Under review as a conference paper at ICLR 2020

AMHARIC LIGHT STEMMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Stemming is the process of removing affixes(i.e. prefixes, infixes and suffixes)
that improve the accuracy and performance of information retrieval systems.This
paper presents the reduction of Amharic words to corresponding stem where with
the intention that it preserves semantic information. The proposed approach ef-
ficiently removes affixes from an Amharic word. The process of removing such
affixes (prefixes, infixes and suffixes) from a word to its base form is called stem-
ming. While many stemmers exist for dominant languages such as English, under
resourced languages such as Amharic which lacks such powerful tool support. In
this paper, we design a light Amharic stemmer relying on the rules that receives an
Amharic word and then it finds a match to the beginning of a word to the possible
prefixes and to its ending with the possible suffixes and finally it checks whether
it has infix. The final result is the stem if there is any prefix, infix or/and suffix,
otherwise it remains in one of the earlier states. The technique does not rely on
any additional resource (e.g. dictionary) to verify the generated stem. The perfor-
mance of the generated stemmer is evaluated using manually annotated Amharic
words. The result is compared with current state-of-the-art stemmer for Amharic
showing an increase of 7% in stemmer correctness.

Key Words: Amharic light Stemmer, Affixes, Amharic Sentiment Classification

1 INTRODUCTION

Amharic is a highly morphological rich language that adds more challenge for the stemmer perfor-
mance. The main aim of stemming is to reduce the different morphological (e.g. inflectional or
derivational) variations of word forms associated the linguistic information such as number, case,
gender, tense, definitive, functional, etc. to its common base form or roots (Jivani et al., 2011). In
this work, we follow a simple methodology that depends on the removal of affixes from Amharic
words. The idea for designing Amharic stemmer is relying on stripping affixes of Amharic words.
The algorithm in the stemmer searches a match of substring pattern expressions which represents
affixes from Ambharic input word to produce the remaining substring of Amharic word as base form
if one of affixes is found. In other words, the rules in the patterns used in the stemmer help to reduce
affixes from a word. The patterns representing the affixes of Ambharic language are implemented
using python library. In general, the existing stemmer algorithms have problems stated as follows:
(i) Ambharic is a morphologically rich language, that makes development of efficient stemmer very
difficult. E.g. A given Ambharic verb can have more than 80 different forms. (ii) It is difficult to
handle infixes appropriately by a stemmer. (iii) It is challenging to identify and stem Amharic com-
pound words as the language is complex in nature and thus it is not governed by specific rules. (iv)
Handling loan words adds additional factors in degrading the performance of stemmer. (v) It is a uni-
versal problem to develop stemmer algorithms with minimal errors as it is caused by over-stemming
or under- stemming and mis-stemming. Specifically, in this research, we try to answer the following
research questions: (i) how do we handle the best possible prefixes lists, suffixes lists and set of con-
ditions to enforce reduplicative words in Amharic texts? (ii) How can we design light stemmer for
Ambharic texts? (iii) How can we evaluate and enhance the performance of the stemmer? (iv)Does
stemming improve performance of Amharic sentiment classification system? The rest of this paper
is organized as follows: in the section 2, the related works are presented. The proposed Amharic
Stemmer is described in section 3. In section 4, stemmer evaluations are presented. Conclusions and
recommendations are drawn in section 5.

Under review as a conference paper at ICLR 2020

2 RELATED WORKS

In this section, we briefly present few of related works. The approaches of existing works related
to stemmer are categorized into three types of stemmers: truncating (affix removal (Lovins, Porters,
Dawsons, etc.), statistical (ngram, HMM, YASS) and mixed (corpus based, Xerox, context sensitive)
(Jivani et al., 2011; |Ali et al.} 2017). Stemmer development was restricted in English. Nowadays,
stemmers are adapted and constructed in other languages: Spanish, Urdu, Arabic, Amharic and so on.
For stemming Ambharic texts, there are few works carried out. The work in (Argaw & Asker,|[2007),
the authors developed rule based Amharic stemmer using dictionary look-up (machine readable dic-
tionary). This stemmer also relies on corpus statistics to resolve ambiguities of citation forms. The
approach in (Argaw & Asker,|2007) contains 65 rules to reduce an Amharic word to citation form for
cross-lingual information retrieval applications. The accuracy of this stemmer is 60% and 75%, for
old fashion fiction text and news text, respectively. The work in (Fikremariam,|2009) develops cor-
pus based approach using successor variety algorithm with peak and plateau method to stem Ambharic
texts. This approach with peak and plateau method performs (accuracy of 71.8%) better than suc-
cessor variety algorithm with entropy (accuracy of 63.95%) on news corpus with 6270 words. The
recent work in (Gasser, |2017)) builds a morphological tool for three languages (Amharic, Oromo
and Tigreygna). The tool is both morphological analyzer and morphological generator relying on
Finite State Transducer (FST) where its processes includes rules from surface level(alteration rules:
phonological & orthographic) to lexical level(morphotactics). For Amharic and Tigreygna, the mor-
phological analyzer part of the developed tool(HornMorpho) is evaluated. For 200 Amharic verbs,
200 Amharic nouns and 200 Tigregna verbs, morphological analyzer has accuracies of 99, 95.5 and
96%, respectively. This work tries to address morphological analysis and generation of open source
tool for the aforementioned languages. Even though this tool has a lot of features, it has a number of
associated constraints and limitations. The major one is lack of coverage of the languages and com-
putationally expensive to return the linguistic features of a given Ambharic input word. Specifically,
it is slow and takes up more memory space while execution of the program. To reduce this problem,
we try to develop efficient Amharic light stemmer for Amharic Sentiment classification. As Ambharic
is one of Semitic family, nouns and verbs are derived from limited roots. In other words, if surface
words are reduced to roots, it loses semantic information of the original text. Thus, we design a light
stemmer of Amharic language where it keeps semantic information by removing frequent prefixes
and postfixes of the input word. Our approach is similar to the approach in (Alemayehu & Willett,
2002) in that it is affix removal. The authors in (Alemayehu & Willett, [2002) developed the first
Ambharic stemmer relying on an iterative approach for hoping to improve performance of Amharic
text retrieval system. This stemmer tries to handle prefixes and suffixes and it is evaluated with ac-
curacy of 95% on 1221 words from different domains. However, the stemmers in both (Alemayehu
& Willett, 2002) and (Gasser, 2017) are reducing an Amharic surface word to a root word where as
our proposed light stemmer reduces the surface word to a stem that preserves semantic information
of the original word. This is one of the reasons why we inspired to develop light stemmer rather than
root(heavy) stemmer. Our aim is to test how better our light stemmer for sentiment classification
while comparing it with the available root stemmer(benchmark) (Gasser,2017).

3 PROPOSED AMHARIC STEMMER FRAMEWORK

Ambharic light stemmer is proposed almost from scratch. This stemmer is built to remove prefix
and suffix using manually compiled affix lists and a specific set of conditions is also set to enforce
removal of infix from Amharic word. Prefixes and suffixes are removed using longest match in pat-
tern with regular expression. In other words, affixes with largest length is removed first, and smallest
affixes removed last. If any of the affixes has no match in string patterns of Amharic word, the stem-
mer algorithm terminates. Moreover, we set the minimum length of the stem/root to be at least two
characters. The proposed framework contains different steps for developing efficient algorithm for
Ambaric light stemmer that preserves sentiment information. The framework for Amharic stemmer
is shown in Figure[T|below.

Under review as a conference paper at ICLR 2020

Conwvert Amharic g Normalize
Amharic Corpus 3 1 word to irregular Amharic
. RESPCCAREM) —'/I Consonant-Vowel ﬁ/‘ scripts into more
form formal form
Remaval of -
vowels and
Removal of Removal of Removal of
thenweget A A d — S
! | infines if any prefines if any suffines if any
stem or root g — T —
form

Figure 1: Amharic Light Stemmer Framework

Each of the major elements of the proposed framework are stated as follows:
3.1 AmHArIC CORPUS

For evaluating the generated stems, we use the following corpora and lexicons.

i. Amharic News Corpus: For the Amharic words list in (Foundationl |2017), stems/roots for these
words are generated for evaluation of the developed Amharic stemmer.

ii. Amharic Facebook Comments: The data sets for evaluating the performance of the Amharic stem-
mer for hoping to improve accuracy of Amharic sentiment classification at sentence level.

iti. Amharic Sentiment Lexicons: The Amharic sentiment lexicons includes manual (1000) (Ge-
bremeskel,[2010), Amharic SentiWordNet(SWN)(13679) (Neshir Alemneh et al.,|2019) and Amharic
Semantic Orientation Calculator(SOCAL) (5683) (Neshir Alemneh et al.,2019). These lexicons are
used to compute the sentiment score of the Amharic texts for testing and evaluating the performance
of the generated Ambharic light stemmer with respect to the state-of-the art(SOTA).

3.2 PREPROCESSING

We apply basic preprocessing steps on Amharic News Comments. Amharic script symbols are
adapted from Geez alphabets. Each alphabet has 7 different syllabic forms (or orders) represent-
ing consonant-vowel (CV) pairs (called phonemes). The first order is the base form and the other are
derived uniformly from it relying on the vowel sounds (A A h. A h & h) referring to the En-
glish vowels (4, u, i, a, e, 0), respectively. Authors in (Yimam), [2000) argued that the
sixth alphabets represent the consonant scripts and the remaining orders are reflecting
implicitly the corresponding vowel sounds as it is shown in Table [1. There are 33 base
alphabets and 7 orders (33 syllables times 7 orders gives 231syllables plus 5 characters
with 4 orders of labialized velars and plus 24 additional labialized consonants gives a
total of 275 characters(called ‘fidels’)). As these syllables are directly taken from Geez,
there are lists of redundant alphabets (V7 h: -1 (A:w): (2:0):(0: K) represents the same
sound. Those in brackets are redundant base forms. The last pair (0:A) represents
the Amharic vowels and the remaining 31 represents consonants of Amharic. In this
research, first we normalize these redundant symbols into a common symbol. Then,
to handle the vowel features of the language explicitly, we require conversion of
Ambharic scripts to consonant-vowel form by developing mapping lookup table, similar
to SERA (Yacob). Particularly, before performing stemming, the algorithm converts
each Amharic word to its consonant vowel form.

3.3 CONVERT AMHARIC WORD TO CONSONANT-VOWEL FORM

For normalization purpose, we use the above-mentioned vowels in this research. Table
depicts the 7 orders of Amharic alphabets with corresponding CV in amharic and in
SERA transliteration forms. The CV format replace and can alternatively used in place
of SERA which uses romans and phonetics.

3.4 HANDLING IRREGULARITIES OF AMHARIC WRITING DIALECTS INTO MORE FORMAL TEXT FORM

We develop some conditions to enforce and normalize the variations of style of Amharic
writing to formal form. Moreover, irregular nouns, name of places, name of person,
irregular verbs, prepositions and irregular adjectives should be used identified to handle

Under review as a conference paper at ICLR 2020

Table 1: Amharic Consonants with 7 orders which are converted consonant vowel form shown in
brackets. Left to the bar refers to the consonant vowel in Amharic and right to the bar denotes the
consonant vowel transliterated into Romans using SERA.

- [15% Order [279 Order [37 Order [477 Order [5t Order [6" Order [7t Order

1 v/vh/Ha/ U~/Vh-/Hu/ ./vh./Hi/ 7/vh/Ha/ %/Vh/He/ v/H/ v/vk/Ho/
2 a/NE /LE/ &/Ah/Lu/ A/Ah/Li/ A/AR /La/ &/Ak/Le/ a/L/ t/Ah/Lo/
3 /9K /Ma/ av-/Ph/Mu/ | “L/Ph./Mi/ “/9°h/Ma/ “./9°k/Me/ /M/ /9°k/Mo/
4 & /CR/RE/ 4/Ch-/Ru/ ¢/Ch/Ri/ ¢&/Ch/Ra/ &/Ch/Re/ c/R/ ¢/Ch/Ro/
5 0/0h/S4/ 0/0kh/Su/ A./0hk./Si/ Aa/0k/Sa/ 0./0h/Se/ n/S/ 0/0x/So/
33 .&./617;/175/ ;54/611\-/Fu/ .Ka/ﬁih./Fi/ g-/ﬁ:h/Fa/ L/ﬁih/Fe/ é/F/ k/@?\/FO/
34 T/Th/Pid/ F/Th/Pu/ T/ Th./Pi/ T/Th/Pa/ F/Th/Pe/ T/P/ 7°/Th/Po/

the exceptions to the rules of the regular expressions that represents list of prefixes
and suffix rules.

3.5 REMOVAL OF SUFFIXES IF ANY

We tried to identify suffix lists that represent morphological information such as gender,
definitive, case, tense, number, part of speech and so on. We identify 97 suffix lists
which are converted consonant vowel form as it is shown in appendix.

3.6 REMOVAL OF INFIXES IF ANY

We understand that if Amharic verb contains pattern CaC- at the middle of the word
where C represents Amharic consonant and /a/ represents Amharic vowel. The infix
tells us something is done repeatedly performed. E.g. 4.AA1/'SAAAAKRTAR'/FelLalege'/
means ‘search something a number of times’. Its root becomes ‘&-A-r/flg/. If Amharic
noun is repeated and connected by vowel ‘a’. This tells us something is big in number.
E.g. ®mAPmA/'PPRAAPTARA'/'qTeLaqTel’ means ‘a number of leaves’. Its root will
be #-1-A/qTL/. Thus, to remove such infixes, we enforce conditional rules.

3.7 REMOVAL OF PREFIXES IF ANY

We also identified 30 prefix lists representing Amharic morphological clues. Sample
prefix lists are found in appendix.

3.8 REMOVAL OF VOWELS AND THEN WE GET STEM OR ROOT FORM

At the end of the stemming process, we transform the Amharic consonant-vowel
form to a root form that only contains Amharic consonants. It is shown in the ex-
ample above section 3.6 (®-A-/flg/, #-7-A/qTl/). Our proposed stemmer is light
weight stemmer as it considers affix removal to get the stem or root of Ambharic
word without considering any additional dictionary. The algorithm matches all pos-
sible affixes (suffixes, infixes and/or prefixes). And the process starts from longest
match and then shorter match. For example, to stem the word 0.J3-F®7, the longest
match suffix is first searched in the pre-fix list and removed from the word. The
longest suffix is -AFA®7 in 0JF@3. However, both -AFA®7 and -@7% are in
the suffix list. Thus, to find the stem of M.J-*F@%, the suffix @7 is not removed
first rather the longest match suffix -A¥FA®@-7 is removed first. Specifically, for the

T T I S Y

a

Under review as a conference paper at ICLR 2020

proposed Amharic light stemmer, the stated steps are implemented in algorithm

Algorithm 1: Light Stemmer Algorithm of Amharic Text

Input: wordorgina: input word

Output: word stem: output stemmed word

sufix« load suffix lists

prefix< load prefix lists
word_CV_form«—convert_to_CV(wordoriginat)

try: if '07&4' in word CV form and len(word CV form)>2: then
| word_CV_form«word_CV_form.replace('67&4','04")

if '"PAA' in word_CV_form and len(word_CV_form)>2: then

| word_CV_form«word_CV_form.replace('“BAhA','ThA")

if 'WAN' in word_CV_form and "#'= =word_CV_form[len(word)-1] and len(word)>2: then
try: word_CV_form«word_CV_form.replace('xAd','n")
word_CV_form«word_CV_form[:len(word CV_form)-1] except: pass

if '0'== word CV form[0] and "A'= = word_CV_form[2] and len(word_CV_form)>2: then
| word_CV_ form<—word CV_form[1:]
if '0AAA' in word_CV_form and len(word_CV_form)>2: then
L word_CV_form<—word_CV_form.replace('bf&\h',‘bh') except: pass
if len(word CV form)>3: then
word_stem, suffix < re.findall(suffix, word_CV_Form)[0]
try: word_stem < re.findall(prefix, word_CV_Form)[0l[1] except: pass
if len(word CV form)<3: then
| word_stem«word_CV_Form

word_stem<—remove_vowel(word_stem)
Return word_stem

Description: The algorithm in [1| takes preprocessed Amharic word which is not in the
stop wordlist. In lines 1 and 2, the manually compiled suffix and prefix lists are loaded
respectively. In line 3, the input word is converted into consonant -vowel(CV) form.
From line 4 to line 13, the input word is normalized if it has change of consonants
due to vowels. In line 14, if the input word length is greater than 3, then in line 15,
the input word is tested whether it contains the one or more of suffixes in the suffix
list. If it contains, the suffix is recursively removed from largest length to smallest
length. Following this action, in line 16, the outputed word from the previous step is
tested if it contains one or more prefixes from the prefix list. If it contains, the prefix
is removed recursively from largest length to smallest length prefix. In lines (17-18),
the outputed word from previous step is tested whether its length is not less than
3. Finally, in line 19, the output word is converted to consonant form by removing
vowels.

3.9 SENTIMENT SCORE CALCULATION

The sentiment score of each stemmed word has a match with either of the Ambharic
Sentiment lexicons (Manual, SOCAL, SWN), then the sentiment score is added for each
Ambharic news comment. Finally, the score is inverted if the comment contains any
negation clue. As our approach to sentiment score calculation is the simplest case,
intensifier or negation scope is not considered. Finally, the sentiment class of the
comment is decided based on the value of the computed sentiment score. If the score
is greater than zero, then the sentiment of the comment is positive. If the score is
less than zero, the sentiment of the comment is negative. Otherwise, the sentiment
of the comment is unclassified or neutral or mixed. Consider the i Amharic ,a,
news comment C,; in Amharic News Comments da has preprocessed and finally, the
comment is tokenized into lists. The Amharic Sentiment Lexicon is denoted by s, .
As part of preprocessing, we normalized not only all Amharic words in the Ambharic
News Comments but handling entries of Amharic Sentiment Lexicon by replacing varied
alphabets of the same sound with identical symbols. Moreover, a stemmer is applied
after negation identification is completed. As Ambharic is morphologically rich, light
stemmer is used to reduce the mismatch of Amharic words during string comparison

Under review as a conference paper at ICLR 2020

operation. Thus, the effect of light stemmer on the performance of Amharic Sentiment
classification is investigated shortly.

4 EVALUATION OF THE STEMMER

In this section, we present the discussion related to the evaluation of the developed
stemmer. The evaluation is made in two ways: including stemmers’ performance
metrics (e.g. stemmer strength and index compression factor) and present whether the
proposed stemmer improves performance of Amharic sentiment classification.

4.1 STEMMER STRENGTH

This tells us the average size of the group of words converted to a par-ticular term
regardless of whether they are correct or not. The stemmer strength is measured by
computing the number of words per conflation class. Mean of Words per Conflation
class (MWC) = N /S, where N is number of words before stemming and S is number
of words after stemming. The higher the value of the MWC, the stemmer is heavy (or
strong) stemmer where it has errors due to over stemming. On the other hand, the
smaller the value of the MWC indicates that the stemmer is light (or weak) stemmer
where there are errors due to under stemming. The value of MWC of our stemmer is
presented in Table [2| on small and large corpus.

4.2 INDEX COMPRESSION FACTOR(ICF)

This is another way of evaluating stemmers’ conflation rate. This specifies the extent
to which the stemming operation reduces the input word collections to manageable
size of index terms for efficient performance of information retrieval. In other words,
the smaller the size of the index means that it requires smaller capacity of storage
space necessary to store index terms. The value of this factor tells to what extent the
collection of words are compressed or reduced by the stemmer. It is calculated as:

ICF = (N - S)/N (1)

where N is number of words before stemming and S is number of words after stemming.
Table [2| depicts the values of ICF of our stemmer on small and large corpus. This
result indicates the extent of compression of index terms for IR applications. Table
The values of performance metrics of stemmers (Ours and HornMorpho)

Table 2: The values of performance metrics of stemmers (Ours and HornMorpho)
Word Size Metrics Our Stemmer HornMorpho
No roots 3574 2138
13968 (LARGE) MWC* 3.91 6.53
ICF* 0.744 0.846
No roots 35 30
248 (SMALL) MWC* 7.09 8.27
ICF* 0.86 0.88

[ﬂDiscussion:Table presents the performance metrics result of our stemmer compared
to performance of hornmorpho on small and large corpus. The result is depicted
in terms of parameters including the number of roots generated mean of words per
conflation class and in-dex compression factor. Based on the results of stemmers,
the strength of our stemmer is weaker (or lighter) than Hornmorpho by nearly a
factor of 0.5. That means, hornmorpho removes more affix related strings which
could contain semantic information as it removes affixes to get root from input word.
On the contrary, our stemmer removes fewer characters from input word to get its
corresponding root/stem. For text classification (e.g. sentiment classification), our
stemmer might be better than Hornmorpho. This is one of the factors we need to
evaluate our stemmer’s performance on sentiment classification. The index compression
factor of our stemmer is almost close to hornmorpho. This indicates that our stemmer
is compressing index terms to considerable level that could save storage space to use
it for Information retrieval applications.

"*MWC stands for Mean of Words per Conflation class, and *ICF stands Index compression factor

Under review as a conference paper at ICLR 2020

4.3 STEMMING ERRORS

In general, there are two major sources of errors. These include over-stemming where
the stemmer removes too many of a term. This tends to make the recall of IR to be
high. In other words, the different meanings of terms are diluted into stems. More
affixes that contain more semantic information are cleared from the root. On the other
hand, under- stemming where the stemmer removes too few of a term. This causes
the recall lower. That means a single concept is distributed over a number of stems.
In addition, the stemmer could also remove affixes which were part of the root. This
leads to an error refers to mis-stemming. Both error types lead to poor performance
of the stemmer in information retrieval applications. To this end, two or more words
having actually the same stem could have different root as sub-strings of the affix is
not stripped of from the root (=under stemming). A group of words having different
stems could have the same root by the stemmer as the stemmer removes some affixes
that are part of the roots(=over stemming). We can roughly see the number of roots
generated by our stemmer compared to Hornmorpho in Table [2| for small and large
corpora. On large corpus, our stemmer generates more roots/stems than Hornmorpho
by a factor of 0.25. For small corpus, our stemmer generates almost the same size of
roots to the size of roots by Hornmorpho. Thus, our stemmer leaves some space for
holding semantic information in the generated roots than roots of Hornmorpho.

4.4 ON sPOT ERRORS ANALYSIS

Yet it is difficult to get a perfect stemmer, there a number of errors in our stemmer
based on on-spot analysis. For the sake of simplicity in analysis and interpreting the
nature of errors generated in small corpus, let us categorize the errors generated into
common stemming error types: under-stemming, over-stemming, unchanged, spelling
errors and other mis-stemming errors presented in Table

Table 3: The categories of errors generated by stemmers (Ours and HornMorpho) on small corpus(
300 words)

Error Types Number of errors (in %)
Our Stemmer HornMorpho
Under-Stemming 9%(28) 20%(60)
Over-Stemming 0%(1) 4%(11)
Spelling errors 0% 0%
Unchanged 3%(15) 1%(3)
Others 8%(24) 6%(17)
Accuracy 77%(231) 70%(208)

Discussion: For small corpus of 300 words, stemmer errors related to under-stemming,
over-stemming, spelling errors, unchanged (input word is unchanged), accuracy and
other error reports are presented in Table (3} The errors related to under-stemming and
over-stemming of hornmorpho is higher than our stemmer. The word #%n9°/’kidus’
means ‘saint’ /is stemmed #& k-0 and #&n by hornmorpho and our stemmer. But
our stemmer is correctly generating the root word #£d. Hornmorpho generates stem
¢£& k0 which is not in root form and its stem size greater than the root size. This
might be error related to under-stemming. On the other hand, our stemmer leaves
greater number of input words than hornmorpho. Similarly, the numbers of input
words without root are greater in our stemmer. However, the accuracy (77%) of
our stemmer is greater than the accuracy of hornmorpho(70%). Our stemmer has got
errors on removing affixes, mainly single letter suffix, prefix or detecting and removing
reduplication is quite problematic to the accuracy of our stemmer. For example, the
word 040 has prefix 0/b/ and has roots #& k0 and N1¥&n by horn-morph and
our stemmer respectively. To address this problem, it requires disambiguation model
to recognize whether a single letter prefix or suffix is the right affix that should be
removed from the root. Some-times, reduplication strings are part of root word. This
also requires some heuristic to correctly identify the right infix that should be re-moved
from the root.

Under review as a conference paper at ICLR 2020

4.5 AMHARIC SENTIMENT CLASSIFICATION

Prior to sentiment score calculation of Amharic facebook comments, we perform basic
text preprocessing operations. The effect of stemming and negation detection technique
on Ambharic text is investigated to increase the accuracy of lexicon based Ambharic
sentiment classification. The performance of our stemmer is compared with performance
of HornMorpho on Ambharic sentiment classification as it is shown in Table

Table 4: The Accuracy (in percent) of Lexicons for Sentiment Classification)

. . . Accuracies (%
Ambaric Senti.Lexicons ccuracies (%)

NoStem Our Stemmer HornMorpho

Manual +SOCAL + SWN 53.7 86.2 67.9

Discussions:The effect of our stemmer on the performance of Amharic Sentiment Classi-
fication is evaluated in terms whether the accuracy of classifying sentiment of Amharic
facebook news comments is increased or not. Table [4] presents the results of sentiment
classification using our stemmer and HornMorpho. The result reveals the effect of
stemming operations on Amharic texts improving the performance of Amharic senti-
ment classification. The accuracy of Amharic sentiment classification increases from
53.7% to 86.2% by our stemmer and 53.7% to 67.9% by hornmorpho. In conclusion,
the results of our stemmer and Hornmorph shows that applying stemmer is necessary
for efficient Amharic sentiment classification revealing that our stemmer preserves sen-
timent information than root stemmers (Alemayehu & Willett, [2002; Gasser, 2017).
Besides, the performance of Amharic Sentiment classification is improved by employing
stemmer.

5 CONCLUSIONS AND RECOMMENDATIONS

This work presents design of Amharic light stemmer that removes affixes for hoping
to efficiently improve performance of Amharic Sentiment Classification by preserving
semantic information. Few of the contributions of this work are summarized as follows:

* The work reveals that Amharic stemmer improves performance of sentiment
classification compared to SOTA(.e. compared to hornmorpho).

* As Ambharic alphabets are in the unicode, rather than transliterating into romans
using SERA in (Yacob) [1997), we developed custom transliteration of Amharic
texts into CV form using Amharic Alphabets

* The approach developed is generic enough that it can be adapted to develop
stemmer to other resource limited languages.

* Apart from sentiment classification, our stemmer can also be used to other tasks
of natural language processing including information extraction, multilingual
semantic lexicons, question and answering, just to name a few.

* Our stemmer is light in the sense that it is efficient for IR applications in terms
of processing time to generate root word for a particular Amharic input word
with considerable accuracy.

* Related resources including the code will be accessible online for research
communities.

Yet, the developed Ambharic light stemmer may lack accuracy of correctly stemming
Ambharic input words. One of the reasons is that the affix list is not comprehensive
enough to cover all the variant word forms of the same root. The other thing is that
the approach we used is similar to the approach used in look-up table that lacks context
information for the affixes specifically prefixes and suffixes of length one might be
ambiguous with part of root consonant character. So to handle this, hybrid approach
or corpus based methods should be incorporated.

REFERENCES

Nega Alemayehu and Peter Willett. Stemming of amharic words for information
retrieval. Literary and Linguistic computing, 17(1):1--17, 2002.

Under review as a conference paper at ICLR 2020

Mubashir Ali, Shehzad Khalid, and Muhammad Haseeb Aslam. Pattern based com-
prehensive urdu stemmer and short text classification. IEEE Access, 6:7374--7389,
2017.

Atelach Alemu Argaw and Lars Asker. An amharic stemmer: Reducing words to their
citation forms. In Proceedings of the 2007 workshop on computational approaches
to semitic languages: Common issues and resources, pp. 104--110. Association for
Computational Linguistics, 2007.

Genet Mezemir Fikremariam. Automatic stemming for amharic text- an experiment
using successor variety approach. Unpublished Masters Thesis and Department of
Information Science and Addis Ababa University and Addis Ababa, 2009.

The Ge'ez Frontier Foundation. Lexical data repository of geez data.
https://github.com/geezorg/data, 2017.

Michael Gasser. Horn morpho. http://www.cs.indiana.edu/ gasser/HLTD11/, 2017.

S. Gebremeskel. Sentiment mining model for opinionated amharic texts. Unpublished
Masters Thesis and Department of Computer Science and Addis Ababa University
and Addis Ababa, 2010.

Anjali Ganesh Jivani et al. A comparative study of stemming algorithms. Int. J. Comp.
Tech. Appl, 2(6):1930--1938, 2011.

Girma Neshir Alemneh, Andreas Rauber, and Solomon Atnafu. Dictionary Based
Ambharic Sentiment Lexicon Generation, pp. 311--326. 08 2019. ISBN 978-3-030-
26629-5. doi: 10.1007/978-3-030-26630-1_27.

Daniel Yacob. Localize or be localized.

Daniel Yacob. The system for ethiopic representation in ascii—1997 standard. Webpage:
http://www. abyssiniacybergateway. net/fidel/sera-97. html, 1997.

Baye Yimam. (PA“ICF-aPN@)yiamarlna sdwasdw. Educational Materials Production
and Distribution Enterprise(EMPDE), 2000.

6 APPENDIX

Ambharic Affixes compiled in this research.

1. Suffix lists : ‘AOAART | A@-A.@ | ATRO-AA | ATAT | ATATVA | ATATAO | AAAVA. |
AORT | ANRU | AART | AATUA | AAAART | MATADN | NATA® | TR0 | ANRT |
ANRT | AMRTOA | ATURT | ATVA | | ATUAT | @ AT TTh | 02T 7 | ATRO | 02T 57 |
O 7T b | ROTA | AT 0T | AO-RT | RAATRTS® | RTATA | RTATAT | KR | Rho-9 |
AYAO | Fh@-A | VRTT | ATVAT | AR | R0 | AT b | b The | TAO- | TR | Ak | AT |
NAP | Nht | DA | BT | AT | ATV | AT | AT7 | ATo | @A77 | @A | Ad-A,
| AT 7R | A@-A | AT | AT | AT b | @27 | BT A | Tha7 | A | AT7 | A | R9° | Tio- |
N9 | R | +9° | @-h | @-9° | @7 | 79° | T | AT | At | AF | b | b |0 T A | T | R | AT
k7|7 |th|@”

Converted to SERA : 'iI12IalLlaX|AWiW | AclaWAL |IacAt|IacAchU |lacAclaW | ALI-
ahU|AWOc|

ALIah|ALIaX |ALchU|ALALIac | BAclaWs|BAclaW|AclaWn | ALIac|ALIan |
ALAchU|AchUn|AchU| | AchUt| WOcnnA |[WOcn | AclaW | WOcUn |WOcU |

[aWnA |OcUn|OWOc |IaNAnIatM | laNAnA | [aNA-nlat | IaNAn | [aNAWM |

[aNAW | NAWA | Blatn | AchUM | OWA |IacW |IacU | EcU | nlaW | nlat |

ALU|Acn|kUM |kUt|kIaW |Iacn|IacM |Iach |IacX |Iacn |lacW|YUXn |
YUX|IaWi|OcnnA | AWi |Blat| Oc|OcU|WOn | [aNA | NAWn | NAW |

Ocn|AL|IaM | XW |kM |[aW |tM|WO |WM |Wn |nM | Xn | Ac| Ut|it|
kU|E|h|X|U|X|k|Ia|Iac|Un|n|M|nA|W'

Under review as a conference paper at ICLR 2020

2. Prefix lists: ‘DARI°AL | LRI AT |07 K| LATH| MR A|NATR|ORA |
AR |9°AN0| 02K | 6AN|OAT |0RT|0AL | LAA |DAT |AAT|DAL|N AA |
CAN| LR|AR|NR|A7|07|0A|2|F|h|" Converted to SERA: 'sLlaMAY]|Yla-
MAt|I2ndla| YIatla|BIaMA |
Blatla|I2IaL |sLIa|Mlas|I12YIa|I2]as|I2Iat|I2]an | [2IaY
| YAL |sAt|sAn|sAY|sAL|YAs|YIa|Lla|kla|In|I2n|
leeL|Y|t|a|Tl'

10

	Introduction
	Related Works
	Proposed Amharic Stemmer Framework
	Amharic Corpus
	Preprocessing
	Convert Amharic word to Consonant-Vowel form
	Handling Irregularities of Amharic Writing dialects into more Formal text form
	Removal of Suffixes if any
	Removal of Infixes if any
	Removal of Prefixes if any
	Removal of Vowels and then we get stem or root form
	Sentiment Score Calculation

	Evaluation of the stemmer
	Stemmer Strength
	Index compression factor(ICF)
	Stemming Errors
	On spot Errors Analysis
	Amharic Sentiment Classification

	Conclusions and Recommendations
	Appendix

