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ABSTRACT

In this paper, we present a neural network based representation for addressing
the open set recognition problem. In this representation instances from the same
class are close to each other while instances from different classes are further
apart, resulting in statistically significant improvement when compared to other
approaches on three datasets from two different domains.

1 INTRODUCTION

To build robust Al systems, Dietterich |Dietterich| (2017) reasons that one of the main challenges is
handling the “unknown unknowns." One idea is to detect model failures (i.e., the system understands
that its model about the world/domain has limitations and may fail). For example, assume you trained
a binary classifier model to discriminate between pictures of cats and dogs. Let’s assume this model
performs well at recognizing images of cats and dogs. What would this model do if it is faced with
a picture of a fox or a caracal? The model being a binary classifier will predict these pictures to
be either a dog or a cat, which is not desirable and can be considered as a failure of the model. In
machine learning, one direction of research for detecting model failure is “open category learning",
where not all categories are known during training, and the system needs to appropriately handle
instances from novel/unknown categories that may appear during testing. Besides “open category
learning", terms such as “open world recognition"|Bendale & Boult|(2015) and “open set recognition”
Scheirer et al.| (2013)); [Bendale & Boult| (2016) have been used in past literatures. In this paper, we
will use the term “open set recognition".

Where does open set recognition appear in real-world problems? Various real-world applications
operate in an open set scenario. For example, Ortiz and Becker Ortiz & Becker (2014) point to the
problem of face recognition. One such use case is automatic labeling of friends in social media
posts, “where the system must determine if the query face exists in the known gallery, and, if so, the
most probable identity." Another domain is in malware classification, where training data usually is
incomplete because of novel malware families/classes that emerge regularly. As a result, malware
classification systems operate in an open set scenario.

In this paper, we propose a neural network based representation and a mechanism that utilizes this
representation for performing open set recognition. Since our primary motivation when developing
this approach was the malware classification domain, we evaluate our work on two malware datasets.
To show the applicability of our approach to other domains, we evaluate our approach on images.

Our contributions include: (1) we propose an approach for learning a representation that facilitates
open set recognition, (2) we propose a loss function that enables us to use the same distance function
both when training and when computing an outlier score, (3) our proposed approaches achieve
statistically significant improvement compared to previous research work on three datasets.

2 RELATED WORK

We can broadly categorize existing open set recognition systems into two types. The first type
provides mechanisms to discriminate known class instances from unknown class instances. These
systems, however, cannot discriminate between the known classes, where there is more than one.
Research works such as|Scheirer et al.| (2013); Bodesheim et al.| (2013} |2015)) fall in this category.
Scheirer et al. Scheirer et al.| (2013)) formalized the concept of open set recognition and proposed a
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1-vs-set binary SVM based approach. Bodesheim et al. Bodesheim et al.|(2013)) propose KNFST for
performing open set recognition for multiple known classes at the same time. The idea of KNFST is
further extended in Bodesheim et al.|(2015) by considering the locality of a sample when calculating
its outlier score.

The second type of open set recognition system provides the ability to discriminate between known
classes in addition to identifying unknown class instances. Research works such asJain et al.|(2014);
Bendale & Boult (2015 2016); Da et al.| (2014); |Ge et al|(2017) fall in this category. PI-SVM Jain
et al.[(2014), for instance, uses a collection of binary SVM classifiers, one for each class, and fits
a Weibull distribution over the score of each classifier. This approach allows PI-SVM to be able to
both perform recognition of unknown class instances and classification between the known class
instances. Bendale and BoultBendale & Boult (2015]) propose an approach to extend Nearest Class
Mean (NCM) to perform open set recognition with the added benefit of being able to do incremental
learning.

Neural Net based methods for open set recognition have been proposed in|Bendale & Boult (2016);
Cardoso et al.|(2015);|Ge et al.|(2017). Openmax |Bendale & Boult (2016) (a state-of-art algorithm)
modifies the regular Softmax layer of a neural network by redistributing the activation vector (the
values of the final layer of a neural network that are given as input to the Softmax function) to account
for unknown classes. Ge et al. |Ge et al.| (2017) use DCGAN |Radford et al.|(2015) to generate
unknown-class samples. The network is trained on the original instances plus the generated samples,
and Openmax is used to ajdusted the activation vector. Similarly, Yu et al. [Yu et al.|(2017) generate
“negative” samples using adversarial learning and use supervised algorithms to learn the final classifier.
Our approach does not generate “unknown-class/negative” samples and hence does not increase the
training overhead in the learning step. In malware classification, K. Rieck et al|Rieck et al.[(2011)
proposed a malware clustering approach and an associated outlier score. Although the authors did
not propose their work for open set recognition, their outlier score can be used for unsupervised open
set recognition. Rudd et al. [Rudd et al.|(2017) outline ways to extend existing closed set intrusion
detection approaches for open set scenarios. Lee et al. [Lee et al.|(2018)) are interested in detecting
test samples that are out-of-distribution (different from the training “in-distribution’); however, each
test sample is still from one of the known classes.

3 APPROACH

For open set recognition, given a set of instances belonging to known classes, we would like to learn
a function that can accurately classify an unseen instance to one of the known classes or an unknown
class. Let D be a set of instances X and their respective class labels Y (i.e., D = (X,Y)), and K be
the number of unique known class labels. Given D for training, the problem of open set recognition
is to learn a function f that can accurately classify an unseen instance (not in X) to one of the K
classes or an unknown class (or the “none of the above" class).

The problem of open set recognition differs from the problem of closed set (“regular") classification
because the learned function f needs to handle unseen instances that might belong to classes that are
not known during training. That is, the learner is robust in handling instances of classes that are not
known. This difference is the main challenge for open set recognition. Another challenge is how to
learn a more effective instance representation that facilitates open set recognition than the original
instance representation used in X.

Learning representations Consider & is an instance and y = f(&) is the class label predicted
using f(Z). In case of a closed set, y is one of the known class labels. In the case of open set, y could
be one of the known classes or an unknown class. The hidden layers in a neural network, Z = ¢(Z),
can be considered as different representations of Z. Note, we can rewrite y in terms of the hidden

layeras y = f(2) = f(g(Z)).

The objective of our approach is to learn a representation that facilitates open set recognition. We
would like this new representation to have two properties: (P1) instances of the same class are closer
together, and (P2) instances of different classes are further apart. The two properties can lead to
larger spaces among known classes for the instances of the unknown classes to occupy. Consequently,
instances of unknown classes could be more effectively detected. This representation is similar in
spirit to a Fisher Discriminant. A Fisher discriminant aims to find a linear projection that maximizes
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Algorithm 1: Training to minimize ii-loss.

Input
(X, Y): Training data and labels

for number of training iterations do
Sample a mini-batch (Xpqtcn, Yoaten) from (X, Y)
Zbatch — g(Xbatch)
{f1 -+ fix } < class_means(Zpatch, Yoaten)
ii-loss « intra_spread(Zpatcn, {ii1 - - - fix }) - inter_separation({f{i1 - - - fix })
update parameters of g using stochastic gradient descent to minimize ii-loss

{1 fig} < class_means(g(X),Y)
return {/i; - - - [ixc } and parameters of ¢ as the model.

between class (inter-class) separation while minimizing within class (intra-class) spread. Such a
projection is obtained by maximizing the Fisher criteria. However, in the case of this work, we use a
neural network with a non-linear projection to learn this representation. The neural network g used
to learn the representation can be either a combination of convolution and fully connected layers, as
shown in Figure [Ta] or it can be all fully connected layers, Figure[Ib] Both types are used in our
experimental evaluation.

II-Loss Function In a typical neural network classifier, the activation vector that comes from the
final linear layer is given as input to a Softmax function. Then the network is trained to minimize
a loss function such as cross-entropy on the outputs of the Softmax layer. In our case, the output
vector z; of the final linear layer of a neural network (i.e., activation vector that serves as input to a
softmax in a typical neural net) are considered as the projection of the input vector x;, of instance
1, to a different space. The network is trained using mini-batch stochastic gradient descent with
backpropagation as outlined in Algorithm [I]to minimize the loss function in Equation[I] which we
will refer to ii-loss for the remainder of this paper. In this loss function, we aim to maximize the
distance between different classes (inter-class separation) and minimize the distance of an instance
from its class mean (intra-class spread). We measure intra-class spread as the average distance of
instances from their class means (first part of Equation|[I). We measure the inter-class separation in
terms of the distance between the closest two class means among all the KX known classes (second
part of Equation[I)). After the network finishes training, the class means are calculated for each class
using all the training instances of that class and stored as part of the model.

K 1C;
iisloss = (- Y5 — &) — ( min [l — m3) (1)
j=11:=1 - =

m+1<n<K

intra_spread . .
inter_sparation

where |C;| is the number of training instances in class C;, N is the number of training instances, K

: - 1 1G5l &
is the number of known classes, and 11j = 7 > i1 % is the mean of class Cj.

Combining ii-loss with Cross Entropy Loss While the two desirable properties P1 and P2 dis-
cussed in an earlier Section aim to have a representation that separates instances from different
classes, lower classification error is not explicitly stated. Hence, a third desirable property (P3) is a
low classification error in the training data. To achieve this, alternatively, a network can be trained on
both cross entropy loss and ii-loss (Eq[I)) simultaneously. The network architecture in Figure[Ic|can
be used. In this configuration, an additional linear layer is added after the z-layer. The output of this
linear layer is passed through a Softmax function to produce a distribution over the known classes.
Although Figure[Ic|shows a network with convolutional and fully connected layers, combining ii-loss
with cross-entropy can also work with a network of fully connected layers only. The network is
trained using mini-batch stochastic gradient descent with backpropagation. During each training
iteration, the network weights are first updated to minimize on ii-loss and then in a separate step
updated to minimize cross entropy loss. Other researchers have trained neural networks using more
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Figure 1: Network architecture with ii-loss.

than one loss function. For example, the encoder network of an Adversarial autoencoder Makhzani
et al.| (2015) is updated both to minimize the reconstruction loss and the generators loss.

Outlier Score for Open Set Recognition During testing, we use an outlier score to indicate the
degree to which the network predicts an instance Z to be an outlier. This outlier score is calculated as
the distance of an instance to the closest class mean from among K known classes.

outlier_score(Z) = 121}i<nK i — _'||§ (2)

where Z = ¢(Z). Because the network is trained to project the members of a class as close to the
class mean as possible the further away the projection z’ of instance & is from the closest class mean,
the more likely the instance is an outlier for that class.

Threshold Estimation Once an outlier score identified, the next step is determining what threshold
value of this score will indicate an outlier. In other words, how far does the projection of an instance
need to be from the closest class mean for it to be deemed an outlier. For this work, we propose a
simple threshold estimation. To pick an outlier threshold, we assume that a certain percent of the
training set to be noise/outliers . We refer to this percentage as the contamination ratio. For example,
if we set the contamination ratio to be 0.01, it will be like assuming 1% of the training data to be
noise/outliers. Then, we calculate the outlier score on the training set instances, sort the scores in
ascending order and pick the 99 percentile outlier score value as the outlier threshold value. The
reader might notice that the threshold proposed in this section is a global threshold. This means
that the same outlier threshold value is used for all classes. An alternative to this approach is to
estimate the outlier threshold per-class. However, in our evaluation, we observe that global threshold
consistently gives more accurate results than the per-class threshold.

Performing Open Set Recognition Open set recognition is a classification over K + 1 class labels,
where the first /X labels are from the known classes the classifier is trained on, and the K + 1st
label represents the unknown class. This is performed using the outlier score in Equation [2]and the
associated threshold. The outlier_score of a test instance is first calculated. If the score is greater
than threshold, the test instance is labeled as K + 1, which in our case corresponds to the unknown
class; otherwise, the appropriate class label is assigned to the instance from among the known classes,
Equation [3] The predicted class probability over the known classes, we can be expressed as the
softmax of the negative distance of a projection Z, of the test instance ¥ (i.e., Z = g(&)), from all the
known class means, Equation El} Note, when a network network trained on both ii-loss and cross
entropy loss P(y = k | &) is from the Softmax layer in Figure[Id

K+1, if outlier_score > threshold
=qargmax P(y = j | £), otherwise 3)
1<j<K
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4 EVALUATION

Datasets and Simulating Open Set Dataset We evaluate our approach using three datasets. The
first is the Microsoft Malware Challenge Dataset|msc| (2015) which consists of disassembled windows
malware samples from 9 malware families/classes. We use 10260 samples which are disassembled
file parser was able to process correctly. The second dataset is the Android Genome Project Dataset
mal| which consists of malicious Android apps. In our evaluation, we use only 9 classes that have
at least 40 samples. After removing the smaller classes, the dataset has 986 samples. We extract
function call graph (FCG) features from the malware samples as proposed by Hassen and Chan
Hassen & Chan|(2017) . In case of the Android samples Android dataset we first use [ada) to extract
the functions and the function instructions and then used |[Hassen & Chan| (2017) to extract the FCG
features. For MS Challenge dataset, we reformat the FCG features as a graph adjacency matrix
by taking the edge frequency features in|[Hassen & Chan|(2017) and rearranging them to form an
adjacency matrix. Formatting the features this way allowed us to use convolutional layers on the MS
Challenge dataset. To show that our approach can be applied to other domains we also evaluate our
work on the MNIST Datasetmni, which consists of images of handwritten digits from 0 to 9.

To simulate an open world dataset for our evaluation datasets, we randomly choose K number of
classes from the dataset, which we will refer to as known classes in the remainder of this evaluation
section, and keep only training instances from these classes in the training set. We will refer to the
other classes as unknown classes. In case of the MS Dataset and Android Dataset, first, we randomly
chose 6 known classes and treat set the remaining 3 as unknown classes. We then randomly select
75% of the instances from the known classes for the training set and the remaining for the test set. We
further withhold one-third of the test set to serve as a validation set for hyperparameter tuning. We
use only the known class instances for tuning. In these two datasets, all the unknown class instances
are placed into the test set. In case of the MNIST dataset, first, we randomly chose 6 known classes
and the remaining 4 as unknown classes. We then remove the unknown class instances from the
training set. We leave the test set, which has both known and unknown class instances, as it is. For
each of our evaluation datasets, we create 3 open set datasets. We will refer to these open set datasets
as OpenMNIST1, OpenMNIST2, and OpenMNISTS3 for the three open set evaluation datasets created
from MNIST. Similarly, we also create OpenMS1, OpenMS2, and OpenMS3 for MS Challenge
dataset and OPenAndroid1l, OpenAndroid2, and OpenAndroid3 for Android Genom Project dataset.

Evaluated Approaches We evaluate five approaches; all implemented using Tensorflow. The
first (i) is a network setup to be trained using ii-loss. The second (ii+ce) is a network setup to
be simultaneously trained using ii-loss and cross entropy (Section[8)). The third (ce) is a network
which we use to represent the baseline, is trained using cross-entropy only (network setup in Figure
without the ii-loss.) The forth approach is OpenmaxBendale & Boult (2016) (a state-of-art
algorithm), which was reimplemented based on the original paper and the authors’ source code to
fit our evaluation framework. The authors of Openmax state that the choice of distance function
Euclidean or combined Euclidean and cosine distance give similar performance in the case of their
evaluation datasets [Bendale & Boult| (2016). In our experiments, however, we observed that the
combined Euclidean and cosine distance gives a much better performance. So we report the better
result from combined Euclidean and cosine distance. The final approach is Generative Openmax
(G-Openmax)|Ge et al.|(2017). The networks used for MS and MNIST datasets have convolutional
layers at the beginning followed by fully connected layers, whereas for the android dataset we use
only fully connected layers. The architecture is detailed Appendix [A] Our source code is available on
Github|'| The evaluation datasets are available online on their respective websites.

4.1 DETECTING UNKNOWN CLASS INSTANCES AND OPEN SET RECOGNITION

We start our evaluation by showing how well outlier_score (in Equation [2) is able to identify
unknown class instances. We evaluate it using 3 random open set datasets created from MS, Android

'https://github.com/shrtCK T/opennet
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Table 1: Average AUC of 30 runs up to 100% FPR and 10% FPR (the positive label represented
instances from unknown classes and the negative label represented instances from the known classes
when calculating the AUC). The underlined average AUC values are higher with statistical signifi-
cance (p-value < 0.05 with a t-test) compared to the values that are not underlined on the same row.

The average AUC values in bold are the largest average AUC values in each row.

FPR ce ii ii+ce
MNIST 100% 0.9282 (£0.0179) 0.9588 (+0.0140) 0.9475 (£0.0151)
10% 0.0775 (£0.0044)  0.0830 (+0.0045) 0.0801 (+0.0044)
MS Challence 100% 0.9143 (£0.0433) 0.9387 (+£0.0083) 0.9407 (+0.0135)
g 10% 0.0526 (+0.0091)  0.0623 (+0.0030) 0.0596 (+0.0035)
Android Genom 100% 0.7755 (£0.1114)  0.8563 (+£0.0941) 0.9007 (+0.0426)
10% 0.0066 (+0.0052) 0.0300 (+0.0193) 0.0326 (+0.0182)

Table 2: Average F-Score of 30 Runs. The underlined average AUC values are higher with statistical
significance (p-value < 0.05 with a t-test) compared to the values that are not underlined on the same
row. The average AUC values in bold are the largest average AUC values in each row.

Openmax G-Openmax ce ceii ii
MNIST 0.88(£0.05) 0.69(£0.02) 0.74(£0.20) 0.92(£0.02) 0.93(40.02)
MS 0.87(£0.01) 0.83(£0.02) 0.86(£0.04) 0.89(£0.01) 0.88(+0.01)
Android  0.30(£0.12) 0.60(£0.11) 0.46(£+0.10) 0.71(£0.17) 0.69(%0.15)

and MNIST datasets as discussed in the Section on simulating open set dataset. For example, in the
case of MNIST dataset, we run 10 experiments on OpenMNIST1, 10 experiments on OpenMNIST?2,
and 10 experiments on OpenMNIST3. We then report the average of the 30 runs. We do the same for
the other two datasets.

Table[I] shows the results of this evaluation. To report the results in such a way that is independent
of outlier threshold, we report the area under ROC curve (AUC). This area is calculated using
the outlier score and computing the true positive rate (TPR) and the false positive rate (FPR) at
different thresholds. We use the t-test to measure the statistical significance of the difference in AUC
values. Looking at the AUC up to 100% FPR in all three datasets, our approach ii and ii+ce perform
significantly better(with p-value of 0.04 or less) in identifying unknown class instances than the
baseline approach ce (using only cross entropy loss.) Although AUC up to 100% FPR gives a full
picture, in practice it is desirable to have good performance at lower false positive rates. That is is
why we report AUC up to 10% FPR. Our two approaches report a significantly better AUC than the
baseline network trained to only minimize cross entropy loss. We didn’t include Openmax in this
section’s evaluation because it doesn’t have an explicit outlier score.

When the proposed approach is used for open set recognition, the final prediction is a class label,
which can be one of the K known class labels if the test instances has an outlier score less than a
threshold value or it can be an “unknown" label if the instance has an outlier score greater than
the threshold, Eq. |3| In addition to the three approaches evaluated in the previous section, we also
include Openmax Bendale & Boult (2016) and G-Openmax |Ge et al|(2017)) in these evaluations
because they give final class label predictions.

We use average F-score to evaluate open set recognition performance and t-test for statistical sig-
nificance. Using the same experimental setup the earlier experiment, we report the result of the
average f-score, averaged across all class labels and across 30 experiment runs in Table |2l On all
three datasets the ii and ii+ce networks gives significantly better f-score compared to the other two
configurations (with p-value of 0.0002 or less). In case of the Android dataset, all networks perform
lower compared to the other two datasets. We attribute this to the small number of samples in the
Android datasets. The dataset is also imbalanced with many classes only having less than 60 samples.

Two limitations of Openmax can explain its weaker performance compared to our proposed ap-
proaches: 1) it does not use a loss function that directly incentivizes projecting class instances around
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Figure 2: The z-layer projection of (a, b) known and (c, d) unknown class instances from test set
of MNIST dataset. The labels 0,2,3,4,6,9 represent the known classes while the label “unknown"
represents the unknown classes.

the mean class activation vector and 2) the distance function used by Openmax is not necessarily the
right distance function for final activation vector space since it is not used in training. We addressed
these limitations by training a neural network with a loss function that explicitly encourages properties
P1 and P2. Also, we use the same distance function during training and test.

4.2 DISCUSSIONS

Figure [2] provides evidence on how our network projects unknown class instances in the space
between the known classes. In the figure the z-layer projection of 2000 random test instances of an
open set dataset created from MNIST with 6 known and 4 unknown classes. The class labels 0, 2, 3,
4, 6, and 9 in the figure represent the 6 known classes while the “unknown" label represents all the
unknown classes. The network with ii-loss is set up to have a z-layer dimension of 6, and the figure
shows a 2D plot of dimension (z0,z1), (z0,z2). The Openmax network also has a similar network
architecture and last layer dimension of 6. In case of ii-loss based projection, the instances from
the known classes (Figures [2a)) are projected close to their respective class while the unknown class
instances (Figures are projected, for the most part, in the region between the classes. In case
of Openmax, Figures [2b]and [2d} the unknown class instances do not fully occupy the open space
between the known classes. In Openmax, most instances are projected along the axis; this is because
of the one-hot encoding induced by cross-entropy loss. So compared to Openmax, ii-loss appears to
better utilize space “among" the classes.

(a) (b)
- o 0
3 3 2
* 3
2 2 4
6
RO SR s
0 0 * class_2_MAV
class_3_MAV
” | o &- =X
-2 =2
0 1 2 3 0 1 2 3
z0 z0

Figure 3: Projections of Android dataset known class test instances from final activation layer of
Openmax.
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Figure 4: Projections of Android dataset (a) known class and (b) unknown class test instances from
z-layer of a network trained with only cross entropy.
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Figure 5: Inter class separation for networks trained (a) with batch normalization used in all layers
and (b) without batch normalization at the z-layer.

Performance of Openmax is especially low in case of the Android dataset because of low recall on
known classes with small number training instances. The low recall was caused by test instances
from the smaller classes being projected further away from the class’s mean activation vector (MAV).
For example, in Figure 3h we see that test instances of class 2 are further away from the MAV of
class 2 (marked by ’%’). As a result, these test instances are predicted as unknown. Similarly, in
Figure [3p instances of class 3 are far away from the MAV of class 3(marked by *X”). Performance
of network trained with only cross entropy (ce) is also low for Android dataset because unknown
class instances were projected close to the known classes (Figured). As a result, these instances get
labeled as known classes. In turn, resulting in a lower precision score for the known classes.

In our experiments, we have observed batch normalization [loffe & Szegedy|(2015) to be extremely
important when using ii-loss. Because batch normalization fixes the mean and variance of a layer,
it bounds the output of our z-layer in a certain hypercube, in turn preventing the inter_separation
term in ii-loss from increasing indefinitely. This is evident in Figures [5aland [5b] Figure [5a]shows
the inter_separation of the network where batch normalization used in all layers including the
z-layer; here, the inter_separation increases in the beginning but levels off. Whereas when batch
normalization is not used in the z-layer the inter_separation term keeps on increasing as seen in
Figure @]; as a result, ii-loss would not converge.

Autoencoders can also be considered as another way to learn a representation. However, autoencoders
do not try to achieve properties P1 and P2. One of the reasons is autoencoder training is unsupervised.
Another reason is that non-regularized autoencoders fracture the manifold into different domains
resulting in the representation of instances from the same class being further apart Makhzani et al.
(2015). Therefore, in the learned representation, the known classes are not well separated. Addition-
ally, outliers get projected to roughly the same area as the known classes. A figure in Appendix [C]
shows the output of an encoder in an autoencoder.

5 CONCLUSION

We presented an approach for learning a neural network based representation that projects instances
of the same class closer together while projecting instances of the different classes further apart. Our
empirical evaluation shows that the two properties lead to larger spaces among classes for instances



Under review as a conference paper at ICLR 2019

of unknown classes to occupy, hence facilitating open set recognition. We compared our proposed
approach with a baseline network trained to minimize a cross entropy loss and with Openmax (a
state-of-art neural network based open set recognition approach). We evaluated the approaches
on datasets of malware samples and images and observed that our proposed approach achieves
statistically significant improvement. We proposed a simple threshold estimation technique in this
paper. However, there is room to explore a more robust way to estimate the threshold. We leave this
for future work.
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A  EVALUATION NETWORK ARCHITECTURES

We evaluate 5 networks: ii, ce, ii+ce, Openmax and G-Openmax. The first four networks and the final
classifier of G-Openmax have the same architecture up to the fully connected z-layer. In case of the
MNIST dataset, the input images are of size (28,28) and are padded to get an input layer size (32,32)
with 1 channel. Following the input, layer are 2 non-linear convolutional layers with 32 and 64 units
(filters) which have a kernel size of (4,4) with a (1,1) strides and SAME padding. The network also
has max polling layers with a kernel size of (3,3), strides of (2,2), and SAME padding after each
convolutional layer. Two fully connected non-linear layers with 256 and 128 units follow the second
max pooling layer. Then a linear z-layer with a dimension of 6 follows the fully connected layers.
In the case of ii+ce and ce networks, the output of the z-layer is fed to an additional linear layer
of dimension 6 which is then given to a softmax function. We use Relu activation function for all
the non-linear layers. Batch normalization is used throughout all the layers. We also use Dropout
with keep probability of 0.2 for the fully connected layers. Adam optimizer with a learning rate of
0.001, betal of 0.5, and beta2 of 0.999 is used to train our networks for 5000 iterations. In case of the
Openmax network, the output of the z-layer is directly fed to a softmax layer. Similar to the Openmax
paper we use a distance that is a weighted combination of normalized Euclidean and cosine distances.
For the ce, ii, and ii+ce we use contamination ratio of 0.01 for the threshold selection.

The open set experiments for MS Challenge dataset also used similar architectures as the four
networks used for MNIST dataset with the following differences. The input layer size MS Challenge
dataset is (67,67) with 1 channel after padding the original input of (63,63). Instead of the two fully
connected non-linear layers, we use one fully connected layer with 256 units. We use dropout in
the fully connected layer with keep probability of 0.9. Finally, the network was trained using Adam
optimizer with 0.001 learning rate, 0.9 betal, and 0.999 beta2.

We do not use a convolutional network for the Android dataset open set experiments. We use a
network with one fully connected layer of 64 units. This is followed by a z-layer with a dimension
of 6. For ii+ce and ce networks we further add a linear layer with a dimension of 6 and the output
of this layer is fed to a softmax layer. In case of Openmax, the output of the z-layer is directly fed
to the softmax layer. For Openmax we use a distance that is a weighted combination of normalized
Euclidean and cosine distances. We use Relu activation function for all the nonlinear layers. We used
batch normalization for all layers. We also used Dropout with keep probability of 0.9 for the fully
connected layers. We used Adam optimizer with a learning rate of 0.1 and first momentum of 0.9 to
train our networks for 10000 iterations. For the ce, ii, and ii+ce we use contamination ratio of 0.01
for the threshold selection.

The closed set experiments use the same set up as the open set experiments with the only difference
coming from the dimension of the z-layer. For the MNIST dataset, we used z dimension of 10. For
the MS and Android datasets, we use z dimension of 9.
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B CLOSED SET CLASSIFICATION

In this section, we would like to show that on a closed dataset, a network trained using ii-loss performs
comparably to the same network trained using cross entropy loss. For closed set classification, all the
classes in the dataset are used for both training and test. For MS and Android datasets, we randomly
divide the datasets into training, validation, and test and report the results on the test set. The MNIST
dataset is already divided into training, validation, and test.

On closed MNIST dataset, a network trained with cross-entropy achieved a 10-run average classifi-
cation accuracy of 99.42%. The same network trained using ii-loss achieved an average accuracy
of 99.31%. The network trained only on cross-entropy gives better performance than the network
trained on ii-loss. The results from a network trained both ii-loss cross entropy loss to achieve an
average classification accuracy of 99.40%. This result makes it comparable to the performance of the
same network trained using cross-entropy only (with a p-value of 0.22). We acknowledge that both
results are not state-of-art as we are using simple network architectures. The primary goal of these
experiments is to show that the ii-loss trained network can give comparable results to a cross entropy
trained network. On the Android dataset, the network trained on a cross entropy gets an average
classification accuracy of 93.10% while ii-loss records 92.68%, but the difference is not significant
(with a p-value at 0.43).

C DISCUSSION
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Figure 6: Projections of (a) known and (b) unknown class instances using the hidden layer of an
Autoencoder. The labels 0,2,3,4,6,9 represent the known classes while the label “unknown" represents
the unknown classes.

We mentioned earlier that we used function call graph (FCG) feature for the malware dataset. We
also mentioned that in case of the MS Challenge dataset we reformatted the FCG features proposed
in|[Hassen & Chan|(2017) to form a (63, 63) adjacency matrix representation of the graph. We feed
this matrix as an input to the convolutional network with a (4,4) kernel. Such kernel shape makes
sense when it comes to image input because in images proximity of pixels hold essential information.
However, it is not apparent to us how nearby cells in a graph adjacency matrix hold meaning full
information. We tried different kernel shapes, for example taking an entire row of the matrix at once
(because a row of the matrix represents single nodes outgoing edge weights). However the simple
(4,4) gives a better close set performance.
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