
Under review as a conference paper at ICLR 2020

DISTRIBUTION MATCHING PROTOTYPICAL NETWORK
FOR UNSUPERVISED DOMAIN ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art Unsupervised Domain Adaptation (UDA) methods learn trans-
ferable features by minimizing the feature distribution discrepancy between the
source and target domains. Different from these methods which do not model the
feature distributions explicitly, in this paper, we explore explicit feature distribu-
tion modeling for UDA. In particular, we propose Distribution Matching Prototyp-
ical Network (DMPN) to model the deep features from each domain as Gaussian
mixture distributions. With explicit feature distribution modeling, we can easily
measure the discrepancy between the two domains. In DMPN, we propose two
new domain discrepancy losses with probabilistic interpretations. The first one
minimizes the distances between the corresponding Gaussian component means
of the source and target data. The second one minimizes the pseudo negative
log likelihood of generating the target features from source feature distribution.
To learn both discriminative and domain invariant features, DMPN is trained by
minimizing the classification loss on the labeled source data and the domain dis-
crepancy losses together. Extensive experiments are conducted over two UDA
tasks. Our approach yields a large margin in the Digits Image transfer task over
state-of-the-art approaches. More remarkably, DMPN obtains a mean accuracy of
81.4% on VisDA 2017 dataset. The hyper-parameter sensitivity analysis shows
that our approach is robust w.r.t hyper-parameter changes.

1 INTRODUCTION

Recent advances in deep learning have significantly improved state-of-the-art performance for a
wide range of applications. However, the improvement comes with the requirement of a massive
amount of labeled data for each task domain to supervise the deep model. Since manual labeling is
expensive and time-consuming, it is therefore desirable to leverage or reuse rich labeled data from a
related domain. This process is called domain adaptation, which transfers knowledge from a label
rich source domain to a label scarce target domain (Pan & Yang, 2009).

Domain adaptation is an important research problem with diverse applications in machine learning,
computer vision (Gong et al., 2012; Gopalan et al., 2011; Hoffman et al., 2014; Saenko et al., 2010)
and natural language processing (Collobert et al., 2011; Glorot et al., 2011). Traditional methods
try to solve this problem via learning domain invariant features by minimizing certain distance met-
ric measuring the domain discrepancy, for example Maximum Mean Discrepancy (MMD) (Gretton
et al., 2009; Pan et al., 2008; 2010) and correlation distance (Sun & Saenko, 2016). Then labeled
source data is used to learn a model for the target domain. Recent studies have shown that deep neu-
ral networks can learn more transferable features for domain adaptation (Glorot et al., 2011; Yosinski
et al., 2014). Consequently, adaptation layers have been embedded in the pipeline of deep feature
learning to learn concurrently from the source domain supervision and some specially designed do-
main discrepancy losses (Tzeng et al., 2014; Long et al., 2015; Sun & Saenko, 2016; Zellinger et al.,
2017).

However, none of these methods explicitly model the feature distributions of the source and target
data to measure the discrepancy. Inspired from the recent works by Wan et al. (2018) and Yang et al.
(2018), which have shown that modeling feature distribution of a training set improves classification
performance, we explore explicit distribution modeling for UDA. We model the feature distributions

1

Under review as a conference paper at ICLR 2020

as Gaussin mixture distributions, which facilitates us to measure the discrepancy between the source
and target domains.

Our proposed method, i.e., DMPN, works as follows. We train a deep network over the source
domain data to generate features following a Gaussian mixture distribution. The network is then
used to assign pseudo labels to the unlabeled target data. To learn both discriminative and domain
invariant features, we fine-tune the network to minimize the cross-entropy loss on the labeled source
data and domain discrepancy losses. Specifically, we propose two new domain discrepancy losses by
exploiting the explicit Gaussian mixture distributions of the deep features. The first one minimizes
the distances between the corresponding Gaussian component means between the source and target
data. We call it Gaussian Component Mean Matching (GCMM). The second one minimizes the
negative log likelihood of generating the target features from the source feature distribution. We
call it Pseudo Distribution Matching (PDM). Extensive experiments on Digits Image transfer tasks
and synthetic-to-real image transfer task demonstrate our approach can provide superior results than
state-of-the-art approaches. We present our proposed method in Section 3, extensive experiment
results and analysis in Section 4 and conclusion in Section 5.

2 RELATED WORKS

Domain adaptation is an important research problem with diverse applications in machine learn-
ing, computer vision (Gong et al., 2012; Gopalan et al., 2011; Hoffman et al., 2014; Saenko et al.,
2010) and natural language processing (Collobert et al., 2011; Glorot et al., 2011). According to
the survey Pan & Yang (2009), traditional domain adaptation methods can be organized into two
categories: feature matching and instance re-weighting. Feature matching aims to reduce the do-
main discrepancy via learning domain invariant features by minimizing certain distance metric, for
example Maximum Mean Discrepancy (MMD) (Gretton et al., 2009; Pan et al., 2008; 2010), corre-
lation distance (Sun & Saenko, 2016), Central Moment Discrepancy (CMD) Zellinger et al. (2017)
and et al. Then labeled source data is used to learn a model for the target domain. Instance re-
weighting aims to reduce the domain discrepancy via re-weighting the source instances according
to their importance weights with respect to the target distribution (Huang et al., 2007).

In the era of deep learning, studies have shown that deep neural networks can learn more transferable
features for domain adaptation (Glorot et al., 2011; Yosinski et al., 2014), therefore, domain adapta-
tion layers have been embedded in the pipeline of deep feature learning to learn concurrently from
the source domain supervision and some specially designed domain discrepancy losses (Tzeng et al.,
2014; Long et al., 2015; Sun & Saenko, 2016; Zellinger et al., 2017). Some recent works Ganin &
Lempitsky (2014), Tzeng et al. (2017), Long et al. (2018) add a domain discriminator into the
deep feature learning pipeline, where a feature generator and a domain discriminator are learned ad-
versarially to generate domain invariant features. All these works can be categorized as the feature
matching type of domain adaptation method. However, none of them models the feature distribu-
tions of the source and target data for distribution matching. In this paper, we show that explicitly
modeling the feature distributions enables us to measure the domain discrepancy more easily and
helps us to propose new domain discrepancy losses.

Prototypical network (PN) was first proposed in Snell et al. (2017) for few shot learning, which
shows that learning PN is equivalent to performing mixture density estimation on the deep features
with an exponential density. Recently, in Wan et al. (2018)’s and Yang et al. (2018)’s works, it has
been shown that modeling the deep feature distribution of a training set as Gaussian mixture distri-
bution improves classification performance. As Gaussian density belongs to one type of exponential
density, the models proposed in Wan et al. (2018)’s and Yang et al. (2018)’s works are variants of
PN. However, the two works study the classification problem in a single domain, which is different
from our work on the problem of domain adaptation. In Pan et al. (2019), prototypical networks
are first applied for domain adaptation. Multi-granular domain discrepancy minimization at both
class-level and sample-level are employed in Pan et al. (2019) to reduce the domain difference and
achieves state-of-the-art results in various domain adaptation tasks. However, in Pan et al. (2019)’s
work, the deep feature distribution is modeled implicitly when they apply PN for UDA, in our work,
we explicitly model the deep feature distribution as Gaussian mixture distribution for UDA.

2

Under review as a conference paper at ICLR 2020

3 DISTRIBUTION MATCHING PROTOTYPICAL NETWORKS

In Unsupervised Domain Adaptation (UDA), we are given Ns labeled samples Ds = {(xsi , ysi)}N
s

i=1

in the source domain and N t unlabeled samples Dt = {xti}N
t

i=1 in the target domain. The source
and target samples share the same set of labels and are sampled from probability distributions P s
and P t respectively with P s 6= P t. The goal is to transfer knowledge learnt from the labeled source
domain to the unlabeled target domain.

3.1 DEEP FEATURE DISTRIBUTION MODELING

We model the deep embedded features of the source data as a Gaussian mixture distribution where
the Gaussian component means act as the prototypes for each class. Let {µsc}Cc=1 and {Σs

c}Cc=1
be the Gaussian component means and covariance matrices of the Gaussian mixture distribution,
then the posterior distribution of a class y given the embedded feature f can be expressed as in
Eqn. 1 where f = F (x,θ), F : X → Rd is the embedding function with parameter θ and d is the
dimension of the embedded feature, p(c) is the prior probability of class c and C is the total number
of classes.

p(y|f) =
N (f ;µsy,Σ

s
y)p(y)∑C

c=1N (f ;µsc,Σ
s
c)p(c)

(1)

With labeled source data Ds = {(xsi , ysi)}N
s

i=1, a classification loss Lcls can be computed as the
cross-entropy between the posterior probability distribution and the one-hot class label as shown in
Eq. 2 and following Wan et al. (2018), a log likelihood regularization term Llkd can be defined as in
Eq. 3, where fsi = F (xsi ,θ).

Lcls(Ds) = − 1

Ns

Ns∑
i=1

log
N (fsi ;µ

s
ysi
,Σs

ysi
)p(ysi)∑C

c=1N (fsi ;µ
s
c,Σ

s
c)p(c)

(2)

Llkd(Ds) = − 1

Ns

Ns∑
i=1

logN (fsi ;µ
s
ysi
,Σs

ysi
) (3)

The final loss function LGM for training a network with Gaussian mixture feature distribution is
defined as LGM = Lcls(D) + ϕLlkd(D), where ϕ is a non-negative weighting coefficient. Notice,
the distribution parameters {µsc}Cc=1 and {Σs

c}Cc=1 are learned automatically from data.

3.2 GAUSSIAN COMPONENT MEAN MATCHING

To match the deep feature distributions between the source and target data, we propose to match
the corresponding Gaussian component means between them. We utilize the network learnt on the
labeled source data to assign pseudo labels to target samples. As such, we denote the target samples
with pseudo labels as D̂t = {(xti, ŷti)}N

t

i=1. We empirically estimate the Gaussian component means
{µesc }Cc=1

1 and {µetc }Cc=1 as follows:

µesc =
1

|Dsc|
∑
xsi∈Dsc

fsi , µetc =
1

|Dtc|
∑
xti∈Dtc

f ti (4)

where Dsc and D̂tc denote the sets of source/target samples from class c, f ti = F (xti;θ). The Gaussian
Component Mean Matching (GCMM) loss LGCMM is defined as follows:

LGCMM ({µesc }Cc=1, {µetc }Cc=1) =
1

C

C∑
c=1

||µesc − µetc ||2 (5)

where || · || is the L2 norm between two vectors. Intuitively, if the source features and target features
follow the same Gaussian mixture distribution, then the Gaussian component means of the same
class from the two domains will be the same. Thus minimizing LGCMM helps to reduce the domain
discrepancy. Better illustrated in Fig. 1

1{µes
c }Cc=1 is different from {µs

c}Cc=1, as the latter are learned directly from data and are used to assign
pseudo labels for target data.

3

Under review as a conference paper at ICLR 2020

Figure 1: Illustration of the overall training objective. This figure displays the model after we finish
pre-training it with the labeled source data on LGM . Different colors represent different classes.
Dotted ellipses represent Gaussian mixture distribution of the source embedded features. The amor-
phous shapes represent pseudo labeled target feature distribution before we optimize the network
further on the overall objective function in Eqn. 7. GCMM loss tries to bring the corresponding
Gaussian component means between the source data and pseudo labeled target data closer, repre-
sented by the black two-way arrows. Minimizing GCMM brings the feature distributions of the
source and target domains closer, thus reducing the domain discrepancy. PDM loss tries to match
the pseudo target feature distribution to the source Gaussian mixture distribution, represented by the
colored one-way arrow. Minimizing PDM increases the likelihood of target features on the source
feature distribution, thus reducing the domain discrepancy. Best viewed in color.

3.3 PSEUDO DISTRIBUTION MATCHING

On the pseudo labeled target data D̂t, we further propose to match the embedded target feature dis-
tribution with the source Gaussian mixture feature distribution via minimizing the following pseudo
negative log likelihood loss, which we denoted as LPDM :

LPDM (D̂t) = − 1

|D̂t|

∑
(xti,ŷ

t
i)∈D̂t

logN (f ti ;µ
s
ŷi ,Σ

s
ŷi) (6)

Minimizing LPDM 2 maximizes the likelihood of the pseudo labeled target features on the source
Gaussian mixture feature distribution. To achieve that, the network is enforced to learn an embed-
ding function which produces similar embedded feature distributions between the source data and
target data. Otherwise, this term will induce a large loss value and dominate the overall objective
function to be minimized. Therefore, minimizing LPDM helps to reduce the domain discrepancy.
As we are using pseudo labeled target data to calculate this domain discrepancy loss function, we
term it as Pseudo Distribution Matching (PDM) loss. Furthermore, while minimizing GCMM loss
brings the source and target feature distribution closer, minimizing PDM loss shapes the target fea-
ture distribution to be similar as the source Gaussian mixture distribution. Thus, these two loss
functions complement each other to reduce the distribution discrepancy. Better illustrated in Fig. 1.

3.4 OPTIMIZATION

The overall training objective of DMPN can be written as follows:

min
θ,{µsc}Cc=1,{Σsc}Cc=1

Lcls(Ds) + ϕLlkd(Ds) + αLGCMM ({µesc }Cc=1, {µetc }Cc=1) + βLPDM (D̂t) (7)

where minimizing the first two terms of the objective function helps the model to learn discriminative
features with the supervision from the labeled source data, and minimizing the last two terms helps to
match the embedded feature distributions between the source and target domains so that the learned
classifier from the labeled source data can be directly applied in the target domain. The whole model
is illustrated in Fig. 1.

Training Procedure. To train DMPN, we first pre-train a network with labeled source data onLGM .
Then mini-batch gradient descent algorithm is adopted for further optimization of the network on

2Notice, gradient from LPDM does not back-propagate to update {µs
c}Cc=1 and {Σs

c}Cc=1. We learn source
distribution parameters only from labeled source data.

4

Under review as a conference paper at ICLR 2020

Eqn. 7, where half of the samples in the mini-batch are from labeled source data Ds and the other
half are from unlabeled target data Dt. To obtain pseudo labels for the unlabeled target data, we
use the learned source distribution parameters to calculate the class probabilities for each target data
point as in Eqn. 1 and assign the class with the largest probability as the pseudo label. To remedy
the error of the self-labeling, we took similar approach as in French et al. (2018) and Pan et al.
(2019) to filter unlabeled target data points whose maximum predicted class probability is smaller
than some threshold. Apart from that, we also propose to weight the contribution of each sample to
the discrepancy loss based on the predicted probability. In this way, less confidently predicted target
samples will make smaller contributions in the training process.

Inference. For inference, we first apply the learned embedding function F on the target data, then
we will use the learned distribution parameters to calculate the class probabilities for each target
data point as in Eqn. 1. Finally, we output the class with the largest probability for each target data
point as our prediction.

3.5 THEORETICAL INSIGHT

There is another type of domain adaptation problem, called Supervised Domain Adaptation (SDA)
in the literature. In SDA, we are provided with a large amount of labeled source data and a small
amount of labeled target data, the goal is to find a hypothesis that works well in the target domain.
By employing pseudo labeled target data in the training process, our method can be considered
as working on a generalized problem of SDA, where the labeled target data is noisy. Ben-David
et al. (2010) has proved that we can bound the target error of a domain adaptation algorithm that
minimizes a convex combination of empirical source and target error in SDA as follows:

|εγ(h)− εt(h)| ≤ (1− γ)(1
2
dH∆H(P

s, P t) + λ) (8)

where εγ(h) = γεt(h) + (1 − γ)εs(h) is the convex combination of the source and target er-
ror with γ ∈ [0, 1], εs = Ex∼P s [|h(x) − fs(x)|], εt = Ex∼P t [|h(x) − f t(x)|], fs and f t are
the labeling function in the source and target domains respectively, h is a hypothesis in class H,
dH∆H(P

s, P t) = 2 suph,h′∈H |Px∼P s [h(x) 6= h
′
(x)] − Px∼P t [h(x) 6= h

′
(x)]| measures the do-

main discrepsancy in the hypothesis spaceH and λ = εs(h
∗) + εt(h

∗) is the combined error in two
domains of the joint ideal hypothesis h∗ = argminh∈H εs(h) + εt(h).

Denote the noise ratio of the target labeling function to be ρ, the convex combination of the source
and noisy target error as ε̃γ(h) = γεt′ (h) + (1 − γ)εs(h), where εt′ (h) is the target error on the
noisy target labeling function, then we can bound the target error as follows:

|ε̃γ(h)− εt(h)| = |γεt′ (h) + (1− γ)εs(h)− εt(h) + γεt(h)− γεt(h)|
≤ |εγ(h)− εt(h)|+ γ|εt′ (h)− εt(h)|

≤ (1− γ)(1
2
dH∆H(P

s, P t) + λ) + ργ

(9)

In summary, this bound is decomposed into three parts: the domain discrepancy dH∆H, the error
λ of the ideal joint hypothesis and the noise ratio ρ of the pseudo labels. In DMPN, we minimize
the first term through minimizing the domain discrepancy losses, as dH∆H is small when the source
features and target features have similar distribution and minimizing the domain discrepancy losses
makes the source and target feature to distribute similarly. The second term is assumed to be small,
as otherwise there is no classifier that performs well on both domains. Finally, during training, as we
continuously improve the accuracy of the classifier for target data, we get more and more accurate
predictions, thus reducing the noise ratio ρ. We empirically verify that ρ is decreasing in Section 4.2.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETTINGS

Digits Image Transfer. For the Digits Image transfer task, we consider the MNIST (M), USPS (U)
and SVHN (S) datasets. Both the MNIST (M) and USPS (U) image datasets contains handwritten
digits from ‘0’ to ‘9’. The MNIST dataset consists of 70k images and the USPS dataset has 9.3k

5

Under review as a conference paper at ICLR 2020

images. Unlike MNIST and USPS, the SVHN (S) dataset is a real-world Digits dataset of house
numbers in Google street view images and contains 100k cropped Digits images. We follow the
standard evaluation protocol (Tzeng et al., 2017; Pan et al., 2019). We consider three directions of
adaptation: M→ U, U→ M and S→ M. For the transfer between MNIST and USPS, we sample
2k images from MNIST training set (60,000) and 1.8k images from USPS training set (7,291) for
adaptation and evaluation is reported on the standard test sets: MNIST (10,000), USPS (2,007). For
S → M, we use the whole training set SVHN (73,257) and MNIST (60,000) for adaptation and
evaluation is reported on the standard test set MNIST (10,000). In addition, we use the same CNN
architecture, namely a simple modified version of LeCun et al. (1998) (2 conv-layer LeNet) as Pan
et al. (2019) and Tzeng et al. (2017) for fair comparison3.

Synthetic-to-Real Image Transfer. For synthetic-to-Real image transfer, we use the VisDA 2017
dataset for evaluation. In total, VisDA 2017 contains over 280k images across 12 categories in the
combined training, validation, and testing domains. The training domain consists of 152k synthetic
images which are generated by rendering 3D models of the same object categories from different
angles and under different lighting conditions. The validation domain includes 55k images by crop-
ping object in real images from COCO. And the testing domain consists of 72k images cropped
from video frmaes in YT-BB. As the labels for the testing data are unavailable, we use the training
data as our source domain and the validation data as our target domain. Following Pan et al. (2019),
we adopt 50-layer ResNet pre-trained on ImageNet as our basic CNN architecture.

Office-Home Transfer. (Venkateswara et al., 2017) consists of 15,500 images in 65 object classes
in office and home settings, forming four extremely dissimilar domains: Artistic images (Ar), Clip
Art (Cl), Product images (Pr), and Real-World images (Rw). By permuting the 4 domains, we can
generate 12 different domain adaptation tasks. Our method perform the best in all the transfer tasks
compared to state-of-the-art UDA methods. The experiment results and training details for this
experiment are in the Appendix A.3 due to space constraint.

Implementation Details. Following Wan et al. (2018), we assume the covariance matrices {Σs
c}Cc=1

to be diagonal and the prior probability to be p(c) = 1/C when pre-training the network on the
labeled source data. The three trade-off parameters ϕ, α and β in Eqn. 7 are simply set to be 0.1,
1, 0.1. We strictly follow Pan et al. (2019) and set the embedding dimension d as 10/512 for
Digits/synthetic-to-real image transfer. We implement DMPN with Pytorch. We use ADAM with
0.0005 weight decay and 0.9/0.999 momentum for training and set the mini-batch size to be 128/120
in Digits/synthetic-to-real image transfer. We train the network for 350 epochs for the Digits Image
transfer tasks. The learning rate is initially set to be 1e-5 for the covariance matrices and 1e-3 for
the other parameters4 and is decayed by 0.1 at epoch 150 and 250. For the synthetic-to-real image
transfer, we fix the learning rate to be 1e-6 and train the network for 100 epochs4. Finally, for
the Digits Image transfer tasks, we apply weighted PDM loss to remedy the labeling error, where
each sample is weighted by the maximum predicted class probability. For the synthetic-to-real
image transfer task, we apply filtering to remedy the labeling error, where only target examples with
maximum predicted probability over 0.8 is used for training. Following the standard, for Digits
Image transfer tasks, we adopt the classification accuracy on target domain as evaluation metric and
for synthetic-to-real image transfer, we use the average per class accuracy for evaluation metric. We
will publish our code upon acceptance.

Compared Methods. To demonstrate the benefits of our proposed method, we compare it with the
following approaches: (1) Source-only directly exploits the classification model trained on source
domain to classify target samples. (2) RevGrad (Ganin & Lempitsky, 2014) trains domain invariant
features via adding a domain classifier in the deep feature learning pipeline via gradient reversal.
(3) DC (Tzeng et al., 2014) minimizes MMD along with deep feature learning for domain invariant
features. (4) DAN (Long et al., 2015) applies multiple variants of MMD to align feature repre-
sentations from multiple layers. (5) RTN (Long et al., 2016) extends DAN by adapting classifiers
through a residual transfer module. (6) ADDA (Tzeng et al., 2017) separates the source feature
learning and target feature learning using different networks and use a domain discriminator to learn
domain invariant features. (7) JAN (Long et al., 2017) aligns the joint distribution of the network

3For the transfer S → M, we insert batch normalization layers after each layer in the original architecture
(2 conv-layer LeNet), as the model fails to converge without them. For fair comparison, we also add batch
normalization layers for other compared method.

4Learning rates are chosen based on the validation results from pre-training on labeled source data.

6

Under review as a conference paper at ICLR 2020

activation of multiple layers across domains. (8) MCD (Saito et al., 2018) employs task-specific de-
cision boundaries to align the distributions of source and target domains. (9) CDAN+E (Long et al.,
2018) adds a conditional adversarial classifier on the deep feature learning pipeline to learn domain
invariant features. (10) S-En+Mini-aug (French et al., 2018) modifies the mean teacher variant of
temporal ensembling for UDA. (11) TPN (Pan et al., 2019) is the first work to apply PN for UDA.
TPNgen is the variant trained only with general-purpose domain discrepancy loss. (12) DMPN is
our proposed method. DMPNGCMM and DMPNPDM are trained only with GCMM loss and PDM
loss respectively. (13) Train-on-target is an oracle that trained on labeled target samples.

Table 1: Classification accuracy (%) of different methods for (a) Digits Image transfer across MNIST
(M), USPS (U) and SVHN (S), and (b) Synthetic-to-real image transfer on VisDA 2017 dataset. We
draw the results directly from the original paper if experimental settings are the same. For Digits
Image transfer, results with ‘*’ are trained without batch normalization layers (See Section 4.2
for detail). For synthetic-to-real image transfer, we only report the mean accuracy due to space
constraint. The detailed per class accuracy results are available in the Appendix A.1

(a) Digits Image transfer

Method M→ U U→M S→M
Source-only 75.2 57.1 64.4

RevGrad 77.1 73.0 73.9*

DC 77.1 73.0 67
DAN 80.3 77.8 73.7
RTN 82.0 81.2 75.3*

ADDA 89.4 90.1 83.6
JAN 84.4 83.4 78.4*

MCD 90.0 88.5 81.8
TPNgen 91.3 93.5 90.2*

TPN 92.1 94.1 93.0*

DMPNGCMM 94.3 94.6 96.5
DMPNPDM 91.8 89.1 96.6

DMPN 94.7 94.8 96.8
Train-on-target 97.3 96.7 99.3

(b) Synthetic-to-real image transfer

Method Mean Accuracy
Source-only 55.3

RevGrad 58.6
DC 55.5

DAN 59.8
RTN 63.8
JAN 66.5

CDAN+E 70.0
MCD 71.9

S-En+Mini-aug 74.2
TPNgen 73.6

TPN 80.4
DMPNGCMM 80.2
DMPNPDM 81.3

DMPN 81.4
Train-on-target 95.8

4.2 EXPERIMENTAL ANALYSIS

Performance Comparison. Table 1 shows the results of all methods for the two tasks. Overall, our
proposed method achieves superior results than all the existing methods. For the Digits Image trans-
fer tasks, DMPN has improved the accuracy for M→ U, U→ M and S→ M by 2.6%, 0.7% and
3.8% respectively compared to the second best. We have made great advancement considering the
second best accuracy results are already quite high. For the task S→M, due to convergence reasons,
we have added batch normalization layers to the original CNN architectures. For fair comparison, we
have re-run some experiments on other methods by adding batch normalization layers to them. For
methods whose public code are not available, we simply report the accuracy results with the original
CNN architecture. For ADDA, adding batch normalization layer has improved its accuracy result
from 76.0% to 83.6%, which has an increase of 7.6% of accuracy. However, we doubt adding batch
normalization layers will have the same effect on TPN, as TPN already has a quite high accuracy.
Nonetheless, we think our accuracy result of 96.8% on this task will be difficult for the other meth-
ods to surpass even with batch normalization layers. For the Synthetic-to-real image transfer task,
we only compare with methods without extensive data augmentations and our method has increased
the state-of-the-art single model mean accuracy by 1.0%. TPNgen reduces the domain discrepancy
via minimizing the pairwise Reproducing Kernel Hilbert Space (RKHS) distances among the cor-
responding prototypes of the source-only, target-only and source-target data. In DMPNGCMM we
minimize the L2 distance between the corresponding Gaussian component means of the source and
target data. The L2 distance can be viewed as the distance in a Linear RKHS space. The calculation
of our proposed GCMM loss is much simpler than the general purpose loss, yet with explicitly mod-
eling of the feature distributions, DMPNGCMM has a gain of accuracy of 3.0%, 1.1%, 6.3% and 6.6%

7

Under review as a conference paper at ICLR 2020

(a) (b) (c) (d)

Figure 2: (a): GCMM loss, PDM loss and Accuracy with the increase of training epochs on VisDA.
(b)-(d): Sensitivity analysis on hyper-parameters α, β and ϕ respectively.

(a) Epoch:0 (b) Epoch:20 (c) Epoch:50 (d) Epoch:80 (e) Epoch:100

Figure 3: (a)-(e): The t-SNE visualizations of features generated by DMPN with the increase of
training epochs on VisDA 2017.

on the M → U, U → M, S → M and synthetic-to-real image transfer tasks respectively compared
with TPNgen, showing that our method is more effective.

Ablation Analysis. In Table 1, combining GCMM loss and PDM loss helps to increase the accuracy
results, showing that the two domain discrepancy losses are compatible to each other. DMPNGCMM
performs better than or similar to almost all other domain adaptation methods and DMPNPDM per-
forms better than most of them.

Convergence Analysis. Figure 2 (a) shows the training progress of DMPN. The GCMM loss and
PDM loss keep decreasing with more training epochs. The prediction accuracy on the unlabeled
target data keeps increasing. And the noise ratio ρ decreases along the training process, from the
initial value of 38.6% decreases to 22.9%, which supports our theoretical analysis in Section 3.5.
Figure 3 shows the t-SNE visualizations of the source and target embedded features during training,
which shows that target classes are becoming increasingly well discriminated by the source classifier.

Sensitivity Analysis. Figure 2 (b)-(d) shows the sensitivity analysis on the hyper-parameters α,
β and ϕ with the other hyper-parameters fixed. Overall, the experiment results show that we can
get similar accuracy results or even better when changing the hyper-parameters in a certain range,
demonstrating that our method is robust against hyper-parameter changes. The sensitivity analysis
on the confidence threshold is in the Appendix A.2, which shows our method is robust against
threshold value.

5 CONCLUSIONS

In this paper, we propose Distribution Matching Prototypical Network (DMPN) for Unsupervised
Domain Adaptation (UDA) where we explicitly model and match the deep feature distribution of the
source and target data as Gaussian mixture distributions. Our work fills the gap in UDA where state-
of-the-art methods assume the deep feature distributions of the source and target data are unknown
when minimizing the discrepancy between them. We propose two new domain discrepancy losses
based on the Gaussian mixture distributions of the deep features called Gaussian Component Mean
Matching (GCMM) and Pseudo Distribution Matching (PDM). Extensive experiments verify the
effectiveness of our proposed method and domain discrepancy losses. Finally, a post-hoc hyper-
parameter sensitivity analysis shows that our approach is robust w.r.t hyper-parameter changes.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79(1-2):151–175,
2010.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of machine learning research,
12(Aug):2493–2537, 2011.

Geoffrey French, Michal Mackiewicz, and Mark H. Fisher. Self-ensembling for visual domain
adaptation. In ICLR, 2018.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. arXiv
preprint arXiv:1409.7495, 2014.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th international conference on
machine learning (ICML-11), pp. 513–520, 2011.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.
2066–2073. IEEE, 2012.

Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recognition:
An unsupervised approach. In 2011 international conference on computer vision, pp. 999–1006.
IEEE, 2011.

Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt, and Bernhard
Schölkopf. Covariate shift by kernel mean matching. Dataset shift in machine learning, 3(4):5,
2009.

Judy Hoffman, Sergio Guadarrama, Eric S Tzeng, Ronghang Hu, Jeff Donahue, Ross Girshick,
Trevor Darrell, and Kate Saenko. Lsda: Large scale detection through adaptation. In Advances in
Neural Information Processing Systems, pp. 3536–3544, 2014.

Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex J Smola. Cor-
recting sample selection bias by unlabeled data. In Advances in neural information processing
systems, pp. 601–608, 2007.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features
with deep adaptation networks. arXiv preprint arXiv:1502.02791, 2015.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation
with residual transfer networks. In Advances in Neural Information Processing Systems, pp. 136–
144, 2016.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint
adaptation networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 2208–2217. JMLR. org, 2017.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. In Advances in Neural Information Processing Systems, pp. 1640–1650, 2018.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

Sinno Jialin Pan, James T Kwok, Qiang Yang, et al. Transfer learning via dimensionality reduction.
In AAAI, volume 8, pp. 677–682, 2008.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural Networks, 22(2):199–210, 2010.

9

Under review as a conference paper at ICLR 2020

Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-Wah Ngo, and Tao Mei. Transferrable proto-
typical networks for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2239–2247, 2019.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In European conference on computer vision, pp. 213–226. Springer, 2010.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier dis-
crepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3723–3732, 2018.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pp. 4077–4087, 2017.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
European Conference on Computer Vision, pp. 443–450. Springer, 2016.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7167–7176, 2017.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5018–5027, 2017.

Weitao Wan, Yuanyi Zhong, Tianpeng Li, and Jiansheng Chen. Rethinking feature distribution
for loss functions in image classification. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9117–9126, 2018.

Hong-Ming Yang, Xu-Yao Zhang, Fangying Yin, and Chenglin Liu. Robust classification with
convolutional prototype learning. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3474–3482, 2018.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in neural information processing systems, pp. 3320–3328, 2014.

Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne
Saminger-Platz. Central moment discrepancy (cmd) for domain-invariant representation learn-
ing. arXiv preprint arXiv:1702.08811, 2017.

10

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 DETAILED RESULTS ON SYNTHETIC-TO-REAL IMAGE TRANSFER

Table 2: Classification accuracy (%) of different methods for Synthetic-to-real image transfer on
VisDA 2017 dataset

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean
Source-only 70.6 51.8 55.8 68.9 77.9 7.6 93.3 34.5 81.1 27.9 88.6 5.6 55.3

RevGrad 75.9 70.5 65.3 17.3 72.8 38.6 58.0 77.2 72.5 40.4 70.4 44.7 58.6
DC 63.6 38.4 71.2 61.4 71.4 10.9 86.6 43.5 70.2 47.7 79.8 21.6 55.5

DAN 61.7 54.8 77.7 32.2 75.0 80.8 78.3 46.9 66.9 34.5 79.6 29.1 59.8
RTN 79.5 59.6 78.0 47.4 82.7 82.0 84.7 54.7 81.6 34.5 74.2 6.6 63.8
JAN 92.1 66.4 81.4 39.6 72.5 70.5 81.5 70.5 79.7 44.6 74.2 24.6 66.5

MCD 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
TPNgen 94.5 86.8 76.8 49.7 92.1 12.5 84.7 75.2 92.1 86.8 84.1 47.4 73.6
TPNtask 89.2 62.8 71.7 83.5 90.6 24.6 88.8 91.1 89.8 74.7 69.1 36.1 72.7

TPN 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4
DMPNGCMM 94.1 83.0 73.7 54.7 90.7 89.2 80.5 79.1 91.0 89.9 82.8 53.2 80.2
DMPNPDM 94.8 85.4 80.0 55.5 90.9 84.6 78.7 78.6 90.7 92.4 88.8 55.5 81.3

DMPN 94.6 84.9 75.7 57.5 91.2 88.1 80.6 78.6 91.3 91.6 86.7 55.6 81.4
S-En+Mini-aug 92.9 84.9 71.6 41.2 88.8 92.4 67.5 63.5 84.5 71.8 83.2 48.1 74.2
S-En+Test-aug 96.3 87.9 84.7 55.7 95.9 95.2 88.6 77.4 93.3 92.8 87.5 38.2 82.8
Train-on-target 99.5 91.9 97.3 96.8 98.3 98.5 94.1 96.2 99.0 98.2 97.9 82.3 95.8

A.2 SENSITIVITY ANALYSIS ON CONFIDENCE THRESHOLD

Figure 4: Sensitivity analysis on confidence threshold.

Fig. 4 shows the sensitivity analysis of our method on different values of confidence threshold on
VisDA 2017 dataset. The experiment results show that we can get similar accuracy results or even
better when changing the confidence threshold in a certain range, demonstrating that our method is
robust against hyper-parameter changes.

A.3 OFFICE-HOME TRANSFER

Table 3 presents experiment results of state-of-the-art UDA methods and our method on Office-
Home dataset. Our method gives the best accuracy results in all transfer tasks, showing the effec-
tiveness of our method. In this experiment, we train the network for 100 epochs. The learning rate
is initially set to be 1e-5 for all the parameters and is decayed by 0.1 at epoch 60 and 80. Follow-
ing Long et al. (2018), α and β vary in each training epoch and are calculated by α = 1−e−γp

1+e−γp and

β = 0.1 ∗ 1−e−γp
1+e−γp respectively, where γ is set to be the default value 10, p is the training process

changing from 0 to 1.

11

Under review as a conference paper at ICLR 2020

Table 3: Classification accuracy (%) of different methods on Office-Home dataset

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
Source-only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

RevGrad 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN+E 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

TPN 53.4 71.4 76.1 59.0 70.8 70.5 61.8 54.3 80.7 71.5 58.4 84.4 67.7

12

	Introduction
	Related works
	Distribution Matching Prototypical Networks
	Deep Feature Distribution Modeling
	Gaussian Component Mean Matching
	Pseudo Distribution Matching
	Optimization
	Theoretical Insight

	Experiments
	Datasets and Experimental Settings
	Experimental Analysis

	Conclusions
	Appendix
	Detailed Results on Synthetic-to-real image transfer
	Sensitivity analysis on confidence threshold
	Office-Home Transfer

