical knowledge to guide the shape generation process. We
train the proposed model across multiple categories, and plausible point clouds for desired shape
categories can be sampled (as shown in Figure 8). Failure cases are also observed: generated shapes
present interwoven geometric properties from other shape types. For example, the airplane misses
wings and generates a car-like body; the lamp and the car develop chair leg structures.

Figure 8: Examples of successfully generated point clouds by PointGrow conditioned on one-hot
categorical vectors. Bottom right shows failure cases.

Conditioned on 2D Image. Next, we experiment with image conditions for point cloud generation.
Image conditions apply constraints constrains to the point cloud generation process because the ge-
ometric structures of sampled shapes should match their 2D projections. In our experiments, we
obtain an image condition vector by adopting the image encoder in Sun et al. (2018b) to generate a
feature vector of 512 elements, and optimize it along with the rest of the model components. The
model is trained on synthetic ShapeNet dataset, and one out of 24 views of a shape (provided by
Choy et al. (2016)) is randomly selected at each training step as the image condition input. The
trained model is also tested on real images from the PASCAL3D+ dataset to prove its generalizabil-
ity. For each input, we removed the background, and cropped the image so that the target object is
centered. The PASCAL3D+ dataset is challenging because the images are captured in real environ-
ments, and contain noisier visual signals which are not seen during the training process. We show
ShapeNet testing images and PASCAL3D+ real images together with their sampled point cloud
results on Figure 9 upper left.
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Figure 9: Upper left: Generated point clouds conditioned on synthetic testing images from
ShapeNet (first 4 columns) and real images from PASCAL3D+ (last 2 columns). Upper right:
Examples of image condition arithmetic for chairs. Bottom: Examples of image condition linear
interpolation for cars. Condition vectors from leftmost and rightmost images are used as endpoints
for the shape interpolation.

We further quantitatively evaluate the conditional generation results by calculating mean
Intersection-over-Union (mIoU) with ground truth volumes. Here we only consider 3D volumes
containing more than 500 occupied voxels, and using furthest point sampling method to select 500
out of them to describe the shape. To compensate for the sampling randomness of PointGrow, we
slightly align generated points to their nearest voxels within a neighborhood of 2-voxel radius. As
shown in Table 3, PointGrow achieves above-par performance on conditional 3D shape generation.

Table 3: Conditional generation evaluation by per-category IoU on 13 ShapeNet categories. We
compare our results with 3D-R2N2 (Choy et al. (2016)) and PointOutNet (Fan et al. (2017)).

airplane bench cabinet car chair monitor lamp speaker firearm couch table cellphone watercraft Avg.
3D-R2N2 (1 view) 0.513 0.421 0.716 0.798 0.466 0.468 0.381 0.662 0.544 0.628 0.513 0.661 0.513 0.560
3D-R2N2 (5 views) 0.561 0.527 0.772 0.836 0.550 0.565 0.421 0.717 0.600 0.706 0.580 0.754 0.610 0.631
PointOutNet 0.601 0.550 0.771 0.831 0.544 0.552 0.462 0.737 0.604 0.708 0.606 0.749 0.611 0.640
Ours 0.742 0.629 0.675 0.839 0.537 0.567 0.560 0.569 0.674 0.676 0.590 0.729 0.737 0.656

3.3 LEARNED IMAGE CONDITION MANIFOLD

Image Condition Interpolation. Linearly interpolated embedding vectors of image pairs can be
conditioned upon to generate linearly interpolated geometrical shapes. As shown on Figure 9 bot-
tom, walking over the embedded image condition space gives smooth transitions between different
geometrical properties of different types of cars.

Image Condition Arithmetic. Another interesting way to impose the image conditions is to per-
form arithmetic on them. We demonstrate this by combining embedded image condition vectors
with different weights. Examples of this kind are shown on Figure 9 upper right. Note that the
generated final shapes contain geometrical features shown in generated shapes of their operands.

4 CONCLUSION

In this work, we propose PointGrow, a new generative model that can synthesize realistic and diverse
point cloud with high resolution. Unlike previous works that rely on local regularities to synthesize
3D shapes, our PointGrow builds upon autoregressive architecture to encode the diverse surface
information of point cloud. To further capture the long-range dependencies between points, two
dedicated self-attention modules are designed and carefully integrated into our framework. Point-
Grow as a generative model also enables effective unsupervised feature learning, which is extremely
useful for low-data recognition tasks. Finally, we show that PointGrow learns a smooth image con-
dition manifold where 3D shape interpolation and arithmetic calculation can be performed inside.
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