Published as a conference paper at ICLR 2020

TOWARDS FAST ADAPTATION OF NEURAL ARCHITEC-
TURES WITH META LEARNING

Dongze Lian!*, Yin Zheng?*, Yintao Xu!, Yanxiong Lu?, Leyu Lin2, Peilin Zhao?,
Junzhou Huang>*, Shenghua Gao!'

! ShanghaiTech University, 2 Weixin Group, Tencent,

3 Tencent Al Lab, % University of Texas at Arlington

{liandz, xuyt, gaoshh}@shanghaitech.edu.cn, {yzheng3xg}@gmail.com,
{alanlu, goshawklin, masonzhao}@tencent.com, {jzhuang}@uta.edu

ABSTRACT

Recently, Neural Architecture Search (NAS) has been successfully applied to mul-
tiple artificial intelligence areas and shows better performance compared with
hand-designed networks. However, the existing NAS methods only target a spe-
cific task. Most of them usually do well in searching an architecture for single
task but are troublesome for multiple datasets or multiple tasks. Generally, the ar-
chitecture for a new task is either searched from scratch, which is neither efficient
nor flexible enough for practical application scenarios, or borrowed from the ones
searched on other tasks, which might be not optimal. In order to tackle the trans-
ferability of NAS and conduct fast adaptation of neural architectures, we propose
a novel Transferable Neural Architecture Search method based on meta-learning
in this paper, which is termed as T-NAS. T-NAS learns a meta-architecture that
is able to adapt to a new task quickly through a few gradient steps, which makes
the transferred architecture suitable for the specific task. Extensive experiments
show that T-NAS achieves state-of-the-art performance in few-shot learning and
comparable performance in supervised learning but with 50x less searching cost,
which demonstrates the effectiveness of our method.

1 INTRODUCTION

Deep neural networks have achieved huge successes in many machine learning tasks (Girshick,
2015;|He et al., 2016} |Sutskever et al.,[2014}; Zheng et al., 2015b; Lian et al.,[2019;|Cheng et al.} 2019;
Zheng et al., 2015a;|Lauly et al.L|2017; Jiang et al., 2017;Zheng et al., 2016). Behind their successes,
the design of network architecture plays an important role, and the hand-designed networks (e.g.,
ResNet (He et al., 2016)), DenseNet (Huang et al., 2017)) have provided strong baselines in many
tasks.

Neural Architecture Search (NAS) (Pham et al., 2018} [Liu et al., 2018bj |Guo et al.| 2019) is pro-
posed to automatically search network structure for alleviating the complicated network design and
heavy dependence on prior knowledge. More importantly, NAS has been proved to be effective and
obtained the remarkable performance in image classification (Pham et al., 2018 [Liu et al., 2018b),
object detection (Ghiasi et al., [2019) and semantic segmentation (Chen et al., 2018 [Liu et al.,[2019).
However, the existing NAS methods only target a specific task. Most of them usually do well in
searching an architecture for single task but are troublesome for multiple datasets or multiple tasks.
As shown in Figure[I]} we get the architecture-0 on a given dataset using a NAS method. Now, what
if there exists a new task? This drives us to ask: how to get a suitable architecture for a new task in
NAS? Generally, there exist two simple solutions in handling multiple tasks. One of them (S1) is to
search an architecture for a new task from scratch but it is inefficient and not flexible for practical
application scenarios. Another solution (S2) is to borrow architecture from the ones searched on
other tasks but it might be not optimal for the new task. Therefore, it is urgently needed to study
the transferability of NAS for large-scale model deployment in practical application. It should be

*Equal contribution, this work is done when Dongze Lian works as an intern in Tencent Al Lab.
"Corresponding author.

Published as a conference paper at ICLR 2020

J < T-NAS
; NAS St NAS from T A
! \ scratch

Dataset Meta-architecture

Dataset Architecture-0 Inefficient X ‘ Adaptation

! v !
& Borrowed
How to get? S2: from
architecture-0
Architecture-1 Architecture-2 Architecture-3

Anew task Not optimal X for task-1 for task-2 for task-3

Q: How to get the architecture for a new task? Two solutions Our solution

Figure 1: Left: how to search the network architecture when given a new task? Middle: two sim-
ple solutions that are inefficient or not optimal. Right: we propose T-NAS method to get a meta-
architecture, which is able to adapt to different tasks easily and quickly.

more desirable to learn a transferable architecture that can adapt to some new unseen tasks easily
and quickly according to the previous knowledge.

To this end, we propose a novel Transferable Neural Architecture Search (T-NAS) method (the
bottom of Figure[I). The starting point of T-NAS is inspired by recent meta-learning methods (Finn
et al [2017; |Antoniou et al.l 2019; [Sun et al.|l 2019), especially Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017, where a model learns the meta-weights that are able to adapt to a new
task through a few gradient steps. Push it forward, it is also possible to find a good initial point
of network architecture for NAS. Therefore, the T-NAS learns a meta-architecture (transferable
architecture) that is able to adapt to a new task quickly through a few gradient steps, which is
more flexible than other NAS methods. Similar to MAML, such a good initial meta-architecture for
adaptation should be more sensitive to changes in different tasks such that it can be easily transferred.
It is worth mentioning that this is not the first work on the transferability of neural architecture. There
are also some recent works that attempt to utilize the knowledge on neural architectures learned
from previous tasks, such as|Wong et al.|(2018)); Shaw et al.|(2018)). Specifically, Wong et al.|(2018)
proposes to transfer the architecture knowledge under a multi-task learning perspective, where the
number of tasks is fixed during training phase, and it cannot do a fast adaption for a new task. In
contrast, our model is able to make the adaption fast and the number of tasks is unlimited during
training. The difference between our model and [Shaw et al.| (2018)) is also obvious, where |Shaw
et al.| (2018)) is based on Bayesian inference but our model is based on gradient-based meta-learning.
The quantitative comparison with [Shaw et al.|(2018) can be found in TableE}

Generally, architecture structure cannot be trained independently regardless of network weights (Liu
et al., 2018b; [Pham et al., [2018). Analogously, the training of meta-architecture is also associated
with meta-weights. Therefore, the meta-architecture and meta-weights need to be optimized jointly
across different tasks, which is a typical bilevel optimization problem (Liu et al.l | 2018b). In order
to solve the costly bilevel optimization in T-NAS, we propose an efficient first-order approximation
algorithm to update meta-architecture and meta-weights together. After the whole model is opti-
mized, given a new task, we can get the network architecture structure suitable for the specific task
with a few gradient steps from meta-architecture and meta-weights. At last, the decoded discrete
architecture is used for the final architecture evaluation.

To demonstrate the effectiveness of T-NAS, we conduct extensive experiments on task-level prob-
lems due to amounts of tasks. Specifically, we split the experiments into two parts: few-shot learn-
ing setting and supervised learning setting. For few-shot learning, T-NAS achieves state-of-the-art
performance on multiple datasets (Omniglot, Mini-Imagenet, Fewshot-CIFAR100) compared with
previous methods and other NAS-based methods. As for supervised learning, a 200-shot 50-query
10-way experiment setting is designed on the Mini-Imagenet dataset. Compared with the searched
architectures from scratch for new given tasks, T-NAS achieves comparable performance but with
50x less searching cost.

Our main contributions are summarized as follows:

Published as a conference paper at ICLR 2020

e We propose a novel Transferable Neural Architecture Search (T-NAS). T-NAS can learn a
meta-architecture that is able to adapt to a new task quickly through a few gradient steps,
which is more flexible than other NAS methods.

o We give the formulation of T-NAS and analyze the difference between T-NAS and other
NAS methods. Further, to solve the bilevel optimization, we propose an efficient first-order
approximation algorithm to optimize the whole search network based on gradient descent.

e Extensive experiments show that T-NAS achieves state-of-the-art performance in few-shot
learning and comparable performance in supervised learning but with 50x less searching
cost, which demonstrates the effectiveness of our method.

2 RELATED WORK

2.1 NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) designs network architectures automatically instead of hand-
designed ones. Generally, NAS strategies are divided into three categories - reinforcement learning,
evolutionary algorithm and gradient-based methods. Some other strategies can refer to the survey
paper (Elsken et al.l [2019). Reinforcement learning (RL) based methods (Zoph & Lel [2016; Zoph
et al.,|2018) utilize a controller to generate the network structure and operations. For efficient search-
ing, ENAS (Pham et al., [2018) shares parameters among child models and achieves state-of-the-art
performance with only one GPU day. Evolutionary algorithm based methods (Real et al., 2018)
evolve neural architectures and also achieve comparable results with RL based methods.

Unlike reinforcement learning and evolutionary algorithm, gradient-based methods (Liu et al.,
2018b; |Cai et al., 2019) continuously relax the discrete architecture with all possible operations,
which makes it possible to jointly optimize the architecture structure and network weights based on
gradient descent. Not limited to image classification problems, recent works also introduce NAS to
object detection (Ghiasi et al., | 2019) and semantic image segmentation (Chen et al.|[2018;|Liu et al.,
2019). More recently, NAS is also applied to the generative model, such as AutoGAN (Gong et al.,
2019). These NAS methods show that the searched networks outperform the hand-designed ones.

However, in these methods, only a fixed architecture is searched for a specific task, which makes it
hard to be transferred to other tasks. In order to obtain a more flexible network, InstaNAS (Cheng
et al.l 2018)) is proposed to search the network architecture structure for each instance according
to different objectives, such as accuracy or latency. Different from Cheng et al| (2018), we in-
corporate the ideas from meta-learning based methods and extend NAS to T-NAS, which learns a
meta-architecture that is able to adapt to different tasks.

2.2 FEW-SHOT META-LEARNING

Recently, most of few-shot learning problems can be cast into the meta-learning field, where a model
is trained to quickly adapt to a new task given only a few samples (Finn et al.,[2017). Such few-shot
meta-learning methods can be categorized into metric learning (Vinyals et al.l [2016; |Sung et al.,
2018; [Snell et al., |2017), memory network (Santoro et al., 2016; Oreshkin et al., | 2018; Munkhdalai
et al.| 2018} [Mishra et al.l 2018)) and gradient-based methods (Finn et al.l 2017} |Zhang et al.| 2018;
Sun et al.,[2019).

Here, we only focus on the gradient-based methods, which contain a base-learner and a meta-learner.
MAML (Finn et al., 2017) is one of the typical gradient-based methods for fast adaptation, which
consists of meta-train and meta-test stages. In the meta-train stage, the model extracts general
knowledge (meta-weights) from amounts of tasks such that it can be utilized for fast adaptation
in the meta-test stage. The latest variant of MAML is MAML++ (Antoniou et al., [2019), which
analyzes the shortcoming of MAML and proposes some tips on how to train MAML to promote the
performance. We extend the adaptation of weights in MAML to the adaptation of architectures that
is also based on MAML, and propose to automatically learn a meta-architecture, which is able to
adapt to different tasks quickly.

Published as a conference paper at ICLR 2020

3 PRELIMINARY

To introduce T-NAS, we briefly review the knowledge about meta-learning for fast adaptation (Finn
et al.,[2017; |/Antoniou et al., 2019) and DARTS for NAS (Liu et al., 2018b) in this section, which is
helpful to understand the concept of T-NAS.

3.1 META-LEARNING

The whole dataset, meta-train and meta-test dataset are denoted as D, Dpeta-train aNd Dieta-test> T'€-
spectively. In meta-train stage, a set of tasks {7} (are also called episodes) are sampled from the
task distribution p(7") in Dieta-train- Note that in the i-th task 7;, there are K samples from each
class and N classes in total, which is typically formulated as a [N-way, K -shot problem. The train-
ing split samples in 7; used to optimize the base-learner are called support set, denoted as 7%, and
test split samples used to optimize the meta-learner are called query set, which is 7;?. The main idea
of MAML (Finn et al., [2017) is to learn good initialized weights w for all tasks {7}, such that the
network can obtain high performance in Dyyepaest after a few gradient descent steps from w. The
base-learner is optimized according to the following rule:

w = wit — ainnervw;"ﬁ(f(ﬁs; w;")), (L

K3

where iper 18 the inner (base) learning rate of weights w and m represents the inner step. f is
the parametrized function with network weights w and L is the loss function. In the base-learner
process, 7, is used to compute the loss and we update weights w from w;" to w;"“ for the ¢-th task
(w9 = w). After M steps, L(f(T;%;wM)) in T, is computed for the meta-learner update, which can
be formulated as:

wW=w— CVouterv@ Z ‘C(f(’];q, wi\/[)), (2)

T ~p(T)

where oy 18 the outer (meta) learning rate of meta-weights w. Finally, the model learns the good

initialized meta-weights w when it converges. Such meta-weights are sensitive enough so that it can
adapt to each task in Dyt after a few gradient descent steps.

3.2 DARTS

The core of DARTS (Liu et al., 2018b) is to continuously relax the discrete architecture with all
possible operations and jointly optimize the architecture structure and network weights based on
gradient descent. Consider O be a set of candidate operations, where each operation proposal is
represented with o. Given the input z, the output is the weighted sum of all possible operations

o(x):

I exp(6,) ol
0((E) - OGZO Zo/eo 6$p(90/) ()7 (3)

where 6 is the vector to represent the coefficients of different operation branches. When decoding,
the operation o* = arg max,co 0,. Therefore, 6 is also the encoding of the architecture.

To solve such a bi-level optimization problem, a two-step update algorithm is applied:

{ 0=0— BVyL(w—EVyLl(w,0),0)

w=w—aV,L(w,0) ’ @

where L is the loss function and £ is the learning rate of inner optimization. In this paper, we use
the first-order optimization of DARTS (£ = 0) for efficiency.

4 APPROACH

In this section, we first introduce Transferable Neural Architecture Search (T-NAS) and give its for-
mulation. After that, we analyze and illustrate the difference between T-NAS and NAS. Finally, the
first-order approximation algorithm is proposed for the optimization of T-NAS, and the adaptation
and decoding process are also described in detail.

1
2
3

L e e

10
11

Published as a conference paper at ICLR 2020

4.1 THE FORMULATION OF T-NAS

To make our searched network architecture flexible, we focus on the transferability of NAS. As
shown in Sec. 3, MAML is trained to learn meta-weights w for fast adaptation in a new task.

Similarly, T-NAS devotes itself to learn a meta-architecture 6 that is able to adapt to a new task

through a few steps. In this work, 6 and 6 |'| are defined as the encoding of the architecture and
transferable architecture, which are represented as matrices following DARTS (Li1u et al., 2018b).

To make the searched architecture transferable, we utilize the meta-learning based strategy to learn

a task-sensitive meta-architecture #. However, similar to other NAS methods (Pham et al.| 2018
Liu et al., 2018b), where the architecture 6 usually cannot be trained independently regardless of

network weights w, the training of meta-architecture is also associated with meta-weights w. In
this work, 6 and w are optimized jointly across different tasks in T-NAS.

As shown in Sec. 3, there exist two learners for the learning of meta-weights w, i.e., Eq. is used
to update the base-learner and Eq. (2)) is used to update the meta-learner. Similarly, T-NAS consists

of two searchers: base-searcher and meta-searcher. In the base-searcher, § and w are optimized
jointly to search architecture for the specific task 7,%, which can be optimized with:

{ W = 0" — eV LT3 07", ™))

9?+1 = 91” - Binnervﬁ”ﬁ(g(lns;ezinvwm+1)) ,

(2

where S 18 the inner (base) learning rate of architecture . g is the parametrized function with the
architecture 6 and network weights w (09 = 0, w = w). After M steps, 6 and w are also updated to

get a good initial point for architecture adaptation in the meta-searcher, where £(g(7,%;0M ,wM))
in 7; is computed. The formulation can be represented as:

w=uw— Qouter Vi Z ﬁ(g(lﬁq; 95\4’ wzjw))
T ~p(T)
52 g_ﬁoutervg Z ‘C(g(ﬁqvezju7wz]\/[))
T ~p(T)

) (6)

where Souer 1S the outer (meta) learning rate of the meta-architecture 0. When the meta-searcher
converges, the optimal meta-architecture 6 and meta-weights w can be obtained. We argue that such
a 0 can quickly adapt to a new task. The complete algorithm of T-NAS is as shown in Alg. m

Algorithm 1: T-NAS: Transferable Neural Architecture Search

Input: Meta-train dataset Dpeqy.train, l€arning rate ®inners Couters Sinner a0d Bouter -
Randomly initialize architecture parameter 6 and network weights w.
while not done do
Sample batch of tasks {7 } in Dyeta-train
for 7, € {T} do
Get datapoints 7;°;
Compute L(g(7;%; 07", w]™)) according to the standard cross-entropy loss;
Alternatively update w]™ and 0] with Eq. for M steps;
Get datapoints 7? for meta-searcher;
end

Alternatively update w and 6 with Eq. @);

end

"It is worth noting that the transferability of architecture is a generalized concept, which is not limited to the
representation of architecture. T-NAS employs DARTS (Liu et al.| |2018b) for NAS but other representations
of architectures such as ENAS (Pham et al.,|2018) can also be adopted.

Published as a conference paper at ICLR 2020

Table 1: The main differences among NAS, Solutionl (S1), Solution2 (S2) and T-NAS.

Methods | Task(s) Transferability Characteristic
. troublesome for
NAS single ho multiple tasks
no inefficient &
(search from scratch) time-consuming
borrows from
searched architecture
T-NAS multiple adaptation flexible

S1 multiple

S2 multiple not optimal

4.2 T-NAS vs. NAS

As mentioned before, the previous NAS methods usually do well in searching an architecture for a
single task but are troublesome for multiple datasets or multiple tasks. So we focus on the trans-
ferability of NAS across multiple tasks in this paper. Two simple solutions (S1 and S2) have been
pointed in Figure [T but they are either inefficient or not optimal. T-NAS aims to learn a transfer-
able and flexible architecture that can adapt to a new task easily. Table|l|lists the main differences
among NAS, two simple solutions (S1 and S2) and T-NAS. S1 does not study the transferability
of NAS and searches architectures for different tasks (e.g., 61,05, ..., 8,,) from scratch. S2 borrows
from searched architecture directly such that all tasks share the same architecture (e.g., 6). Differ-

ently, T-NAS searches the meta-architecture 5, which is able to adapt to different tasks quickly (e.g.,

0 — 01,05, ...,60,). The experimental results show that our method achieves better performance
than the S2 and comparable performance with S1 but with the less searching cost.

It is worth mentioning that if directly apply NAS to few-shot meta-learning, e.g., MAML (Finn
et al.,2017), we will search a good network architecture for MAML, which is named Auto-MAML.
In fact, Auto-MAML is a special case of S2 in Figure[I} where all tasks share the same architecture
searched with a meta-learning method. In the experiments in few-shot learning, we also introduce
Auto-MAML as a baseline. However, such a shared architecture is not suitable for each task. Auto-
MAML can outperform MAML but is inferior to T-NAS. The specific algorithm and experimental
settings of Auto-MAML are provided in the supplementary material.

The core of T-NAS is based on MAML (Finn et al., |2017), which is a kind of gradient-based meta-
learning method. Recently, MAML++ is proposed by |Antoniou et al.| (2019), which introduces
several techniques E] to improve the performance of MAML. These techniques can also be utilized
by T-NAS, which is termed as T-NAS++ in this paper. The experiments in Section 5 confirm that
T-NAS++ can further improve the performance of T-NAS.

4.3 OPTIMIZATION

Although the formulation of T-NAS is proposed, the model is hard to be optimized directly according

to Alg. {1l On one hand, updating 6 and @ introduces the high-order derivative in Eq. @ On the
other hand, the continuous relaxation of architecture makes amounts of memory occupied. At the
first glance, such a problem might be solved by the first-order approximation in |Liu et al.[(2018b),
however, there still exists a lot of time overhead, even the experiments cannot be carried out when
step M is large in Eq. (6). To tackle this problem, we transform the alternative update strategy
of w and 0 in Eq. (9) into simultaneous update, which means the w and 6 are treated equally
as the parameters of function g. Such a replacement can update parameters (w and) by only
backpropagating once instead of twice. The Eq. (5) can be modified to:

[w;n—i-l;e;n—}-l] = [wz 701] T’innerv[wgn,ézn]E(Q(ﬂs;ggnawzm)% (7N
where Minner = [Qinner; Sinner]- In addition, to avoid the high-order derivative, we also utilize the
first-order approximation to compute the derivation of w and # instead of w and 6 as follows:

(@;0] = [@:0] = Nower D, Viwr g2y LIg(T 0 wl)), ®)
Tirep(T)

These techniques include cosine annealing of the meta-optimizer learning rate, the adding of inner steps
efc..

—

~

w

Published as a conference paper at ICLR 2020

where Nouter = [Qouter; Bouter]- Such modifications save more than half of the search time and memory
while maintaining comparable performance. Thus, we can use the Eq. and Eq. to replace the
Eq. (5) and Eq. (6) in line 7 and line 10 of Alg. [I|to update 6 and w in the implementation.

4.4 ADAPTATION AND DECODING

Once 6 and @ are obtained by training the base-searcher and the meta-searcher with the first-order
approximation of Alg. 1] we can adapt them to the i-th task and get the task-specific architecture 0
for the specific task 7; according to the following Alg.

Algorithm 2: Adaptation and decoding

Input: Meta-test dataset Dpeqatest, learning rate ctinner and Sinner-

Output: The task-specific architecture 0; for the i-th task 7;.

Obtain the specific task 7; from Dyeqa tests

Update w!™ and 67 for M step with Eq. (7) and get 6};

Decoding 62 to task-specific architecture 87 by following the method in Liu et al.[(2018b).

Following previous NAS methods (Zoph & Lel[2016} Zoph et al., 2018} Pham et al.,2018;|Liu et al.,
2018b)), after getting 67, we evaluate the task-specific architecture by training it in the task 7; from
scratch. As shown in Sec. 5, the T-NAS achieves state-of-the-art performance in few-shot learning
and comparable performance in supervised learning but with less searching cost.

5 EXPERIMENTS

We evaluate the effectiveness of T-NAS in both few-shot and supervised learning settings, as well as
multiple datasets. For each dataset, we conduct experiments containing architecture search and
architecture evaluation. In the architecture search stage, we use T-NAS to search for a meta-
architecture. In the architecture evaluation stage, we evaluate the transferred task-specific archi-
tectures by training them from scratch and compare their performance with previous methods. S1
and S2 in the following sections mean two simple solutions in Figure [I| except for the specific in-
structions. Code is available Pl

5.1 DATASETS

Omniglot is a handwritten character recognition dataset proposed in [Lake et al.|(2011)), which con-
tains 1623 characters with 20 samples for each class. We randomly split 1200 characters for training
and the remaining for testing, and augment the Omniglot dataset by randomly rotating multiples of
90 degrees following (Santoro et al.,[2016).

Mini-Imagenet dataset is sampled from the original ImageNet (Deng et al., [2009). There are 100
classes in total with 600 images for each class. All images are down-sampled to 84 x 84 pixels and
the whole dataset consists of 64 training classes, 16 validation classes and 20 test classes.

Fewshot-CIFAR100 (FC100) dataset is proposed in |Oreshkin et al.| (2018)), which is based on a
popular image classification dataset CIFAR100. It is more challenging than the Mini-Imagenet due
to the low resolution. Following Oreshkin et al.|(2018]), FC100 is divided into 60 classes belonging
to 12 superclasses for training, 20 classes belonging to 4 superclasses for validation and testing.

5.2 T-NAS FOR FEW-SHOT LEARNING
5.2.1 ARCHITECTURE SEARCH.

We first get the meta-architecture] by optimizing the search network with first-order approximation
of Alg. [T} In the architecture search stage, we employ the same operations as [Liu et al| (2018D):
3 x 3 and 5 x 5 separable convolutions, 3 x 3 and 5 x 5 dilated separable convolutions, 3 X 3 max

3https://github.com/dongzelian/T-NAS

Published as a conference paper at ICLR 2020

10

8 04 8 [04 8 04 8 04
b 10 10
02 02 02 -
12 I 12 2
o 2 4 6 - [2 4 6 00 o 4 6 oo z 4 2 4
i il t t
enormal ereduce 9norma1 greduce enormal Hreduce

Figure 2: Architecture (Onormal, Oreduce) Searched with Auto-MAML (left), meta-architecture

(Onormal; Oreduce) searched with T-NAS (middle), and the transferred architecture (6% . .1, 0% .cc)

for the specific task 7; (right). The experiments are conducted in 5-way, 5-shot setting of Mini-
Imagenet.

pooling, 3 x 3 average pooling, identity and zero. ReLU-Conv-BN order is used for convolutional
operations and each separable convolution is applied twice following (Liu et al., |2018aib). For all
datasets, we only use one {normal + reduction} cell for efficiency and preventing overfitting, thus

the meta-architecture 6 is determined by (Gnormal, Oreduce)- Once 6 is obtained using T-NAS, we can
obtain the optimal architecture 8 for the specific task 7; from Alg.

We utilize the training and validation data of dataset for architecture search. In N-way, K-shot
setting, we firstly randomly sample N classes from the training classes, and then randomly sample
K images for each class to get a task. Thus, there are N x K images in each task. On the Mini-
imagenet dataset, One {normal + reduction} cell is trained for 10 epochs with 5000 independent
tasks for each epoch and the initial channel is set as 16. For the base-searcher, we use the vanilla
SGD to optimize the network weights w" and architecture parameter 6;" with inner learning rate
Qinner = 0.1 and Bipner = 30. The inner step M is set as 5 for the trade-off between accuracy and
efficiency. For the meta-searcher, we use the Adam (Kingma & Ba, [2014) to optimize the meta-

architecture # and network weights w with outer learning rate cguer = 1072 and Boyer = 1073,
All search and evaluation experiments are performed using NVIDIA P40 GPUs. The whole search
process takes about 2 GPU days.

In addition, we also conduct Auto-MAML experiments where all tasks share the same searched ar-
chitecture. Auto-MAML is a special case of S2 of Figure[T] where all tasks share the same architec-
ture searched with a meta-learning method. In the practical algorithm, it is similar to T-NAS, which
is behaved as removing the update for # in the meta-searcher stage. However, in Auto-MAML, we
can divide the whole dataset into two splits for the updates of 6 and w following the recent gradient-
based NAS methods (Pham et al., [2018}; |Liu et al., 2018b). Here, the Dpera-train 18 divided into two
independent splits Dyin-spiit1 and Dyain-spiie. With 1 : 1. The specific algorithm for meta-train and
meta-test and searched architecture structure can be found in the supplementary material.

To show the transferability of meta-architecture, we visualize the (encoding of) architecture 6

searched with Auto-MAML, meta-architecture 6 searched with T-NAS, and transferred architec-
ture §¢ for a specific task 7; in Figure [2| It is worth noting that the architecture encoding matrix

(Gnormal, Oreduce) searched with T-NAS is smoother than that with Auto-MAML, which implies that

(Bnormal s Oreduce) 18 €asier to adapt to the specific task (0 — 6') than Auto-MAML, thus the meta-
architecture searched with T-NAS is more flexible.

5.2.2 ARCHITECTURE EVALUATION.

After getting the architecture structure ¢ for task 7;, we evaluate 6 by training it from scratch. In
architecture evaluation, we train the task-specific architecture for 20 epochs with 15000 indepen-
dent tasks for each epoch. Note that different from Liu et al.|(2018b), we directly use the searched
network structure to evaluate performance without any modification (e.g., the number of channels
or layers). We optimize the network weights w;" with qjpner = 0.1 and M = 5. We use Adam
(Kingma & Ba, [2014)) to optimize the meta-weights w with outer learning rate qoyeer = 1073, The
experimental results on Omniglot, Mini-Imagenet and FC100 are shown in Table. [2] Table. [3]and Ta-
ble. 4} respectively, where T-NAS is based on first-order MAML. Specifically, T-NAS outperforms

Published as a conference paper at ICLR 2020

Table 2: 5-way accuracy results on the Omniglot dataset.

Methods 1-shot 5-shot
Siamese Nets (Koch et al.[[2015)) 97.3% 98.4%
Matching nets (Vinyals et al.,[2016) 98.1% 98.9%
Neural statistician (Edwards & Storkey, [2017)) 98.1% 99.5%
Memory Mod. (Kaiser et al.| 2017) 98.4% 99.6%
Meta-SGD (Li et al.,|2017) 99.53 £ 0.26% 99.93 4+ 0.09%
MAML (Finn et al.[[2017) 98.7 + 0.4% 99.9 +0.1%
MAML++ (Antoniou et al., |2019) 99.47% 99.93%
Auto-MAML (ours) 98.95 +0.38% 99.91 £ 0.09%
T-NAS (ours) 99.16 £0.34% 99.93 + 0.07%
T-NAS++ (ours) 99.354+0.32% 99.93 + 0.07 %

Table 3: 5-way accuracy results on Mini-Imagenet.

Methods Arch. #Param. 1-shot S-shot

Matching nets (Vinyals et al.;[2016) 4CONV 329K 4344 £0.77% 5531 +£0.73%
ProtoNets (Snell et al.}[2017) 4CONV 32.9K 4942 +0.78% 68.20 £+ 0.66%
Meta-LSTM (Ravi & Larochelle, [2017) 4CONV 329K 4356 +£0.84% 60.60 £ 0.71%
Bilevel (Franceschi et al.}[2018) 4CONV 32.9K 50.54 +0.85% 64.53 + 0.68%
CompareNets (Sung et al.} [2018) 4CONV 329K 50.44 £0.82% 65.32 + 0.70%

LLAMA (Grant et al.}[2018) 4CONV 32.9K 49.40 + 1.83% -
MAML (Finn et al.,2017) 4CONV 32.9K 4870 + 1.84% 63.11 £ 0.92%
MAML (first-order) (Finn et al.,|2017) 4CONV 329K 48.07 +£1.75% 63.15+091%
MAML++ (Antoniou et al., [2019) 4CONV 32.9K 52.154+0.26% 68.32 + 0.44%
Auto-Meta (small) (Kim et al.| 2018)) Cell 28/28 K 49.58 £ 0.20% 65.09 + 0.24%
Auto-Meta (large) (Kim et al.| 2018) Cell 98.7/94.0 K 51.16 £ 0.17% 69.18 + 0.14%
BASE (Softmax) (Shaw et al., 2018) Cell 1200K - 65.40 £ 0.74%
BASE (Gumbel-Softmax) (Shaw et al.,|2018) Cell 1200K - 66.20 + 0.70%
Auto-MAML (ours) Cell 23.2/26.1 K 5123 £1.76% 64.10 £ 1.12%
T-NAS (ours) Cell 24.3/26.5K* | 52.84 +1.41% 67.88 +0.92%
T-NAS++ (ours) Cell 24.3/26.5K* | 54.11 £1.35% 69.59 + 0.85%

* means the average parameters of architectures for evaluation.

MAML and Auto-MAML (52.84% vs. 48.70%, 51.23%), which validates the advantage of T-NAS.
It also achieves better performance than other architecture transfer methods (e.g., BASE (Shaw et al.,
2018))). Actually, since the advantage of T-NAS is that the meta-architecture could adapt to a new
task rather than using a fixed architecture like MAML and Auto-MAML, it usually has an additional
time cost for the adaption. Usually, the adaptation procedure costs about 1.5 seconds (1-shot) and
7.8 seconds (5-shot), which is negligible compared with the improvement of accuracy. Moreover, we
can also see that T-NAS++, which is an improved version of T-NAS described in Sec.4.2, achieves
the best performance among all the baselines.

5.3 T-NAS FOR SUPERVISED LEARNING

Besides few-shot learning classification, we also conduct experiments on Mini-Imagenet for general
supervised learning. Different from few-shot learning, the architecture can be searched and trained
for each task due to the sufficient samples, which can be regarded as S1 in Figure[I] Due to the lack
of baselines in the supervised learning setting, we choose 10 tasks with 200-shot 50-query 10-way
for each task based on the Mini-Imagenet dataset for meaningful experiments.

In the experiments of supervised learning, we follow the same setting as few-shot learning for trans-
ferable architecture search. The difference is that we can train each task independently from scratch
in architecture evaluation. For 10 tasks in supervised learning, we train the task-specific architecture
for 200 epochs with cosine schedule, where the initial learning rate is 0.05. We use the SGD with
momentum 0.9 to optimize the network weights and crop the original image and flip randomly for
data argumentation.

Published as a conference paper at ICLR 2020

Table 4: 5-way accuracy results on FC100.

Methods 1-shot 5-shot 10-shot
MAML (Finn et al.[[2017) 381+17% 504+1.0% 562+0.8%
MAML++ (Antoniou et al. 2019) | 38.7 £04% 529 +04% 58.8 +0.4%
Auto-MAML (ours) 388+ 1.8% 522+12% 575+£0.8%
T-NAS (ours) 307+14% 53.1+£1.0% 589+0.7%
T-NAS++ (ours) 404 +12% 54.6+09% 60.2 +0.7%

Table 5: 200-shot, 50-query, 10-way accuracy results of supervised learning on Mini-Imagenet.

Methods 200-shot Time

Random 61.20 £ 0.09% N/A
S1 64.84 £ 0.04% 266 min

S2 62.99 + 0.05% N/A

T-NAS (ours) | 64.23 + 0.05% 5 min

The experimental results in the supervised learning setting are shown in Table. 5] In S1, we search
the architecture for each of 10 tasks from scratch and evaluate them. For S2, we directly use five
architectures searched respectively in five different tasks (sampled with 200-shot 50-query 10-way
for each task in the meta-train dataset) for the evaluation in 10 tasks. For a fair comparison, we
also pick five architectures randomly from search space for each task, evaluate them in the specific
task, and report their average results. It is worth noting that it does not consume searching time to
randomly generate architectures or directly use the prepared architectures searched in other tasks.
Thus, the time of Random and Method2 in Table. [3]is not applicable. Our T-NAS can learn a meta-
architecture # and get the task-specific architecture by only updating several steps from 6 instead of
the shared architecture. Thus, T-NAS obtains better performance than random architectures and S2
(64.23% vs. 61.20%, 62.99%). In addition, T-NAS achieves competitive performance with S1 but
with 50x less time cost (5 min vs. 266 min). The fact that the performance of S1 is superior to that of
T-NAS slightly is because S1 directly searches network architecture for different tasks from scratch,
which is laborious as well as time-consuming. On the contrary, T-NAS can adapt to different tasks

quickly by finding a good initial point 0, which avoids laborious searching for many tasks and saves
a lot of time.

Finally, it is interesting that although the architectures searched with S1 and those transferred from
meta-architecture searched with T-NAS are different for the specific tasks, their final evaluation
performance is very close and is better than that of the random architectures. Such observation
implies that some subspaces in architecture search space might be suitable for a specific task and

T-NAS is able to adapt architecture initialized with 6 to the subspaces.

6 CONCLUSION AND FUTURE WORK

In this paper, we focus on the transferability of Neural Architecture Search, that is to say, how to
get a suitable architecture for a new task in NAS? The two simple solutions are either inefficient or
not optimal. To tackle this problem, we propose a novel Transferable Neural Architecture Search
(T-NAS) for fast adaptation of architectures. Specifically, T-NAS learns a meta-architecture that is
able to adapt to a new task easily and quickly through a few gradient steps, which is more flexible
than the existing NAS methods. In addition, to optimize the whole search network, we propose
an efficient first-order approximation algorithm. Extensive experiments show that T-NAS achieves
state-of-the-art performance in few-shot learning setting. As for the supervised learning setting, T-
NAS achieves comparable performance with other baselines but the searching cost is decreased by
50x, which demonstrates the effectiveness of our method.

For future work, we can study the transferability of NAS for those tasks from different task dis-
tributions, where some transfer learning methods might be helpful. We hope that this work can
provide some insights on the transferability of NAS, which might potentially benefit the real-world
applications.

10

Published as a conference paper at ICLR 2020

Acknowledgement. The work is supported by the National Key R&D Program of China
(2018AAA0100704) and the National Natural Science Foundation of China (NSFC) under Grants
No. 61932020. We would like to thank Jiaxing Wang for some meaningful discussions.

REFERENCES

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In ICLR, 2019.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations, 2019.

Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian Schroff,
Hartwig Adam, and Jon Shlens. Searching for efficient multi-scale architectures for dense image
prediction. In Advances in Neural Information Processing Systems, pp. 8699-8710, 2018.

An-Chieh Cheng, Chieh Hubert Lin, Da-Cheng Juan, Wei Wei, and Min Sun. Instanas: Instance-
aware neural architecture search. arXiv preprint arXiv:1811.10201, 2018.

Hao Cheng, Dongze Lian, Bowen Deng, Shenghua Gao, Tao Tan, and Yanlin Geng. Local to global
learning: Gradually adding classes for training deep neural networks. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Harrison Edwards and Amos Storkey. Towards a neural statistician. In ICLR, 2017.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1-21, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1126-1135. JMLR. org, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, and Massimilano Pontil. Bilevel programming for
hyperparameter optimization and meta-learning. In /CML, 2018.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid architec-
ture for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7036-7045, 2019.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440-1448, 2015.

Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang. Autogan: Neural architecture search
for generative adversarial networks. arXiv preprint arXiv:1908.03835, 2019.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. In /CLR, 2018.

Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, and Junzhou Huang. Nat:
Neural architecture transformer for accurate and compact architectures. In Advances in Neural
Information Processing Systems, pp. 735-747, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected

convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700-4708, 2017.

11

Published as a conference paper at ICLR 2020

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep
embedding: An unsupervised and generative approach to clustering. In International Joint Con-
ference on Artificial Intelligence, pp. 1965-1972, 2017.

Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to remember rare events. In
ICLR, 2017.

Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Youngduck Choi,
Yongseok Choi, Dong-Yeon Cho, and Jiwon Kim. Auto-meta: Automated gradient based meta
learner search. arXiv preprint arXiv:1806.06927, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2, 2015.

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of

simple visual concepts. In Proceedings of the Annual Meeting of the Cognitive Science Society,
volume 33, 2011.

Stanislas Lauly, Yin Zheng, Alexandre Allauzen, and Hugo Larochelle. Document neural autore-
gressive distribution estimation. The Journal of Machine Learning Research, 18(1):4046—4069,
2017.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-
shot learning. arXiv preprint arXiv:1707.09835, 2017.

Dongze Lian, Jing Li, Jia Zheng, Weixin Luo, and Shenghua Gao. Density map regression guided
detection network for rgb-d crowd counting and localization. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 19-34, 2018a.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan Yuille, and Li Fei-
Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation.
arXiv preprint arXiv:1901.02985, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In ICLR, 2018.

Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler. Rapid adaptation with
conditionally shifted neurons. In ICML, 2018.

Boris Oreshkin, Pau Rodriguez Lépez, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. In Advances in Neural Information Processing Systems,
pp. 721-731, 2018.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In /ICML, 2018.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In /CLR, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. arXiv preprint arXiv:1802.01548, 2018.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine learn-
ing, pp. 1842-1850, 2016.

12

Published as a conference paper at ICLR 2020

Albert Shaw, Bo Dai, Weiyang Liu, and Le Song. Bayesian meta-network architecture learning.
CoRR, abs/1812.09584, 2018. URL http://arxiv.org/abs/1812.09584,

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pp. 4077-4087, 2017.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot
learning. In CVPR, 2019.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1199-1208, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104-3112, 2014.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pp. 3630-3638, 2016.

Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Gesmundo. Transfer learning with neural
automl. In Advances in Neural Information Processing Systems, pp. 8356-8365, 2018.

Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Bengio, and Yangqiu Song. Metagan:
An adversarial approach to few-shot learning. In Advances in Neural Information Processing
Systems, pp. 2365-2374, 2018.

Yin Zheng, Richard S Zemel, Yu-Jin Zhang, and Hugo Larochelle. A neural autoregressive approach
to attention-based recognition. International Journal of Computer Vision, 113(1):67-79, 2015a.

Yin Zheng, Yu-Jin Zhang, and Hugo Larochelle. A deep and autoregressive approach for topic
modeling of multimodal data. IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(6):1056-1069, 2015b.

Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. A neural autoregressive approach
to collaborative filtering. In International Conference on Machine Learning, pp. 764-773, 2016.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

A THE EXPERIMENTS OF AUTO-MAML

In Auto-MAML, we search a good network architecture for MAML. In fact, Auto-MAML is a spe-
cial case of Method2 of Figure 1 in this paper, where all tasks share the same architecture searched
with a meta-learning method. In the practical algorithm, it is similar to T-NAS, which is behaved as
removing the update for 6 in the meta-searcher stage. However, in Auto-MAML, we can divide the
whole dataset into two splits for the updates of 6 and w following the recent gradient-based NAS
methods (Pham et al.| 2018; |Liu et al., |2018b). Here, the Dpeta-train 1S divided into two independent
splits Diggin-sptitt AN Digain-spiicc. With 1 : 1. The specific algorithm for meta-train and meta-test is
shown in Alg. [3]

We follow the same definition for architecture search as T-NAS and we also use one {normal +
reduction} cell for Auto-MAML. The searched architecture 6* is shared by all tasks. We utilize the
two splits of training data for architecture search. The search model is trained for 10 epochs with
5000 independent tasks for each epoch and the initial channel is set as 16. For base-searcher, we
use the vanilla SGD to optimize the network weight w]" with inner learning rate ipner = 0.01. The
inner step M 1is set as 5 for the trade-off between accuracy and time. For the meta-update, we use the
Adam to optimize the network weights w and architecture # with outer learning rate cguer = 1073
and 8 = 3 x 10~%. The hyperparameter setting for network evaluation is the same as T-NAS. Here,
we visualize some discrete architecture structure searched with Auto-MAML on the Mini-Imagenet
dataset in Figure [3]and Figure [4]

13

http://arxiv.org/abs/1812.09584

Published as a conference paper at ICLR 2020

sep_conv_5x5

avg_pool_3x3
avg_pool 3x3 1 |

avg_pool_3x3

avg_pool_3x3

(a) Normal cell (b) Reduction cell

Figure 3: Architecture searched with Auto-MAML in 5-way 1-shot setting of Mini-imagenet.

avg_pool_3x3

(a) Normal cell (b) Reduction cell

Figure 4: Architecture searched with Auto-MAML in 5-way 5-shot setting of Mini-imagenet.

B TASK-SPECIFIC ARCHITECTURES

The aim of this paper is to learn a transferable architecture that is able to adapt to a new task through
a few gradient steps. Therefore, it is meaningless that directly decoding for the searched meta-

architecture 6 without regard to the specific tasks. Here, we visualize the (encoding of) transferable
architecture 6 ﬂsearched with T-NAS and task-specific architecture 6,62 03 in Figure |5, The

matrix (enormaly Breduce) searched with T-NAS is smoother than the task-specific architecture matrices

(0 mals 0 dme) which shows that the meta-architecture is flexible and easy to adapt to these

specific task (6 — 61,62, 63).

C COMPLETE EXPERIMENTAL COMPARISON

In this section, we show the complete experimental comparison of our method with those methods
using pretrained model in Table@ Some methods (Oreshkin et al.| 2018; Sun et al.|[2019) get better
performance by employing more complex networks and pretrained model.

D PERFORMANCE COMPARISON ON CIFAR-10 AND IMAGENET

To evaluate the transferability of our method, we also conduct the experiments on CIFAR-10 and
ImageNet. Firstly, we construct a larger dataset from ImageNet to learn the meta-architecture, and
then adapt the meta-architecture on CIFAR-10 to decode the final architecture. We test the perfor-
mance of the final architecture on CIFAR-10 and ImageNet and report the performance in Table
and Table [8] From these two tables, we can see that the learned meta-architecture from T-NAS
can quickly adapt to new tasks and achieve favorable performance. For example, given the learned
meta-architecture from T-NAS, it only takes 0.042 GPU days to derive an architecture that achieves
test error of 2.98% on CIFAR-10 and 27.2% on ImageNet. In contrast, searching for an architecture
that achieves similar performance from scratch on CIFAR-10 by DARTS (first order) would cost

“Ttis represented with matrix as|Liu et al.|(2018b).

14

Published as a conference paper at ICLR 2020

Algorithm 3: Auto-MAML

Input: Dataset Diin-spliti > Dirain-split2> INNET learning rate vinper, outer learning rate ooueer and
architecture learning rate (.
Qutput: The searched architecture 6*.
1 % Meta-train:
2 while not done do
3 % Update w
4 Sample batch of tasks {7} in Dyin-splici ;
5 for 7; € {T} do
6
7

Get datapoints 7;°;
Compute V,,m L(g(T;%; 0, w]")) according to the standard cross-entropy loss;

8 Update w}* with w;nH = w;" — Qinner Varr L(g(T7?;0,w)) for M steps;
9 Get datapoints 7,7 for meta-update;
10 end

1 Update w with W = W — Qoyer Vi ZTin(T) L7 (9(Tg; 0,w)) 5
12 % Update 0

13 Sample batch of tasks {7} in Dyin-splic2

u | for7; € {T}do

15 Get datapoints 7;°;

16 Compute V,m L(g(T;%; 0, w]")) according to the standard cross-entropy loss;
17 Update w]™ with w;’”rl = w]" — Cinner Vwrr L(g(T;%; 0, w]")) for M steps;

18 Get datapoints 7,7 for meta-update;

19 end

2 | Update 6 with 0 =60 — 5V >) L(g(T;%:6,w]"));

21 end

% Meta-test:

23 Sample tasks {7} in Dyain-split2;

2 for 7; € {T} do

25 Update w]™ with w" ™' = w™ — Qinner Vwrm L(g(T;°; 0, wi™)) for M steps;
26 Compute test accuracy Ace; in 7,7,

27 end

28 Return architecture 6* according to the best average accuracy of { Acc}.

N
N

Table 6: 5-way accuracy results on Mini-Imagenet.

Methods Architectures Parameters 1-shot S-shot Pretrained
TADAM (Oreshkin et al.[[2018) ResNet12 2039.2K 58.5+£0.3% 76.7 + 0.3% Y
MTL (Sun et al.; 2019) ResNet12 2039.2K 61.2 £+ 1.8% 75.5 £ 0.8% Y
Matching nets (Vinyals et al.[2016) 4CONV 329K 43.44 £ 0.77% 5531 £0.73% N
ProtoNets (Snell et al.|[2017) 4CONV 329K 49.42 £+ 0.78% 68.20 £ 0.66% N
Meta-LSTM (Ravi & Larochelle, [2017) 4CONV 329K 43.56 + 0.84% 60.60 £+ 0.71% N
Bilevel (Franceschi et al.;[2018) 4CONV 329K 50.54 + 0.85% 64.53 £ 0.68% N
CompareNets (Sung et al.||2018) 4CONV 329K 50.44 + 0.82% 65.32 £ 0.70% N
LLAMA (Grant et al.||2018) 4CONV 32.9K 49.40 £+ 1.83% - N
MAML (Finn et al.;|2017) 4CONV 32.9K 48.70 £+ 1.84% 63.11 £ 0.92% N
MAML (first-order) (Finn et al.}|2017) 4CONV 329K 48.07 £ 1.75% 63.15 £ 091% N
MAML++ (Antoniou et al.}|2019) 4CONV 32.9K 52.15 £+ 0.26% 68.32 + 0.44% N
Auto-Meta (small) (Kim et al.;[2018) Cell 28/28 K 49.58 £+ 0.20% 65.09 £ 0.24% N
Auto-Meta (large) (Kim et al.}[2018) Cell 98.7/94.0 K 51.16 £ 0.17% 69.18 £ 0.14% N
BASE (Softmax) (Shaw et al.}[2018) Cell 1200K - 65.40 £ 0.74% N
BASE (Gumbel-Softmax) (Shaw et al.[[2018) Cell 1200K - 66.20 £ 0.70% N
Auto-MAML) Cell 23.2/26.1 K 51.23 £ 1.76% 64.10 £ 1.12% N
T-NAS Cell 24.3/26.5 K* 52.84 + 1.41% 67.88 £ 0.92% N
T-NAS++ Cell 24.3/26.5 K* 54.11 + 1.35% 69.59 + 0.85% N

* means the average parameters of architectures for evaluation.

1.5 days, which is about 36 times longer than that of T-NAS. This result confirms the advantage of
T-NAS and also indicates that it is possible to apply T-NAS to practical scenarios.

15

Published as a conference paper at ICLR 2020

10 10
. 1.0 o 10 o 0
2 im 2 08 Z 0s 2 08
4 a 4 4
06 06 06 06
6 6 6 6
8 0.4 8 0.4 8 04 g . 0.4
10 10 10 10
02 02 02 || 02
12 12 12 2 !
0.0 0.0 0.0 0.0
o 2 4 6 o 2 4 6 0 2 4 6 o 2 4 6
]] 1 1
normal Breduce Ohormal Breduce
10 10 10 10
0 0. 0 0
2 08 2 08 2 LERE 08
4 44 4 4
0.6 0.6 0.6 0.6
6 6 I 6 6
8 04 8 . 04 8 04 g . 0.4
10 104 10 10
02 02 0.2 02
12 124 12 124
= ‘ o L M 00 — I o L B
0 2 4 6 (] 2 4 6] 2 a4 6 () 2 4 6
4] 2 92 4] 3 0 3
normal reduce normal reduce

Figure 5. Meta-architecture matrix (Onormals Oreduce) searched with T-NAS and three task-specific
architecture matrices (67,,.,...;s 0-cquee)- The search experiments are conducted in 5-way, 5-shot

setting of Mini-Imagenet dataset.

Table 7: Comparisons with state-of-the-art image classifiers on CIFAR-10.

Methods Test Error #Param. Search Cost
(%) ™) (GPU days)
Random search baseline + cutout 3.29 £0.15 3.2 -
NASNet-A + cutout (Zoph et al., 2018) 2.65 33 180
AmoebaNet-A + cutout (Real et al., 2018 3.34 3.2 3150
AmoebaNet-B + cutout (Real et al.,[2018 2.55 £ 0.05 2.8 3150
PNAS (Liu et al.. [2018a 3.41 £ 0.09 3.2 225
ENAS+cutout (Pham et al., 2018 2.89 4.6 0.5
DARTS (first-order) + cutout (L1u et al., 2018b) 3.00+0.14 3.3 1.5
DARTS (second-order) + cutout (Liu et al.,[2018b) | 2.76 £+ 0.09 3.37 4
Ours (first-order) + cutout 2.98 £0.12 3.4 0.043

Table 8: Comparisons with state-of-the-art image classifiers on ImageNet in the mobile setting.

Test Error (%) Search Cost

Methods fop-1 t0p-5 #Params (M) (GPU days)
NASNet-A (Zoph et al., 2018 26.0 8.4 5.3 1800
NASNet-B (Zoph et al., 2018 27.2 8.7 5.3 1800
NASNet-C (Zoph et al.,[2018 27.5 9.0 4.9 1800
AmoebaNet-A (Real et al., 2018 25.5 8.0 5.1 3150
AmoebaNet-B (Real et al.| 2018 27.2 8.7 53 3150
AmoebaNet-C (Real et al., 2018 27.5 9.0 4.9 3150
PNAS (Liu et al..[2018a 25.8 8.1 5.1 ~255

DARTSqZ]mL.[L]m&) 269 9.0 4.9 4

Ours 27.3 9.0 4.9 0.043

16

	Introduction
	Related Work
	Neural Architecture Search
	Few-Shot Meta-Learning

	Preliminary
	Meta-Learning
	DARTS

	Approach
	The Formulation of T-NAS
	T-NAS vs. NAS
	Optimization
	Adaptation and Decoding

	Experiments
	Datasets
	T-NAS for Few-Shot Learning
	Architecture Search.
	Architecture Evaluation.

	T-NAS for Supervised Learning

	Conclusion and Future Work
	The Experiments of Auto-MAML
	Task-Specific Architectures
	Complete Experimental Comparison
	Performance Comparison on CIFAR-10 and ImageNet

