
Workshop track - ICLR 2018

TOWARDS UNDERSTANDING THE GENERALIZATION
BIAS OF TWO LAYER CONVOLUTIONAL LINEAR
CLASSIFIERS WITH GRADIENT DESCENT

Yifan Wu, Barnabás Póczos & Aarti Singh
Machine Learning Department
Carnegie Mellon University
{yw4,bapoczos,aarti}@cs.cmu.edu

ABSTRACT

A major challenge in understanding the generalization of deep learning is to ex-
plain why (stochastic) gradient descent can exploit the network architecture to
find solutions that have good generalization performance when using high capac-
ity models. We find simple but realistic examples showing that this phenomenon
exists even when learning linear classifiers — between two linear networks with
the same capacity, the one with a convolutional layer can generalize better than
the other when the data distribution has some underlying spatial structure. We ar-
gue that this difference results from a combination of the convolution architecture,
data distribution and gradient descent, all of which are necessary to be included
in a meaningful analysis. We provide a general analysis of the generalization
performance as a function of data distribution and convolutional filter size, given
gradient descent as the optimization algorithm, then interpret the results using
concrete examples. Experimental results show that our analysis is able to explain
what happens in our introduced examples.

1 INTRODUCTION

It has been shown that the capacities of successful deep neural networks are typically large enough
such that they can fit random labelling of the inputs in a dataset (Zhang et al., 2016). Hence an
important problem is to understand why gradient descent (and its variants) is able to find the solu-
tions that generalize well on unseen data. Another key factor, besides gradient descent, in achieving
good generalization performance in deep neural networks is architecture design with weight sharing
(e.g. Convolutional Neural Networks (CNNs) (LeCun et al., 1998) and Long Short Term Memories
(LSTMs) (Hochreiter & Schmidhuber, 1997)). To the best of our knowledge, none of the existing
work on analyzing the generalization bias of gradient descent takes these specific architectures into
formal analysis. One may conjecture that the advantage of weight sharing is caused by reducing
the network capacity compared with using fully connected layers without talking about gradient
descent. However, as we will show later, there is a joint effect between network architectures and
gradient descent on the generalization performance even if the model capacity remains unchanged.
In this work we try to analyze the generalization bias of two layer CNNs together with gradient
descent, as one of the initial steps towards understanding the generalization performance of deep
learning in practice.

We introduce the following simple but realistic classification tasks on 1-D “images”:

Binary classification (Task-Cls): Classify object A v.s. B.
x = [0,, 0,−1, 0, ..., 0]→ y = −1 , x = [0, ..., 0,+1, 0,, 0]→ y = +1 .

First-person vision-based control (Task-1stCtrl): Go to the proximity of object A. Left v.s. Right.
x = [0, ...1.., 0,, 0]→ y = −1 , x = [0,, 0, ...1.., 0]→ y = +1 .

Third-person vision-based control (Task-3rdCtrl): Control B to touch A. Left v.s. Right.
x = [0, ...+ 1....− 1....., 0]→ y = −1 , x = [0,− 1...+ 1..., 0]→ y = +1 .

1

Workshop track - ICLR 2018

One key property of all these three tasks we designed is that the data distribution is linearly separable.
We compare a single layer linear classifier ŷ = sign

(
wTx

)
(Model-1-Layer) with a two layer

convolutional linear classifier ŷ = sign
(
wT

2 Conv(w1, x)
)

(Model-Conv-k) where the convolution
layer contains only one size-k filter (output channel = 1) with stride = 1 and without non-linear
activation functions. It is worth noting that Model-1-Layer and Model-Conv-k represent exactly the
same set of functions. Therefore, both of the two models have the same capacity and any difference
in the generalization performance cannot be explained by the difference of capacity. Figure 1 shows
that Model-Conv-k outperforms Model-1-Layer on all of the three tasks. Our work is motivated by
explaining the generalization behavior of Model-Conv-k under gradient descent.

20 40 60 80 100
Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

1-Layer
Conv-5

(a) Task-Cls

20 40 60 80 100
Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

1-Layer
Conv-5

(b) Task-1stCtrl

0 200 400 600 800 1000
Number of training samples

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

1-Layer
Conv-5

(c) Task-3rdCtrl

Figure 1: Comparing the generalization performance between two models.

2 MAIN RESULTS

Explaining our empirical observations requires a generalization analysis that depends on data distri-
bution, convolution structure and gradient descent. It can be shown that any of these three factors
cannot be isolated from the analysis. We are the first to provide a formal generalization analysis
that considers the interaction among data distribution, convolution, and gradient descent, which is
necessary to provide meaningful understanding for deep networks. First we derive a closed form
weight dynamics under gradient descent with a modified hinge loss and relate the generalization
performance to the first singular vector pair of some matrix computed from the training samples.
Then we interpret the results with one of our concrete examples using Perron-Frobenius Theorem
for non-negative matrices. Our experiments show that our analysis is able to explain what happens
in our examples.

We consider learning binary classifiers ŷ = sign (fw(x)) with a function class f parameterized by
w, in order to predict the real label y ∈ {−1,+1} given an input x ∈ Rd. A random label is
predicted with equal chance if fw(x) = 0. We denote the entire data distribution as D, which one
can sample data points (x, y)s from. Given a training setDtr ∼ D with ntr samples and a model fw,
we learn the classifier by minimizing the empirical hinge loss `(w;x, y) = (1−yfw(x))+ using full-
batch gradient descent with learning rate α > 0. Given a classifier fw and data distribution D, the
generalization error can be written as E(w;D) = E(x,y)∼D

[
Ē(yfw(x))

]
where Ē(x) = I {x < 0}+

1
2 I {x = 0}. For the convenience of analysis, we use the following form to express Model-Conv-k:
Let Ax ∈ Rd×k be [x, x←1 , ..., x←k−1

], where k is the size of the filter and x←l
is defined as the

input vector left-shifted by l positions. Then fw(x) can be written as fw(x) = wT
1 A

T
xw2. Further

define Mx,y = yAx then we have yfw(x) = wT
1 M

T
x,yw2.

In our analysis we consider minimizing a modified version of the hinge loss `(w;x, y) = −yfw(x).
We call it the extreme hinge loss because the gradient of this loss is the same as the gradient of the
generalized hinge loss `(w;x, y) = (γ − yfw(x))+ with γ → +∞. Then the training loss becomes
L(w;Dtr) = −wT

1 M
T
trw2 where we define Mtr = 1

ntr

∑
(x,y)∈DMx,y . The following Lemma

shows that in full batch gradient descent wt
1 and wt

2 can be written in closed-forms:
Lemma 1. Let Mtr = UΣV T be (any of) its SVD such that U ∈ Rd×k,Σ ∈ Rk×k, V ∈ Rk×k,
UTU = V TV = V V T = I . Assume w0

2 = 0. Then for any t ≥ 0, wt
1 = 1

2V Λ+,tV Tw0
1 and wt

2 =
1
2UΛ−,tV Tw0

1 where we define Λ+,t = (I+αΣ)t +(I−αΣ)t and Λ−,t = (I+αΣ)t− (I−αΣ)t.

When t→∞ the weights converge to specific directions: w∞1 ∝ V:mV T
:mw

0
1 andw∞2 ∝ U:mV

T
:mw

0
1 ,

where m is the number of singluar values that are the largest (σ1 = ... = σm). We define the

2

Workshop track - ICLR 2018

asymptotic generalization error for Model-Conv-k with gradient descent on data distribution D as
E∞Convk(D)

.
= EDtr,w0

1
[E(w∞,D)] = Ew0

1,Dtr,(x,y)

[
Ē
(
w∞1

TMT
x,yw

∞
2

)]
, which can be further up-

per bounded by E∞Convk(D) ≤ EDtr,(x,y)

[
Ē
(

min
(u,v)∈UV

Mtr
1

vTMT
x,yu

)]
when w0

1 ∼ N (0, b2Ik),

where UVM
1 denote the set of left-right singular vector pairs corresponding to the largest singular

value σ1 for a given matrix M . When the first singular vector pair of Mtr is unique, denoted by
(u, v), we have m = 1 thus wt

1 converges to the same direction as v while wt
2 converges to the same

direction as u. The asymptotic generalization performance is characterized by how many data points
in the whole dataset can be correctly classified by Model-Conv-k with the first singular vector pair
of Mtr as its weights.

We use our previously introduced task Task-Cls to show that our analysis is non-vacuous and able
to explain the generalization advantage of Model-Conv-k over Model-1-Layer. Notation: For any
l ∈ [d] = {1, ..., d} define el ∈ {0, 1}d to be the vector that has 1 in its l-th position and 0 elsewhere.
Then the set of inputs x in Task-Cls is the set of el and −el for all l. Let U [d] denote the uniform
distribution over [d]. Given a training set Dtr define Str = {l ∈ [d] : el ∈ Dtr ∨ −el ∈ Dtr}
to be the set of non-zero positions that appear in Dtr. By applying the Perron-Frobenius theorem
(Frobenius, 1912), the asymptotic generalization error can be decomposed into two parts:
Theorem 2. Let Ω(A) be the event that A is primitive and Ωc(A) be its complement. Consider
training Model-Conv-k with gradient descent on Task-Cls. Then E∞Convk ≤ Pr

(
Ωc(MT

trMtr)
)

+
1
2El∼U [d] [Pr (∀l′ ∈ Str, |l′ − l| ≥ k)]

It can be shown that the first term is larger when the number of training samples ntr is very small
while the second term becomes dominating when the number of training samples ntr is not too
small. If we only consider the second term Model-Conv-k requires approximately 2k−1 times fewer
samples than Model-1-Layer. We further show that, when comparing the sum of two terms with the
generalization error of Model-1-Layer, the advantage exists only when ntr is not too small, which is
well aligned with our empirical observation and also reveals an interesting fact that, unlike traditional
regularization techniques, the generalization bias here requires a certain amount of training samples
to be built up before saving the sample complexity effectively.

In our expriments we first show that E∞Convk can be viewed as an upper confidence bound for the
actual performance with the normal hinge loss (Figure 2(a)—2(c)). We then verify that the high
variance with the normal hinge loss is caused by random initialization and good initializations under
the normal hinge loss are the ones that converge faster to its limit direction under the extreme hinge
loss (Figure 2(d) and 2(e)), which shows strong correlation between our analysis and what happens
in our empirical observations.

20 40 60 80 100
Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

Normal
X-hinge
Asym

(a) Task-Cls

20 40 60 80 100
Number of training samples

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

Normal
X-hinge
Asym

(b) Task-1stCtrl

0 200 400 600 800 1000
Number of training samples

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Normal
X-hinge
Asym

(c) Task-3rdCtrl

0 100 200 300 400 500
Training steps

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
ac

cu
ra

cy

X-hinge-train
X-hinge-test
Normal-train
Normal-test

(d) Convergence.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
X-hinge test accuracy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
 te

st
 a

cc
ur

ac
y

(e) t = 150.

Figure 2: Comparing estimated asymptotic error (Asym) v.s. finite time extreme hinge loss (X-
hinge) v.s. normal hinge loss (Normal). The variance from weight initializations in Task-Cls.

3 CONCLUSION AND FUTURE WORK

We analyze the generalization performance of two layer convolutional linear classifiers trained with
gradient descent. Our analysis is able to explain why, on some simple but realistic examples, adding
a convolution layer can be more favorable than just using a single layer classifier even if the data is
linearly separable. However, much work remains to be done:(i) Closing the gaps in normal hinge
loss v.s. the extreme one as well as asymptotic analysis v.s. finite time analysis. (ii) How can we
interpret the generalization bias as a prior knowledge. We conjecture that the jointly trained filter
works as a data adaptive bias. (iii) Other interesting directions include studying the choice of k,
making practical suggestions based on our analysis and bringing in more factors such as feature
extraction, non-linearity and pooling.

3

Workshop track - ICLR 2018

REFERENCES

Georg Ferdinand Frobenius. Über Matrizen aus nicht negativen Elementen. Königliche Akademie
der Wissenschaften, 1912.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

4

	Introduction
	Main Results
	Conclusion and Future Work

