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ABSTRACT

In this paper, we present a new deep learning architecture for addressing the prob-
lem of supervised learning with sparse and irregularly sampled multivariate time
series. The architecture is based on the use of a semi-parametric interpolation
network followed by the application of a prediction network. The interpolation
network allows for information to be shared across multiple dimensions of a mul-
tivariate time series during the interpolation stage, while any standard deep learn-
ing model can be used for the prediction network. This work is motivated by
the analysis of physiological time series data in electronic health records, which
are sparse, irregularly sampled, and multivariate. We investigate the performance
of this architecture on both classification and regression tasks, showing that our
approach outperforms a range of baseline and recently proposed models.1

1 INTRODUCTION

Over the last several years, there has been significant progress in developing specialized models
and architectures that can accommodate sparse and irregularly sampled time series as input (Marlin
et al., 2012; Li & Marlin, 2015; 2016; Lipton et al., 2016; Futoma et al., 2017; Che et al., 2018a).
An irregularly sampled time series is a sequence of samples with irregular intervals between their
observation times. Irregularly sampled data are considered to be sparse when the intervals between
successive observations are often large. Of particular interest in the supervised learning setting are
methods that perform end-to-end learning directly using multivariate sparse and irregularly sampled
time series as input without the need for a separate interpolation or imputation step.

In this work, we present a new model architecture for supervised learning with multivariate sparse
and irregularly sampled data: Interpolation-Prediction Networks. The architecture is based on the
use of several semi-parametric interpolation layers organized into an interpolation network, followed
by the application of a prediction network that can leverage any standard deep learning model. In
this work, we use GRU networks (Chung et al., 2014) as the prediction network.

The interpolation network allows for information contained in each input time series to contribute to
the interpolation of all other time series in the model. The parameters of the interpolation and pre-
diction networks are learned end-to-end via a composite objective function consisting of supervised
and unsupervised components. The interpolation network serves the same purpose as the multivari-
ate Gaussian process used in the work of Futoma et al. (2017), but remove the restrictions associated
with the need for a positive definite covariance matrix.

Our approach also allows us to compute an explicit multi-timescale representation of the input time
series, which we use to isolate information about transients (short duration events) from broader

1Our implementation is available at : https://github.com/mlds-lab/interp-net
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trends. Similar to the work of Lipton et al. (2016) and Che et al. (2018a), our architecture also ex-
plicitly leverages a separate information channel related to patterns of observation times. However,
our representation uses a semi-parametric intensity function representation of this information that
is more closely related to the work of Lasko (2014) on modeling medical event point processes.

Our architecture thus produces three output time series for each input time series: a smooth interpo-
lation modeling broad trends in the input, a short time-scale interpolation modeling transients, and
an intensity function modeling local observation frequencies.

This work is motivated by problems in the analysis of electronic health records (EHRs) (Marlin et al.,
2012; Lipton et al., 2016; Futoma et al., 2017; Che et al., 2018a). It remains rare for hospital systems
to capture dense physiological data streams. Instead, it is common for the physiological time series
data in electronic health records to be both sparse and irregularly sampled. The additional issue of
the lack of alignment in the observation times across physiological variables is also very common.

We evaluate the proposed architecture on two datasets for both classification and regression tasks.
Our approach outperforms a variety of simple baseline models as well as the basic and advanced
GRU models introduced by Che et al. (2018a) across several metrics. We also compare our model
with to the Gaussian process adapter (Li & Marlin, 2016) and multi-task Gaussian process RNN
classifier (Futoma et al., 2017). Further, we perform full ablation testing of the information channels
our architecture can produce to assess their impact on classification and regression performance.

2 RELATED WORK

The problem of interest in this work is learning supervised machine learning models from sparse
and irregularly sampled multivariate time series. As described in the introduction, a sparse and
irregularly sampled time series is a sequence of samples with large and irregular intervals between
their observation times.

Such data commonly occur in electronic health records, where they can represent a significant prob-
lem for both supervised and unsupervised learning methods (Yadav et al., 2018). Sparse and irregu-
larly sampled time series data also occur in a range of other areas with similarly complex observation
processes including climate science (Schulz & Stattegger, 1997), ecology (Clark & Bjørnstad, 2004),
biology (Ruf, 1999), and astronomy (Scargle, 1982).

A closely related (but distinct) problem is performing supervised learning in the presence of missing
data (Batista & Monard, 2003). The primary difference is that the missing data problem is generally
defined with respect to a fixed-dimensional feature space (Little & Rubin, 2014). In the irregularly
sampled time series problem, observations typically occur in continuous time and there may be no
notion of a “normal” or “expected” sampling frequency for some domains.

Methods for dealing with missing data in supervised learning include the pre-application of imputa-
tion methods (Sterne et al., 2009), and learning joint models of features and labels (Williams et al.,
2005). Joint models can either be learned generatively to optimize the joint likelihood of features
and labels, or discriminately to optimize the conditional likelihood of the labels. The problem of
irregular sampling can be converted to a missing data problem by discretizing the time axis into
non-overlapping intervals. Intervals with no observations are then said to contain missing values.

This is the approach taken to deal with irregular sampling by Marlin et al. (2012) as well as Lipton
et al. (2016). This approach forces a choice of discretization interval length. When the intervals are
long, there will be less missing data, but there can also be multiple observations in the same interval,
which must be accounted for using ad-hoc methods. When the intervals are shorter, most intervals
will contain at most one value, but many intervals may be empty. Learning is generally harder as the
amount of missing data increases, so choosing a discretization interval length must be dealt with as
a hyper-parameter of such a method.

One important feature of missing data problems is the potential for the sequence of observation
times to itself be informative (Little & Rubin, 2014). Since the set of missing data indicators is
always observed, this information is typically easy to condition on. This technique has been used
successfully to improve models in the domain of recommender systems (Salakhutdinov et al., 2007).
It was also used by Lipton et al. (2016) to improve performance of their GRU model.
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The alternative to pre-discretizing irregularly sampled time series to convert the problem of irregular
sampling into the problem of missing data is to construct models with the ability to directly use
an irregularly sampled time series as input. The machine learning and statistics literature include
several models with this ability. In the probabilistic setting, Gaussian process models have the ability
to represent continuous time data via the use of mean and covariance functions (Rasmussen, 2006).
These models have non-probabilistic analogues that are similarly defined in terms of kernels.

For example, Lu et al. (2008) present a kernel-based method that can be used to produce a similarity
function between two irregularly sampled time series. Li & Marlin (2015) subsequently provided a
generalization of this approach to the case of kernels between Gaussian process models. Li & Marlin
(2016) showed how the re-parameterization trick (Kingma et al., 2015) could be used to extend these
ideas to enable end-to-end training of a deep neural network model (feed-forward, convolutional, or
recurrent) stacked on top of a Gaussian process layer. While the basic model of Li & Marlin (2016)
was only applied to univariate time series, in follow-up work the model was extended to multivariate
time series using a multi-output Gaussian process regression model (Futoma et al., 2017). However,
modeling multivariate time series within this framework is quite challenging due to the constraints
on the covariance function used in the GP layer. Futoma et al. (2017) deal with this problem using a
sum of separable kernel functions (Bonilla et al., 2008), which limit the expressiveness of the model.

An important property of the above models is that they allow for incorporating all of the information
from all available time points into a global interpolation model. Variants differ in terms of whether
they only leverage the posterior mean when the final supervised problem is solved, or whether the
whole posterior is used. A separate line of work has looked at the use of more local interpolation
methods while still operating directly over continuous time inputs.

For example, Che et al. (2018a) presented several methods based on gated recurrent unit (GRU)
networks (Chung et al., 2014) combined with simple imputation methods including mean imputation
and forward filling with past values. Che et al. (2018a) additionally considered an approach that
takes as input a sequence consisting of both the observed values and the timestamps at which those
values were observed. The previously observed input value is decayed over time toward the overall
mean. In another variant the hidden states are similarly decayed toward zero. Yoon et al. (2017)
presented another similar approach based on multi-directional RNN which operate across streams
in addition to within streams. However, these models are limited to using global information about
the structure of the time series via its empirical mean value, and current or past information about
observed values. The global structure of the time series is not directly taken into account.

Che et al. (2018b) focus on a similar problem of modeling multi-rate multivariate time series data.
This is similar to the problem of interest in that the observations across time series can be unaligned.
The difference is that the observations in each time series are uniformly spaced, which is a simpler
case. In the case of missing data, they use forward or linear interpolation, which again does not
capture the global structure of time series. Similarly, Binkowski et al. (2018) presented an autore-
gressive framework for regression tasks with irregularly sampled time series data. It is not clear how
it can be extended for classification.

The model proposed in this work is similar to that of Li & Marlin (2016) and Futoma et al. (2017)
in the sense that it consists of global interpolation layers. The primary difference is that these prior
approaches used Gaussian process representations within the interpolation layers. The resulting
computations can be expensive and, as noted, the design of covariance functions in the multivariate
case can be challenging. By contrast, our proposed model uses semi-parametric, deterministic,
feed-forward interpolation layers. These layers do not encode uncertainty, but they do allow for
very flexible interpolation both within and across layers.

Also similar to Li & Marlin (2016) and Futoma et al. (2017), the interpolation layers in our architec-
ture produce regularly sampled interpolants that can serve as inputs for arbitrary, unmodified, deep
classification and regression networks. This is in contrast to the approach of Che et al. (2018a),
where a recurrent network architecture was directly modified, reducing the modularity of the ap-
proach. Finally, similar to Lipton et al. (2016), our model includes information about the times at
which observations occur. However, instead of pre-discretizing the inputs and viewing this infor-
mation in terms of a binary observation mask or set of missing data indicators, we directly model
the sequence of observation events as a point process in continuous time using a semi-parametric
intensity function (Lasko, 2014).
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Figure 1: Architecture of the proposed model

3 MODEL FRAMEWORK

In this section, we present the proposed modeling framework. We begin by presenting notation,
followed by the model architecture and learning criteria.

3.1 NOTATION

We let D = {(sn, yn)|n = 1, ..., N} represent a data set containing N data cases. An individual
data case consists of a single target value yn (discrete for classification and real-valued in the case
of regression), as well as a D-dimensional, sparse and irregularly sampled multivariate time series
sn. Different dimensions d of the multivariate time series can have observations at different times,
as well as different total numbers of observations Ldn. Thus, we represent time series d for data
case n as a tuple sdn = (tdn,xdn) where tdn = [t1dn, ..., tLdndn] is the list of time points at which
observations are defined and xdn = [x1dn, ..., xLdndn] is the corresponding list of observed values.

3.2 MODEL ARCHITECTURE

The overall model architecture consists of two main components: an interpolation network and a
prediction network. The interpolation network interpolates the multivariate, sparse, and irregularly
sampled input time series against a set of reference time points r = [r1, ..., rT ]. We assume that all
of the time series are defined within a common time interval (for example, the first 24 or 48 hours
after admission for MIMIC-III dataset). The T reference time points rt are chosen to be evenly
spaced within that interval. In this work, we propose a two-layer interpolation network with each
layer performing a different type of interpolation.

The second component, the prediction network, takes the output of the interpolation network as its
input and produces a prediction ŷn for the target variable. The prediction network can consist of
any standard supervised neural network architecture (fully-connected feedforward, convolutional,
recurrent, etc). Thus, the architecture is fully modular with respect to the use of different prediction
networks. In order to train the interpolation network, the architecture also includes an auto-encoding
component to provide an unsupervised learning signal in addition to the supervised learning signal
from the prediction network. Figure 1 shows the architecture of the proposed model. We describe
the components of the model in detail below.

3.2.1 INTERPOLATION NETWORK

We begin by describing the interpolation network. The goal of the interpolation network is to provide
a collection of interpolants of each of the D dimensions of an input multivariate time series defined
at the T reference time points r = [r1, ..., rT ]. In this work, we use a total of C = 3 outputs for
each of theD input time series. The three outputs (discussed in detail below) capture smooth trends,
transients, and observation intensity information. We define fθ(r, sn) to be the function computing
the output ŝn of the interpolation network. The output ŝn is a fixed-sized array with dimensions
(DC)× T for all inputs sn.

The first layer in the interpolation network separately performs three semi-parametric univariate
transformations for each of theD time series. Each transformation is based on a radial basis function
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(RBF) network to accommodate continuous time observations. The transformations are a low-pass
(or smooth) interpolation σd, a high-pass (or non-smooth) interpolation γd and an intensity function
λd. These transformations are computed at reference time point rk for each data case and each
input time series d as shown in Equations 1, 2, 3 and 4.2 The smooth interpolation σd uses a
squared exponential kernel with parameter αd, while the non-smooth interpolation γd uses a squared
exponential kernel with parameter καd for κ > 1.

Z(r, t, α) =
∑
t∈t

w(r, t, α) , w(r, t, α) = exp(−α(r − t)2) (1)

λkd = hλθ (rk, td,xd) = Z(rk, td, αd) (2)

σkd = hσθ (rk, td,xd) =
1

Z(rk, td, αd)

Ldn∑
j=1

w(rk, tjd, αd) xjd (3)

γkd = hγθ (rk, td,xd) =
1

Z(rk, td, καd)

Ldn∑
j=1

w(rk, tjd, καd) xjd (4)

The second interpolation layer merges information across all D time series at each reference time
point by taking into account learnable correlations ρdd′ across all time series. This results in a cross-
dimension interpolation χd for each input dimension d. We further define a transient component τd
for each input dimension d as the difference between the high-pass (or non-smooth) interpolation
γd from the first layer and the smooth cross-dimension interpolation χd, as shown in Equation 5.

χkd = hχθ (rk, s) =

∑
d′ ρdd′ λkd′ σkd′∑

d′ λkd′
, τkd = hτθ (rk, s) = γkd − χkd (5)

In the experiments presented in the next section, we use a total of three interpolation network out-
puts per dimension d as the input to the prediction network. We use the smooth, cross-channel
interpolants χd to capture smooth trends, the transient components τd to capture transients, and the
intensity functions λd to capture information about where observations occur in time.

3.2.2 PREDICTION NETWORK

Following the application of the interpolation network, all D dimensions of the input multivariate
time series have been re-represented in terms of C outputs defined on the regularly spaced set of
reference time points r1, ..., rT (in our experiments, we use C = 3 as described above). Again,
we refer to the complete set of interpolation network outputs as ŝn = fθ(r, sn), which can be
represented as a matrix of size (DC)× T .

The prediction network must take ŝn as input and output a prediction ŷn = gφ(ŝn) = gφ(fθ(r, sn))
of the target value yn for data case n. There are many possible choices for this component of the
model. For example, the matrix ŝn can be converted into a single long vector and provided as input
to a standard multi-layer feedforward network. A temporal convolutional model or a recurrent model
like a GRU or LSTM can instead be applied to time slices of the matrix ŝn. In this work, we conduct
experiments leveraging a GRU network as the prediction network.

3.2.3 LEARNING

To learn the model parameters, we use a composite objective function consisting of a supervised
component and an unsupervised component. This is due to the fact that the supervised compo-
nent alone is insufficient to learn reasonable parameters for the interpolation network parameters
given the amount of available training data. The unsupervised component used corresponds to an
autoencoder-like loss function. However, the semi-parametric RBF interpolation layers have the
ability to exactly fit the input points by setting the RBF kernel parameters to very large values.

2We drop the data case index n for brevity in the equations below.
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To avoid this solution and force the interpolation layers to learn to properly interpolate the input
data, it is necessary to hold out some observed data points xjdn during learning and then to compute
the reconstruction loss only for these data points. This is a well-known problem with high-capacity
autoencoders, and past work has used similar strategies to avoid the problem of trivially memorizing
the input data without learning useful structure.

To implement the autoencoder component of the loss, we introduce a set of masking variables mjdn

for each data point (tjdn, xjdn). If mjdn = 1, then we remove the data point (tjdn, xjdn) as an
input to the interpolation network, and include the predicted value of this time point when assessing
the autoencoder loss. We use the shorthand notation mn � sn to represent the subset of values of
sn that are masked out, and (1 − mn) � sn to represent the subset of values of sn that are not
masked out. The value x̂jdn that we predict for a masked input at time point tjdn is the value of the
smooth cross-channel interpolant at that time point, calculated based on the un-masked input values:
x̂jdn = hχθ (tjdn, (1−mn)� sn).

We can now define the learning objective for the proposed framework. We let `P be the loss for the
prediction network (we use cross-entropy loss for classification and squared error for regression).
We let `I be the interpolation network autoencoder loss (we use standard squared error). We also
include `2 regularizers for both the interpolation and prediction networks parameters. δI , δP , and δR
are hyper-parameters that control the trade-off between the components of the objective function.

θ∗, φ∗ = argmin
θ,φ

N∑
n=1

`P (yn, gφ(fθ(sn)) + δI‖θ‖22 + δP ‖φ‖22 (6)

+ δR

N∑
n=1

D∑
d=1

Ldn∑
j=1

mjdn`I(xjdn, h
χ
θ (tjdn, (1−mn)� sn))

4 EXPERIMENTS AND RESULTS

In this section, we present experiments based on both classification and regression tasks with sparse
and irregularly sampled multivariate time series. In both cases, the input to the prediction network
is a sparse and irregularly sampled time series, and the output is a single scalar representing either
the predicted class or the regression target variable. We test the model framework on two publicly
available real-world datasets: MIMIC-III 3 − a multivariate time series dataset consisting of sparse
and irregularly sampled physiological signals collected at Beth Israel Deaconess Medical Center
from 2001 to 2012 (Johnson et al., 2016), and UWaveGesture 4 − a univariate time series data set
consisting of simple gesture patterns divided into eight categories (Liu et al., 2009). Details of each
dataset can be found in the Appendix A.1. We use the MIMIC-III mortality and length of stay
prediction tasks as example classification and regression tasks with multivariate time series. We
use the UWave gesture classification task for assessing training time and performance relative to
univariate baseline models.

4.1 BASELINE MODELS

We compare our proposed model to a number of baseline approaches including off-the-shelf classi-
fication and regression models learned using basic features, as well as more recent approaches based
on customized neural network models.

4.1.1 NON-NEURAL NETWORK BASELINES

For non-neural network baselines, we evaluate Logistic Regression (Hosmer Jr et al., 2013), Sup-
port Vector Machines (SVM) (Cortes & Vapnik, 1995), Random Forests (RF) (Breiman, 2001) and
AdaBoost (Freund & Schapire, 1997) for the classification task.

For the length of stay prediction task, we apply Linear Regression (Hastie et al., 2001), Support
Vector Regression (SVR), AdaBoost Regression (Drucker, 1997) and Random Forest Regression.

3MIMIC-III is available at https://mimic.physionet.org/
4UWaveGestureLibraryAll is available at http://timeseriesclassification.com.
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Standard instances of all of these models require fixed-size feature representations. We use temporal
discretization with forward filling to create fixed-size representation in case of missing data and use
this representation as feature set for non-neural network baselines.

4.1.2 NEURAL NETWORK MODELS

We compare to several existing deep learning baselines built on GRUs using simple interpolation
or imputation approaches. In addition, we compare to current state-of-the-art models for mortality
prediction including the work of Che et al. (2018a). Their work proposed to handle irregularly
sampled and missing data using recurrent neural networks (RNNs) by introducing temporal decays
in the input and/or hidden layers. We also evaluate the scalable end-to-end Gaussian process adapter
(Li & Marlin, 2016) as well as multi-task Gaussian process RNN classifier (Futoma et al., 2017) for
irregularly sampled univariate and multivariate time series classification respectively. This work is
discussed in detail in Section 2. The complete set of models that we compare to is as follows:

• GP-GRU: End-to-end Gaussian process with GRU as classifier.
• GRU-M: Missing observations replaced with the global mean of the variable across the

training examples.
• GRU-F: Missing values set to last observed measurement within that time series (referred

to as forward filling).
• GRU-S: Missing values replaced with the global mean. Input is concatenated with masking

variable and time interval indicating how long the particular variable is missing.
• GRU-D: In order to capture richer information, decay is introduced in the input as well

as hidden layer of a GRU. Instead of replacing missing values with the last measurement,
missing values are decayed over time towards the empirical mean.

• GRU-HD: A variation of GRU-D where decay in only introduced in the hidden layer.

4.2 RESULTS

In this section, we present the results of the classification and regression experiments, as well as
the results of ablation testing of the internal structure of the interpolation network for the proposed
model. We use the UWaveGesture dataset to assess the training time and classification performance
relative to the baseline models. We use the standard train and test sets (details are given in appendix
A.1). We report the training time taken for convergence along with accuracy on test set.

For MIMIC-III, we create our own dataset (appendix A.1) and report the results of a 5-fold cross
validation experiment in terms of the average area under the ROC curve (AUC score), average area
under the precision-recall curve (AUPRC score), and average cross-entropy loss for the classification
task. For the regression task, we use average median absolute error and average fraction of explained
variation (EV) as metrics. We also report the standard deviation over cross validation folds for all
metrics.

Training and implementation details can be found in appendix A.2. Figure 2 shows the classification
performance on the UWaveGesture dataset. The proposed model and the Gaussian process adapter
(Li & Marlin, 2016) significantly outperform the rest of the baselines. However, the proposed model
achieves similar performance to the Gaussian process adapter, but with a 50x speed up (note the
log scale on the training time axis). On the other hand, the training time of the proposed model is
approximately the same order as other GRU-based models, but it achieves much better accuracy.

Table 1 compares the predictive performance of the mortality and length of stay prediction task on
MIMIC-III. We note that in highly skewed datasets as is the case of MIMIC-III, AUPRC (Davis &
Goadrich, 2006) can give better insights about the classification performance as compared to AUC
score. The proposed model consistently achieves the best average score over all the metrics. We note
that a paired t-test indicates that the proposed model results in statistically significant improvements
over all baseline models (p < 0.01) with respect to all the metrics except median absolute error.
The version of the proposed model used in this experiment includes all three interpolation network
outputs (smooth interpolation, transients, and intensity function).

An ablation study shows that the results on the regression task can be further improved by using only
two outputs (transients, and intensity function), achieving statistically significant improvements over
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Figure 2: Classification performance on the UWaveGesture dataset. Models with almost same per-
formance are shown with the same dot e.g. (GRU-M, GRU-F ) and (GRU-D, GRU-HD).

Table 1: Performance on Mortality (classification) and Length of stay prediction (regression) tasks
on MIMIC-III. Loss: Cross-Entropy Loss, MedAE: Median Absolute Error (in days), EV: Explained
variance

Model Classification Regression

AUC AUPRC Loss MedAE EV score

Log/LinReg 0.772± 0.013 0.303± 0.018 0.240± 0.003 3.528± 0.072 0.043± 0.012
SVM 0.671± 0.005 0.300± 0.011 0.260± 0.002 3.523± 0.071 0.042± 0.011
AdaBoost 0.829± 0.007 0.345± 0.007 0.663± 0.000 4.517± 0.234 0.100± 0.012
RF 0.826± 0.008 0.356± 0.010 0.315± 0.025 3.113± 0.125 0.117± 0.035
GRU-M 0.831± 0.007 0.376± 0.022 0.220± 0.004 3.140± 0.196 0.131± 0.044
GRU-F 0.821± 0.007 0.360± 0.013 0.224± 0.003 3.064± 0.247 0.126± 0.025
GRU-S 0.843± 0.007 0.376± 0.014 0.218± 0.005 2.900± 0.129 0.161± 0.025
GRU-D 0.835± 0.013 0.359± 0.025 0.225± 0.009 2.891± 0.103 0.146± 0.051
GRU-HD 0.845± 0.006 0.390± 0.010 0.215± 0.004 2.893± 0.155 0.158± 0.037
GP-GRU 0.847± 0.007 0.377± 0.017 0.215± 0.004 2.847± 0.079 0.217± 0.020
Proposed 0.853± 0.007 0.418± 0.022 0.210± 0.004 2.862± 0.166 0.245± 0.019

all the baselines. Results for the ablation study are given in Appendix A.3. Finally, we compare the
proposed model with multiple baselines on a previous MIMIC-III benchmark dataset (Harutyunyan
et al., 2017), which uses a reduced number of cohorts as compared to the one used in our experi-
ments. Appendix A.4 shows the results on this benchmark dataset, where our proposed approach
again outperforms prior approaches.

5 DISCUSSION AND CONCLUSIONS

In this paper, we have presented a new framework for dealing with the problem of supervised learn-
ing in the presence of sparse and irregularly sampled time series. The proposed framework is fully
modular. It uses an interpolation network to accommodate the complexity that results from using
sparse and irregularly sampled data as supervised learning inputs, followed by the application of a
prediction network that operates over the regularly spaced and fully observed, multi-channel output
provided by the interpolation network. The proposed approach also addresses some difficulties with
prior approaches including the complexity of the Gaussian process interpolation layers used in (Li &
Marlin, 2016; Futoma et al., 2017), and the lack of modularity in the approach of Che et al. (2018a).
Our framework also introduces novel elements including the use of semi-parametric, feed-forward
interpolation layers, and the decomposition of an irregularly sampled input time series into multi-
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ple distinct information channels. Our results show statistically significant improvements for both
classification and regression tasks over a range of baseline and state-of-the-art methods.
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A APPENDIX

A.1 DATASET DESCRIPTIONS

A.1.1 MIMIC-III DATASET

We evaluate our model framework on the publicly available MIMIC-III dataset (Johnson et al.,
2016). MIMIC-III is a de-identified dataset collected at Beth Israel Deaconess Medical Center
from 2001 to 2012. It consists of approximately 58,000 hospital admission records. This data set
contains sparse and irregularly sampled physiological signals, medications, diagnostic codes, in-
hospital mortality, length of stay and more. We focus on predicting in-hospital mortality and length
of stay using the first 48 hours of data. We extracted 12 standard physiological variables from each of
the 53,211 records obtained after removing hospital admission records with length of stay less than
48 hours. Table 2 shows the features, sampling rates (per hour) and their missingness information
computed using the union of all time stamps that exist in any dimension of the input time series.

Table 2: Features extracted from MIMIC III for our experiments

feature #Missing Sampling Rate

SpO2 31.35% 0.80
HR 23.23% 0.90
RR 59.48% 0.48
SBP 49.76% 0.59
DBP 48.73% 0.60
Temp 83.80% 0.19

feature #Missing Sampling Rate

TGCS 87.94% 0.14
CRR 95.08% 0.06
UO 82.47% 0.20
FiO2 94.82% 0.06
Glucose 91.47% 0.10
pH 96.25% 0.04

Prediction Tasks

In our experiments, each admission record corresponds to one data case (sn, yn). Each data case
n consists of a sparse and irregularly sampled time series sn with D = 12 dimensions. Each
dimension d of sn corresponds to one of the 12 vital sign time series mentioned above. In the
case of classification, yn is a binary indicator where yn = 1 indicates that the patient died at any
point within the hospital stay following the first 48 hours and yn = 0 indicates that the patient
was discharged at any point after the first 48 hours. There are 4310 (8.1%) patients with a yn = 1
mortality label. The complete data set is D = {(sn, yn)|n = 1, ..., N}, and there are N = 53, 211
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data cases. The goal in the classification task is to learn a classification function g of the form
ŷn ← g(sn) where ŷn is a discrete value.

In the case of regression, yn is a real-valued regression target corresponding to the length of stay.
Since the data set includes some very long stay durations, we let yn represent the log of the length
of stay in days for all models. We convert back from the log number of days to the number of
days when reporting results. The complete data set is again D = {(sn, yn)|n = 1, ..., N} with
N = 53, 211 data cases (we again require 48 hours worth of data). The goal in the regression task
is to learn a regression function g of the form ŷn ← g(sn) where ŷn is a continuous value.

A.1.2 UWAVE DATASET

UWave dataset is an univariate time series data consisting of simple gesture patterns divided into
eight categories. The dataset has been split into 3582 train and 896 test instances. Out of the
training data, 30% is used for validation. Each time series contains 945 observations. We follow
the same data preparation method as in Li & Marlin (2016) where we randomly sample 10% of the
observations points from each time series to create a sparse and irregularly sampled data.

A.2 IMPLEMENTATION DETAILS

A.2.1 PROPOSED MODEL

The model is learned using the Adam optimization method in TensorFlow with gradients provided
via automatic differentiation. However, the actual multivariate time series representation used during
learning is based on the union of all time stamps that exist in any dimension of the input time series.
Undefined observations are represented as zeros and a separate missing data mask is used to keep
track of which time series have observations at each time point. Equations 1 to 5 are modified such
that data that are not available are not taken into account at all. This implementation is exactly
equivalent to the computations described, but supports parallel computation across all dimensions
of the time series for a given data case.

Finally, we note that the learning problem can be solved using a doubly stochastic gradient based
on the use of mini batches combined with re-sampling the artificial missing data masks used in the
interpolation loss. In practice, we randomly select 20% of the observed data points to hold out from
every input time series.

For the time series missing entirely, our interpolation network assigns the starting point (time t=0)
value of the time series to the global mean before applying the two-layer interpolation network. In
such cases, the first interpolation layer just outputs the global mean for that channel, but the second
interpolation layer performs a more meaningful interpolation using the learned correlations from
other channels.

A.2.2 BASELINES

The Logistic Regression model is trained with cross entropy loss with regularization strength set to
1. The support vector classifier is used with a RBF kernel and trained to minimize the soft margin
loss. We use the cross entropy loss on the validation set to select the optimal number of estimators
in case of Adaboost and Random Forest. Similar to the classification setting, the optimal number
of estimators for regression task in Adaboost and Random Forest is chosen on the basis of squared
error on validation set.

MIMIC-III DATASET

We evaluate all models using a five-fold cross-validation estimate of generalization performance. In
the classification setting, all the deep learning baselines are trained to minimize the cross entropy
loss while the proposed model uses a composite loss consisting of cross-entropy loss and inter-
polation loss (with δR = 1) as described in section 3.2.3. In the case of the regression task, all
baseline models are trained to minimize squared error and the proposed model is again trained with
a composite loss consisting of squared error and interpolation loss.
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We follow the multi-task Gaussian process implementation given by Futoma et al. (2017) and treat
the number of hidden units and hidden layers as hyper-parameters. For all of the GRU-based models,
we use the already specified parameters (Che et al., 2018a). The models are learned using the Adam
optimization. Early stopping is used on a validation set sub-sampled from the training folds. In the
classification case, the final outputs of the GRU hidden units are used in a logistic layer that predicts
the class. In the regression case, the final outputs of the GRU hidden units are used as input for a
dense hidden layer with 50 units, followed by a linear output layer.

UWAVE DATASET

We independently tune the hyper-parameters of each baseline method. For GRU-based methods,
hidden units are searched over the range {25, 26, · · · , 211}. Learning is done in same way as de-
scribed above. We evaluate all the baseline models on the test set and compare the training time
and accuracy. For the Gaussian process model, we use the squared exponential covariance function.
We use the same number of inducing points for both the Gaussian process and the proposed model.
The Gaussian process model is jointly trained with the GRU using stochastic gradient descent with
Nesterov momentum. We apply early stopping based on the validation set.

A.3 ADDITIONAL EXPERIMENTS

In this section, we address the question of the relative information content of the different outputs
produced by the interpolation network used in the proposed model for MIMIC-III dataset. Recall
that for each of the D = 12 vital sign time series, the interpolation network produces three outputs:
a smooth interpolation output (SI), a non-smooth or transient output (T), and an intensity function
(I). The above results use all three of these outputs.

To assess the impact of each of the interpolation network outputs, we conduct a set of ablation
experiments where we consider using all sub-sets of outputs for both the classification task and for
the regression task.

Table 3 shows the results from five-fold cross validation mortality and length of stay prediction
experiments. When using each output individually, smooth interpolation (SI) provides the best per-
formance in terms of classification. Interestingly, the intensity output is the best single information
source for the regression task and provides at least slightly better mean performance than any of the
baseline methods shown in Table 1. Also interesting is the fact that the transients output performs
significantly worse when used alone than either the smooth interpolation or the intensity outputs in
the classification task.

Table 3: Performance of all subsets of the interpolation network outputs on Mortality (classification)
and Length of stay prediction (regression) tasks. SI: Smooth Interpolation, I: Intensity, T: Transients,
Loss: Cross-Entropy Loss, MedAE: Median Absolute Error, EV: Explained variance

Model Classification Regression

AUC AUPRC Loss MedAE EV score

SI, T, I 0.853± 0.007 0.418± 0.022 0.210± 0.004 2.862± 0.166 0.245± 0.019
SI, I 0.852± 0.005 0.408± 0.017 0.210± 0.004 2.745± 0.062 0.224± 0.010
SI, T 0.820± 0.008 0.355± 0.024 0.226± 0.005 2.911± 0.073 0.182± 0.009

SI 0.816± 0.009 0.354± 0.018 0.226± 0.005 3.035± 0.063 0.183± 0.016
I 0.786± 0.010 0.250± 0.012 0.241± 0.003 2.697± 0.072 0.251± 0.009

I, T 0.755± 0.012 0.236± 0.014 0.272± 0.010 2.738± 0.101 0.290± 0.010
T 0.705± 0.009 0.192± 0.008 0.281± 0.004 2.995± 0.130 0.207± 0.024

When considering combinations of interpolation network components, we can see that the best per-
formance is obtained when all three outputs are used simultaneously in classification tasks. For the
regression task, the intensity output provides better performance in terms of median absolute error
while a combination of intensity and transients output provide better explained variance score. How-
ever, the use of the transients output contributes almost no improvement in the case of the AUC and
cross entropy loss for classification relative to using only smooth interpolation and intensity. Inter-
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estingly, in the classification case, there is a significant boost in performance by combining smooth
interpolation and intensity relative to using either output on its own. In the regression setting, smooth
interpolation appears to carry little information.

A.4 BENCHMARK MIMIC-III DATASET

In this section, we compare the performance of the proposed model on a previous MIMIC-III bench-
mark dataset (Harutyunyan et al., 2017). This dataset only consists of patients with age> 18. Again,
we focus on predicting in-hospital mortality using the first 48 hours of data. This yields training and
test sets of size 17,903 and 3,236 records respectively.

We compare the proposed model to multiple baselines from Harutyunyan et al. (2017). In all the
baselines, the sparse and irregularly sampled time-series data has been discretized into 1-hour inter-
vals. If there are multiple observations in an interval, the mean or last observation is assigned to that
interval, depending on the baseline method. Similarly, if an interval contains no observations, the
mean or forward filling approach is used to assign a value depending on the baseline method. We
compare with a logistic regression model and a standard LSTM network. In the multitask setting,
multiple tasks are predicted jointly. Unlike the standard LSTM network where the output/hidden-
state from the last time step is used for prediction, we provide supervision to the model at each time
step. In this experiment, we use an LSTM as the prediction network in the proposed model to match
the baselines.

Table 4: Classification performance for in-hospital mortality prediction task on benchmark dataset

Model AUC score AUPRC score
Logistic Regression 0.8485 0.4744

LSTM 0.8547 0.4848
LSTM + Deep Supervision 0.8558 0.4928

Multitask LSTM 0.8607 0.4933
Interpolation Network + LSTM 0.8610 0.5370
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