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ABSTRACT

Metric embeddings are immensely useful representations of associations between
entities (images, users, search queries, words, and more). Embeddings are learned
by optimizing a loss objective of the general form of a sum over example associa-
tions. Typically, the optimization uses stochastic gradient updates over minibatches
of examples that are arranged independently at random. In this work, we propose
principled methods of structuring the arrangements of training examples aimed at
accelerating the training. Our arrangements consist of randomized microbatches
of examples from a distribution that is guided by the structure of the example
associations but respects a specified marginal distribution of training examples. We
present efficient microbatch generators and experimentally demonstrate training
time acceleration of 3-30%. Structured arrangements emerge as a powerful and
novel performance knob for SGD that is independent and complementary to other
SGD hyperparameters and thus is a candidate for wide deployment.

1 INTRODUCTION

Metric embeddings of entities that are trained to capture example associations are common repre-
sentations that also allow for inference of associations not present in the data. Embeddings are used
in complex learning tasks or directly applied for similarity and recommendations tasks. Example
usage domains includes embeddings of text document from occurrences of words Berry et al. (1995);
Dumais (1995); Deerwester et al. (1990), users and videos from watch or ratings Koren et al. (2009),
words from co-occurrence frequencies in a corpus Mikolov et al. (2013), and nodes in a graph from
co-occurrence in short random walks Perozzi et al. (2014). The example associations may involve
entities of the same type (word co-occurrences, video co-watch, social) or different types (such as
users and products) and often are distilled by reweighing frequencies of raw interactions Salton &
Buckley (1988); Deerwester et al. (1990); Mikolov et al. (2013); Pennington et al. (2014).

Embeddings are computed by minimizing a loss objective of the form of a sum over example
associations. The optimization starts with random initialization followed by gradient updates. In
modern applications, the objective can have billions of terms or more, and the de facto method at such
scale is stochastic gradient descent (SGD) Robbins & Siegmund (1971); Koren (2008); Salakhutdinov
et al. (2007); Gemulla et al. (2011); Mikolov et al. (2013). The terms (examples) are randomly
grouped into minibatches. Gradient updates, that are equal in expectation to the full gradient, are
then computed sequentially for each minibatch. SGD is much more efficient than working with
full gradients and the minibatch size determines the amount of concurrency. There are numerous
tunable parameters and methods aimed to improve quality and speed of convergence. Some notable
recent work includes per-parameter tuning of the learning rate Duchi et al. (2011) and altering the
distribution of training examples by gradient magnitude Alain et al. (2015), negatives selection with
triplet loss Schroff et al. (2015), clustering Fu & Zhang (2017) and diversity criteria Zhang et al.
(2017).

In this work we introduce principled schemes that control the arrangement of examples into mini-
batches. Note that arrangement tuning is separate and orthogonal to optimizations knobs that alter
the distribution of training examples, learning rate, or minibatch size. The baseline practice of
independent arrangements places examples into minibatches independently at random. This practice
is supported by classic SGD convergence analysis and has the upside of controlling the variance of
the stochastic gradients. We make a novel case here for an antithesis of independent arrangements
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which we term coordinated arrangements. Coordinated arrangements are much more likely to place
corresponding associations in the same minibatch. We show that coordination offers different upsides:
At the micro level, updates are more effective in pulling vectors of similar entities closer. At a macro
level, the examples in small fractions of epochs encode (in expectation) the similarity structure in the
full set of example associations whereas independent arrangement disperse that information. This
“self similarity” of the training sequence effectively allows a single epoch to act as multiple passes.

We specify coordinated arrangements through a distribution on randomized subsets of associations
which we refer to as microbatches. Basic coordinated microbatches co-place corresponding associa-
tions to the maximum extent possible while adhering to the marginal distribution of training examples.
Locality Sensitive Hashing (LSH) maps allow for refining our microbatches so that corresponding
associations are more likely to be co-placed when the overall similarity of the entities is higher. The
LSH maps we apply leverage some available coarse proxy of entity similarity. A readily available
first-order proxy is the similarity of the sparse association vectors. Another proxy is an embedding
obtained by a weaker model. We present efficient generators of basic and refined microbatches for
both LSH functions. Finally, microbatches are independently grouped into minibatches of desired size,
which allows us to retain the traditional advantages of independent arrangements at the microbatch
level. This design enables us to tune the microbatches to the problem and even the stage of training.

We compare the effectiveness of different arrangements through experiments on synthetic stochastic
block matrices and on recommendation data sets. The stochastic block data, with its simplicity and
symmetry, allows us to factor out the potential effect of other optimizations. We learn that basic
coordination is always beneficial earlier in training whereas LSH refinements are more effective later
on. We obtain consistent 3%-30% reduction in training with respect to the independent arrangements
baseline that holds across other training hyperparameters.

The paper is organized as follows. Section 2 presents necessary background on the loss objective we
use in our experiments and working with minibatches with one-sided gradient updates. In Section 3
we define LSH microbatches and coordinated minibatch arrangements. In We report our experiment
results comparing different arrangement methods on stochastic blocks and on recommendation data
sets in Section 4. In Section 5 we examine properties of coordinated arrangements that are helpful for
faster convergence. We conclude in Section 6.

2 PRELIMINARIES

Our data has the form of associations between a set F of focus entities and a set C of context entities.
In practice, the focus and context entities could be the same type or even two representations of the
same set (say words or images) or different types (users and videos). We use κij as the association
strength between focus i and context j. In practice, the association strength can be derived from
frequencies in the raw data or from an associated value (for example, numeric rating or watch time).

An embedding is a set of vectors fi, cj ∈ <d that is trained to minimize a loss objective that
encourages fi · cj to be larger when κij is larger. For concreteness, we focus here on Skip Gram with
Negative Sampling (SGNS) loss Mikolov et al. (2013). Examples of positive associations (i, j) are
drawn with probability proportional to κij . Random associations are then used as negative examples
Hu et al. (2008): Each positive example (i, j) is matched with a set of negative examples of i with
random context entities and similarly j with random focus entities. The negative examples provide
an antigravity effect that prevents all embeddings from collapsing into the same vector. We use the
notation nij for respective weights of negative associations.

The SGNS objective is designed to maximize the log likelihood of these examples. The probability
of positive and negative examples are respectively modeled using

pij = σ(fi · cj) =
1

1 + exp(−fi · cj)
and 1− pij = σ(−fi · cj) =

1

1 + exp(fi · cj)
.

The likelihood function, which we seek to maximize, can then be expressed as Πij p
κij

ij Πij(1 −
pij)

nij . We equivalently can minimize the negated log likelihood that turns the objective into a sum:

L :=
∑
ij

κij log pij +
∑
ij

nij log(1− pij) .
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The optimization is performed by random initialization of the embedding vectors followed by
stochastic gradient updates. The stochastic gradients are computed for minibatches of examples that
include b positive examples, where (i, j) appears with frequency κij/|κ|1 and corresponding sets of
negative examples.

2.1 ONE-SIDED UPDATES

We work with one-sided updates, where each minibatch updates only its focus or only its context
embedding vectors, and accordingly say that minibatches are designated for focus or context up-
dates. One-sided updates are related to alternating minimization Csiszar & Tusnády (1984) and to
decomposition-coordination approaches Cohen (1980). For our purposes, one-sided updates facilitate
our coordinated arrangements and also allow more precise matching of corresponding sets of negative
examples to positive ones. In a focus-updating minibatch, we will generate a random set of λ context
vectors C ′ and for each positive example (i, j) we generate λ negative examples (i, j′) for j′ ∈ C ′.
The focus embedding fi is updated to be closer to cj but at the same time repealed (in expectation)
from C ′ context vectors. With applicable learning rate η, the update has the form:

fi ← fi − η∇fi

log σ(fi · cj) +
∑
j′∈C′

log σ(−fi · cj′)

 .

Symmetrically, for a context-updating minibatch we use a random set of focus vectors F ′ as
our negative examples and for each positive example (i, j) we perform the update cj ← cj −
η∇cj

(
log σ(fi · cj) +

∑
i′∈F ′ log σ(−fi′ · cj)

)
.

3 MINIBATCH ARRANGEMENT SCHEMES

Minibatch arrangement schemes determine how examples are organized into minibatches of specified
size parameter b. At the core of each arrangement scheme is a distribution B over subsets of
positive examples which we call microbatches. Our microbatch distributions have the property
that the marginal probability of each example (i, j) is always equal to κij/||κ||1. However, subset
probabilities vary between schemes and within a scheme we generally will have different distributions
Bf for focus and Bc for context designations.

Minibatches are obtained from microbatches as specified in Algorithm 1 for focus updates (a
symmetric construction applies to context updates). The input is a microbatch distribution Bf ,
minibatch size parameter b, and a parameter λ that determines the ratio of negative to positive training
examples. We draw independent microbatches until we have a total of b or more positive examples.
We then draw λ random contexts C ′ and generate λ negative examples (i, j′) for j′ ∈ C ′ for each
positive example (i, j). When training, we alternate between focus and context updating minibatches.

Algorithm 1: Minibatch construc-
tion (Focus updates)
Input: Bf , b, λ // Microbatch

distribution, size,
negative sampling

P,N ← ∅
repeat X ∼ Bf ; P ← P ∪X
until |P | ≥ b
C′ ← λ contexts selected uniformly

at random
foreach example pair (i, j) ∈ P do

foreach j′ ∈ C′ do
N ← N ∪ {(i, j′)}

return P ∪N

The baseline independent arrangement method (IND) can
be placed in this framework using microbatches that consist
of a single positive example (i, j) selected with probability
κij/||κ||1 (see Algorithm 2). With coordinated arrange-
ments, the microbatch distribution depends on designation.
Algorithm 3 generates basic coordinated microbatches (COO)
for focus-updates. These microbatches have the form of a
set of positive examples with a shared context.

Basic microbatches have the property that if κij ≤ κi′j and
the positive example (i, j) is included in a basic microbatch
then the microbatch would also include the positive example
(i′, j). It is instructive to consider the special case of κ with
all positive entries being equal: Basic microbatches with
focus designation have the form of some context j, and all
(i, j) with positive κij . Our basic microbatches maximize
the co-placement probability of two examples with a shared
context while respecting the marginal probabilities. A sym-

metric construction applies to context-update microbatches that maximize the co-placement of two
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examples with a shared focus. We establish that our microbatch generator respects the marginal
probabilities, that is, example (i, j) is included with probability ∝ κij :
Lemma 3.1. A positive example (i, j) is included in a basic coordinated microbatch (Algorithm 3)
with focus designation with probability κij/M and in a microbatch with context designation with
probability κij/N , where M :=

∑
hMh with Mh := maxi κih for context h and N :=

∑
hNh

with Nh := maxj κhj for focus h.

Proof. Consider focus updates (apply a symmetric argument for context updates). The example (i, j)
is selected if first context j is selected, which happens with probability Mj/M and then we have
u ≤ κij/Mj for independent u ∼ U [0, 1], which happens with probability κij/Mj . Combining,
the probability that (i, j) is selected is the product of the probabilities of these two events which is
κij/M .

We preprocess κ and precompute the per-context maxima so that we can efficiently draw a random
context with probability proportional to the column maxima. We also generate an index for efficient
retrieval, for context j and a threshold value T , of all entries i with κij ≥ T . The preprocessing is
linear in the sparsity of κ. Note that it is typical in applications to preprocess the data, in particular, to
obtain κ by aggregating and reweighing the frequencies of associations in the raw data. The additional
overhead imposed by our preprocessing is minimal. We can observe that given this preprocessing,
the microbatch generator is very efficient: It draws a context according to the distribution (which is
O(1) operation) and then uses T to index into the start point in the sorted “column.”

3.1 LSH MAPS

Placement of (i, j) and (i′, j) in the same focus updating microbatch results in pulling fi and fi′
closer together (see the micro-level property highlighted in Section 5). This is helpful when the
entities i and i′ are similar in that they have a close target embeddings. Otherwise, the update is
anyhow countered by other updates and the placement have undesirable effect that it increases the
microbatch size and may increase variance of the stochastic gradients. In particular, since a large
microbatch is processed by consecutive same-designation minibatches, it increases the effective
minibatch size to microbatch size. This suggests that it would be useful to tune the quality of
co-placements so as to decrease unhelpful ones while retaining as many helpful ones as we can. We
do this using locality sensitive hashing (LSH) to compute randomized maps of entities to keys. Each
map is represented by a vector s of keys for entities such that similar entities are more likely to obtain
the same key. We use these maps to refine our basic microbatches by partitioning them according to
keys. The refined microbatches (COO+LSH) are smaller and of higher quality, with a larger fraction
of helpful co-placements (higher “precision”) but also fewer helpful co-placements over all (lower
“recall”).

Ideally, our LSH modules would correspond to the similarity captured by the target embedding. This
however creates a chicken-and-egg problem as the target embedding is not available at the start of
training and is what we want to compute. Instead, we use LSH modules that are available at the start
of training and are only a coarse proxy of the target similarity. The coarse embedding can come
from a weak signal evident from feature vectors, a weaker (and cheaper to train) model, or from a
partially-trained model. We work with two LSH modules based on Jaccard and on Angular LSH.
The modules generate maps for either focus or context entities which are applied according to the
microbatch designation. We will specify the map generation for focus entities, as maps for context
entities can be symmetrically obtained by reversing roles.

Our Jaccard LSH module is outlined in Algorithm 4. The probability that two focus entities i and
i′ are mapped to the same key (that is, si = si′) is equal to the weighted Jaccard similarity of their
association vectors κi· and κi′· (For context updates the map is according to the vectors κ·j):
Lemma 3.2. Cohen et al. (2009)

Pr[si = si′ ] =

∑
j min{κij , κi′j}∑
j max{κij , κi′j}

.

Our angular LSH module is outlined in Algorithm 5. Here we input an explicit “coarse” embedding
f̃i, c̃j that we expect to be lower quality proxy of our target one. (In our experiments we use angular
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LSH with a lower dimension SGNS model.) Each LSH map is obtained by drawing a random vector
and then mapping each entity i to the sign of a projection of f̃i on the random vector. The probability
that two focus entities have the same key depends on the angle between their coarse embedding
vectors:
Lemma 3.3. Goemans & Williamson (1995)

Pr[si = si′ ] = 1− 1

π
cos−1 cossim(f̃i, f̃i′) ,

where cossim(v,u) := v·u
||v||2||u||2 is the cosine of the angle between the two vectors.

We can always apply multiple LSH maps to further refine basic microbatches. Each application
decreases the microbatch size and increases quality (similarity level of entities placed in the same mi-
crobatch). More precisely, with r independent maps the probability that two entities are microbatched
together decreases to Pr[si = si′ ]

r – thus the probability decreases faster when similarity is lower.
The number of LSH maps we apply can be set statically or adaptively to obtain microbatches that
are at most a certain size (usually the minibatch size). We can also increase the number as training
progresses. For efficiency, we precompute a small number of LSH maps in the preprocessing step
and randomly draw from that set. The computation of each map is linear in the sparsity of κ.

Algorithm 2: Independent microbatch
Input: κ
Choose (i, j) with probability κij/||κ||1;
return {(i, j)}

Algorithm 3: Basic coordinated micro-
batches (Focus updates)
Input: κ
// Preprocessing:
foreach context j do

Mj ← maxi κij // Maximum entry
for context j

Index column j so that we can return for each
t ∈ (0, 1], P (j, t) := {i | κij ≥ tMj}.

// Microbatch draw:

Choose a context j with probability Mj∑
h Mh

Draw u ∼ U [0, 1]
return P (j, u)

Algorithm 4: Jaccard LSH (Focus updates)
foreach context j do // i.i.d Exp
distributed

Draw uj ∼ Exp[1]

foreach focus i do // assign LSH bucket
key
si ← argminj uj/κij

return s

Algorithm 5: Angular LSH (Focus updates)

Input: {f̃i} // coarse d dimensional
embedding

Draw r ∼ Sd // Random vector from
the unit sphere

foreach focus i do // assign LSH bucket
key
si ← sign(r · f̃i)

return s

4 ARRANGEMENT METHODS EXPERIMENTS

We train embeddings with different minibatch arrangement methods: The baseline independent
arrangements (IND) as in Algorithm 2, coordinated arrangements with basic microbatches (COO)
as in Algorithm 3, and the following coordinated arrangements with LSH partitioned microbatches
(COO+LSH): (i) Jaccard: single Jaccard LSH map, (ii) Jaccard*: repeated partitions until the
microbatch sizes are capped by the minibatch size b and (iii) angular*: angular LSH with respect to
a pre-computed d = 3 dimensional embedding, applied repeatedly to obtain microbatches of size
that is capped by b. We also evaluate tunable arrangements (MIX) that start with COO, may switch to
(one variant) of COO+LSH or to IND, and may switch from COO+LSH to IND. This MIX design
allows us to benefit from a higher recall (albeit lower precision) of helpful co-placements (COO)
being more effective in early training regime and also allows for IND arrangements in the late training
regime after the coarse similarity proxy used in our LSH maps exceeds its utility. The (at most) two
switch points of each MIX method are hyperparameters that were determined once via a grid search
and then used across repetitions (generated synthetic data and splits for recommendation data). The
coordinated arrangement methods we implemented are not meant to be a comprehensive coverage
of our approach and were not even selected to maximize performance. Our intention is to present
and evaluate a sampler of basic simple methods in order to provide usage examples, understand the
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Figure 1: Precision at k = 10 with different arrangement methods in the course of training (d = 50,
b = 64). Using 104 × 104 stochastic blocks matrices with B ∈ {10, 20, 50, 100}. The switch point
for the MIX method are shown in blue (to COO+LSH) and green (to IND). The solid lines are for
Jaccard LSH and the dashed lines are for angular LSH.

potential of coordinated arrangements, and develop an understanding of what methods are more
effective in different training regimes.
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Figure 2: Cosine gap with different arrangement methods in the course of training (d = 50, b = 64).
Using 104 × 104 stochastic blocks matrices with B ∈ {10, 20, 50, 100}. The switch point for the
MIX method are shown in blue (to COO+LSH) and green (to IND). The solid lines are for Jaccard
LSH and the dashed lines are for angular* LSH.

4.1 STOCHASTIC BLOCKS DATA

We generated synthetic data sets using the stochastic blocks model Condon & Karp (2001). This
allowed us to explore the effectiveness of different arrangement methods when we vary the number
and size of blocks. The simplicity and symmetry of this data (parameters, entities, and associations)
allowed us to compare different arrangement methods while factoring out other potential optimiza-
tions and methods geared for asymmetric data such as per-parameter learning rates or alterting the
distribution of examples.

The parameters for the generative model are the dimensions n×n of the matrix, the number of (equal
size) blocks B, the number of interactions r, and the in-block probability p. The rows and columns
are partitioned to consecutive groups of n/B, where the ith part of rows and ith part of columns are
considered to belong to the same block. We generate the matrix by initializing the associations to
be κij = 0. We then draw r interactions independently as follows. We select a row index i ∈ [n]
uniformly at random. With probability p, we select (uniformly at random) a column j ∈ [m] that
is in the same block as i. Otherwise (with probability 1 − p) we select a uniform column j ∈ [n]
that is outside the block of i. We then increment κij . The final association κij is the number of
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times the interaction (i, j) was drawn. In our experiments we set n = 104, r = 107,p = 0.7 and
B ∈ {10, 20, 50, 100}.

4.2 IMPLEMENTATION AND METHODOLOGY

Our implementation was in Python using the TensorFlow library Abadi & et al. (2015) and building
on the word embedding implementation of Mikolov et al. (2013)1 except that we used our methods
to specify minibatches. The implementation included a default bias parameter and we trained
embeddings with and without the bias parameter. The relative performance of arrangement methods
was the same but the overall performance was significantly better with the bias parameter. We
therefore report results of embeddings with bias parameters (updated in a two-sided manner). We
used fixed and polynomially-decaying uniform learning rate with parameters that were tuned to
perform well on the baseline independent arrangements and used with all arrangement methods. We
worked with minibatch size parameter values b ∈ {4, 64, 246} (recall that b is the number of positive
examples and λ = 10 negative examples are matched with each positive example), and embeddings
dimension d ∈ {3, 5, 10, 25, 50, 100}.

4.3 QUALITY MEASURES

We use two measures of the quality of an embedding with respect to the blocks ground truth. The
first is the cosine gap which measures average quality and is defined as the difference in the average
cosine similarity between positive examples and negative examples. We generate a sampled set T+
of same-block pairs (i, j) as positive test examples and a sampled set T_ of pairs that are not in the
same block as negative test examples and compute

1

|T+|
∑

(i,j)∈T+

cossim(fi, cj)−
1

|T−|
∑

(i,j)∈T−

cossim(fi, cj) . (1)

We expect a good embedding to have high cosine similarity for same-block pairs and low (around 0)
cosine similarity for out of block pairs. The second measure we use, precision at k, is focused on
the quality of the top predictions and is appropriate for recommendation tasks. For each sampled
representative entity we compute the entities with top k cosine similarity and consider the average
fraction of that set that are in the same block.

4.4 STOCHASTIC BLOCKS RESULTS

Representative results for d = 50, b = 64, and varying block sizes (B = 10, 20, 50, 100) are reported
in Figure 1 (precision quality measure) and in Figure 2 (the cosine gap quality measure). For each
configuration we show how quality increases in the course of training and also zoom on the early part
of training. The x-axis in these plots shows the amount of training in terms of the total multiplicity of
positive training examples that were used for gradient updates. Respective results for other minibatch
sizes (b = 4 and b = 256) are reported in Appendix A.

We can observe that across all block sizes B and for the two quality measures our coordinated
arrangement methods result in faster convergence than the baseline IND method.

The different COO+LSH methods trade off the microbatch size (recall of helpful co-placements) and
co-placement quality (precision). We observe that the sweet spot for this tradeoff varies for different
regimes in the training. In particular, higher recall is beneficial early on: When zooming on early
training we see that COO (that has the largest recall) is dominant in the very early regime but may
deteriorate later, in particular for larger blocks (B = 10) (that yield even larger basic microbatches).

Jaccard COO+LSH that uses a single map still generates large microbatches in particular with larger
blocks but when used as part of a MIX (start with COO and ends with IND) the overall training is faster
that any of the components alone. We can also see that the switch point for IND occurs in early-mid
training and that the training gain obtained before that point is retained.

The Jaccard* and angular* COO+LSH methods which cap the microbatch size by the minibatch size
perform well for b = 64 and for b = 256. For b = 4, they are outperformed in early training by COO

1https://github.com/tensorflow/models/blob/master/tutorials/embedding/
word2vec.py
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(which provides a higher “recall” of helpful co-placements) and overall it is outperformed by MIX
that start with COO continues with COO+LSH with a single Jaccard map, and ends with IND. The
additional results reported in Appendix A for minibatch size parameters b = 4 and b = 256 indicate
that (as expected) the relative advantage of the coordinated methods increases with minibatch size
and consistently result int training gains of 5-30% over the baseline IND arrangements.

In Appendix B we consider training embeddings with different dimensions: We observe the same
relative performance of arrangement methods as reported for d = 50. We also see that the peak
quality is lower for d = 3, which justifies its use as a “coarse” proxy with angular LSH.

4.5 RECOMMENDATION DATA SETS AND RESULTS

LSH 0.75× peak 0.95× peak 0.99× peak
%gain ×106 %gain ×106 %gain ×106

AMAZON: Gain of COO+LSH over IND (peak=0.33)
Jac 4.29 3.50 6.86 5.83 11.02 7.17
Ang 10.00 3.50 13.38 5.83 16.04 7.17
MOVIELENS1M: Gain of MIX over IND (peak=0.40)
Jac 2.13 1.41 0.58 1.73 1.55 1.93
Ang 4.96 1.41 8.67 1.73 11.92 1.93

Table 1: AMAZON and MOVIELENS1M: Training
gain over IND baseline (b = 64, cosine gap).

We performed experiments on two recommen-
dation data sets, MOVIELENS1M and AMAZON.
The MOVIELENS1M dataset Movielen1M con-
tains 106 reviews by 6 × 103 users of 4 × 103

movies. The AMAZON dataset SNAP contains
5× 105 fine food reviews of 2.5× 105 users on
7.5 × 103 food items. Provided review scores
were [1-5] and we preprocessed the matrix by
taking κij to be 1 for review score that is at least
3 and 0 otherwise. We then reweighed entries
in the MOVIELENS1M dataset by dividing the
value by the sum of its row and column to the
power of 0.75. This is standard processing that

retains only positive ratings and reweighs to prevent domination of frequent entities.

We created a test set T+ of positive examples by sampling 20% of the non zero entries with probabili-
ties proportional to κij . The remaining examples were used for training. As negative test examples
T− we used random zero entries. We measured quality using the cosine gap equation 1 and show
results averaged over 5 random splits of the data to test and training sets and 5 runs per split. The
MIX and COO+LSH Jaccardwere the respective best performers on MOVIELENS1M and AMAZON.
Training gains (d = 50) with respect to the IND baseline are reported in Table 1. We observe
consistent reduction in training which indicate that arrangement tuning is an effective tool also on
these more complex real-life data sets.

5 EXPLAINING THE UPSIDE OF COORDINATION

We highlight two properties of coordinated arrangements that are beneficial to accelerating conver-
gence: A micro-level property that makes gradient updates more effective by moving embedding
vectors of similar entities closer and a macro-level property of preserving expected similarity in
fractions of epochs.
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Figure 3: Expected increase in
cossim(f1,f2) for fi ∼ N d after
gradient update to same random
context c ∼ N d

Effectiveness of gradient updates When updates on correspond-
ing associations of two entities are processed in the same minibatch
then the cosine similarity of their embedding vectors increases. This
holds also in early training when the embedding vectors are randomly
initialized. Similar entities have more corresponding associations
(fraction equals the Jaccard similarity) and benefit more from this
property. In particular, the SGNS loss term for a positive example is
L+(f , c) = log σ(f , c) = log

(
1

1+exp(−f ·c)

)
. The gradient with

respect to f is ∇f (L+(f , c)) = c 1
1+exp(f ·c) and the respective

update of f ′ ← f + η 1
1+exp(f ·c)c clearly increases cossim(f , c).

Consider two focus entities 1, 2 and corresponding positive asso-
ciations with context entity j. When positive examples (1, j) and
(2, j) are in the same focus-updating minibatch, both cossim(f1, c)
and cossim(f2, c) increase and a desirable side effect is that in expec-
tation cossim(f1,f2) increases as well. This is achieved when the
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Figure 4: Square 104 × 104 stochastic blocks when training with few example interactions (inde-
pendent and coordinated samples), with minibatch size b = 4. Left to right: (T = 5, B = 10);
(T = 5, B = 100), (T = 20, B = 10), (T = 20, B = 100).

updates on corresponding examples (1, j) and (2, j) is performed with the same current parameters
cj , which happens with COO (and with full gradients) but less so with IND arrangements that on
average place the two examples half an epoch apart. Figure 3 shows the expected increase in cosine
similarity E [cossim(f ′1,f

′
2)− cossim(f1,f2)] for learning rates η = 0.02, 0.05 when the vectors f1,

f2, and c are independently drawn from a product distribution N (0, 1)d of independent Gaussians.

Self similarity Coordinated arrangements preserve information on entity similarity in fraction of
epochs. More formally, consider for two entities the weighted Jaccard similarity computed from
examples in a small stretch of training that includes a very small number of examples with each
entity. With COO, the expected similarity is equal to that of the full vectors whereas with IND,
the similarity information disperses rapidly. This is because COO uses coordinated samples which
maximize preserved similarity for the marginal distribution Cohen et al. (2009). It is instructive to
consider two focus entities with Jaccard similarity J and M contexts with positive κij = c > 0. An
α � 1 fraction of an epoch will on average include αM sampled contexts from each focus entity.
When the samples are independent then the sets would be highly dissimilar even when J is close
to 1. When the samples are coordinated then the expected similarity in the sample corresponds to
the similarity of the original vectors. We next demonstrate the self similarity quality experimentally
with stochastic block matrices. We select small sets of positive training examples using independent
and coordinated sampling schemes according to the same per-entity marginal distributions. We then
train with this small set on multiple epochs until convergence as a way to gauge the “information”
each set provides and its effect on training speed. We sample T = 5, 10, 15, 20 example interactions
from each row (for focus updates) and symmetrically from each column (for context updates) of the
association matrix. With independent sampling we select T independent examples for each row i by
selecting a column j with probability κij/||κi·||1. For coordinated sampling we repeat the following
T times. We draw uj ∼ Exp[1] for each column and select for each i column arg maxj κij/uj .
Clearly the marginal distribution is the same, as the probability that column j is selected for row
i is equal to κij/||κi·||1. Symmetric schemes apply to columns. We trained embeddings (with
IND arrangements) on these smaller sets of examples on otherwise identical setups. Training was
one-sided and alternated on each minibatch with row samples used for updating row embeddings
and column samples for updating column embeddings. Representative results (b = 4) are reported in
Figure 4. We observe that the coordinated selection of training examples consistently attains faster
convergence in the earlier epochs. With fewer examples per entity, coordinated selection also had a
higher peak quality than the respective independent selection. With more examples and larger blocks,
the coordinated selection peaked lower, due to loss of the multi-hop expander structure.

6 CONCLUSION

We consider embedding computations with stochastic gradients and establish that the arrangement of
training examples into minibatches can be a powerful performance knob. In particular, we introduced
coordinated arrangements as a principled method to accelerate SGD training of embedding vectors.
Our experiments focused on the popular SGNS loss and our methods were designed for pairwise
associations. In future we hope to explore the use of coordinated arrangement with other loss
objectives, deeper networks, and more complex association structures.

9



Under review as a conference paper at ICLR 2019

REFERENCES

M. Abadi and et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software available from tensorflow.org.

G. Alain, A. Lamb, C. Sankar, A. C. Courville, and Y. Bengio. Variance reduction in SGD by
distributed importance sampling. CoRR, abs/1511.06481, 2015. URL http://arxiv.org/
abs/1511.06481.

Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using linear algebra for intelligent
information retrieval. SIAM Review, 37(4):573–595, 1995.

E. Cohen, H. Kaplan, and S. Sen. Coordinated weighted sampling for estimat-
ing aggregates over multiple weight assignments. VLDB, 2, 2009. full version:
http://arxiv.org/abs/0906.4560.

G. Cohen. Auxiliary problem principle and decomposition of optimization problem. J Optim Theory
Appl, 32, 1980.

A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted partition model. Random
Struct. Algorithms, 18(2), 2001.

I. Csiszar and G. Tusnády. Information geometry and alternating minimization procedures. Statistics
& Decisions: Supplement Issues, 1, 1984.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman.
Indexing by latent semantic indexing. Journal of the American Society for Information Science, 41
(6):391–407, September 1990.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res., 12, 2011. URL http://dl.acm.org/citation.cfm?
id=1953048.2021068.

Susan T. Dumais. Latent semantic indexing (LSI): TREC-3 report. In D. K. Harman (ed.), The
Third Text Retrieval Conference (TREC-3), pp. 219–230, Gaithersburg, MD, 1995. U. S. Dept. of
Commerce, National Institute of Standards and Technology.

T. Fu and Z. Zhang. Cpsg-mcmc: Clustering-based preprocessing method for stochastic gradient
mcmc. In AISTATS, 2017.

R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed
stochastic gradient descent. In ACM KDD 2011. ACM, 2011.

M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM, 42(6), 1995.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM,
2008.

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In
KDD, 2008.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42, 2009.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In NIPS, 2013.

Movielen1M. Movielen 1M Dataset. http://grouplens.org/datasets/movielens/1m/.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In
EMNLP, 2014.

B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In KDD.
ACM, 2014.

10

https://www.tensorflow.org/
http://arxiv.org/abs/1511.06481
http://arxiv.org/abs/1511.06481
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068


Under review as a conference paper at ICLR 2019

H. Robbins and D. O. Siegmund. A convergence theorem for non negative almost supermartingales
and some applications. In J. S. Rustagi (ed.), Optimizing Methods in Statistics. Academic Press,
1971.

R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering.
In ICML. ACM, 2007.

G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information
Processing & Management, 24(5):513 – 523, 1988.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and
clustering. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2015.

SNAP. Stanford network analysis project.
http://snap.stanford.edu.

C. Zhang, H. Kjellström, and S. Mandt. Stochastic learning on imbalanced data: Determinantal point
processes for mini-batch diversification. In UAI 2017, 2017.

11



Under review as a conference paper at ICLR 2019

A ADDITIONAL RESULTS FOR STOCHASTIC BLOCKS

We report here results for minibatch size parameter b = 4 and b = 256 for the same set of arrangement
methods and combinations as reported for b = 64 in Section 4.4 (dimension d = 50 and block sizes
B = 10, 20, 50, 100). Convergence with the precision quality measure is shown in Figure 5 (b = 4)
and Figure 6 (b = 256). Convergence for the cosine gap quality measure are shown in Figure 7
(b = 4) and Figure 8 (b = 256). We observe that the training gain of coordinated arrangements
over the baseline IND increases with minibatch size. The methods that cap the microbatch size by
the minibatch size (Jaccard* and Angular*) perform much better with larger minibatches, as larger
minibatches allow for a higher recall of helpful co-placements. In particular we can see that in early
training on small minibatches (b = 4) these methods are outperformed by COO (which produces our
largest (and unrefined) microbatches).
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Figure 5: Precision at k = 10 with different arrangement methods in the course of training (d = 50,
b = 4). Using 104 × 104 stochastic blocks matrices with B ∈ {10, 20, 50, 100}. The switch point
for the MIX method are shown in blue (to COO+LSH) and green (to IND). The solid lines are for
Jaccard LSH and the dashed lines are for angular LSH.
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Figure 6: Precision at k = 10 with different arrangement methods in the course of training (d = 50,
b = 256). Using 104 × 104 stochastic blocks matrices with B ∈ {10, 20, 50, 100}. The switch point
for the MIX method are shown in blue (to COO+LSH) and green (to IND). The solid lines are for
Jaccard LSH and the dashed lines are for angular LSH.

We quantify the gains of different methods over the baseline IND arrangements in the following tables.
Results for precision at k = 10 are reported in Table 2 for Jaccard LSH MIX, in Table 3 for (pure)
Jaccard*, and in Table 4 for angular* LSH MIX(where angular LSH is applied with respect to a d = 3
embedding). Results for cosine gap are reported in Table 5 for Jaccard LSH MIX and in Table 6 for
angular* LSH MIX.

The tables report results for different minibatch sizes b and block sizes B. In each table we list
the peak quality (cosine gap or precision) of the respective coordinated method and the amount of
training used by IND to reach 0.75, 0.95, or 0.99 of that peak. We also show the reduction in training
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Figure 7: Cosine gap with different arrangement methods in the course of training (d = 50, b = 4).
Using 104 × 104 stochastic blocks matrices with B ∈ {10, 20, 50, 100}. The switch point for the
MIX method are shown in blue (to COO+LSH) and green (to IND). The solid lines are for Jaccard
LSH and the dashed lines are for angular* LSH.
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Figure 8: Cosine gap with different arrangement methods in the course of training (d = 50, b = 256).
Using 104 × 104 stochastic blocks matrices with B ∈ {10, 20, 50, 100}. The switch point for the
MIX method are shown in blue (to COO+LSH) and green (to IND). The solid lines are for Jaccard
LSH and the dashed lines are for angular* LSH.

that is gained by using the respective coordinated method instead of IND. Overall, we can see that
the coordinated methods consistently had training gains of 5-30%. The gain is larger with smaller
blocks and also with larger minibatches. The emphasized numbers in the Jaccard MIX and Jaccard*
correspond to the method that provided the higher gain. We can see that Jaccard* performed better
than Jaccard MIX for larger minibatch sizes.

B EMBEDDING DIMENSION ANALYSIS

We report here results on the effect of the dimension on the embedding quality and convergence,
focusing on training with IND arrangements. Figure 10 shows quality in the course of training for
different dimensions for selected 104 × 104 stochastic block matrices. We show both the cosine gap
and the precision with k = 10. Figure 9 shows the cosine gap and precision with k = 10 quality
for the MOVIELENS1M and AMAZON data sets. The precision on the recommendation data sets is
computed over focus entities (users) with at least 20 positive entries. The precision is the fraction of
top k that are in the test set.
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#blocks mbatch 0.75 0.95 0.99
B size b peak %gain ×106 %gain ×106 %gain ×106

10 4 1.00 9.63 2.18 8.61 2.44 6.61 2.57
10 64 1.00 14.22 2.18 13.93 2.44 12.69 2.60
10 256 1.00 28.77 2.19 26.12 2.45 25.57 2.62
20 4 1.00 10.00 2.00 9.87 2.23 8.94 2.35
20 64 1.00 15.50 2.00 15.25 2.23 13.14 2.36
20 256 1.00 29.15 1.99 26.46 2.23 24.79 2.38
50 4 1.00 9.50 1.79 8.04 1.99 5.77 2.08
50 64 1.00 15.64 1.79 14.07 1.99 10.58 2.08
50 256 1.00 28.89 1.80 26.37 2.01 23.08 2.08

100 4 1.00 10.30 1.65 7.65 1.83 3.66 1.91
100 64 1.00 18.18 1.65 14.21 1.83 11.40 1.93
100 256 1.00 28.31 1.66 24.32 1.85 21.32 1.97

Table 2: Training gain of Jaccard MIX arrangement with respect to IND baseline for 104 × 104

stochastic blocks. Peak is maximum precision at k = 10 quality for MIX. We report the training
amount for IND to reach 75% , 95%, and 99% of peak with respective percent reduction in training
with MIX.

#blocks mbatch 0.75 0.95 0.99
B size b peak %gain ×106 %gain ×106 %gain ×106

10 4 1.00 7.34 2.18 7.00 2.43 5.77 2.60
10 64 1.00 16.97 2.18 15.57 2.44 14.50 2.62
10 256 1.00 33.33 2.19 30.61 2.45 29.17 2.64
20 4 1.00 6.03 1.99 6.31 2.22 5.04 2.38
20 64 1.00 17.09 1.99 16.22 2.22 15.06 2.39
20 256 1.00 35.00 2.00 31.39 2.23 29.88 2.41
50 4 1.00 5.59 1.79 5.53 1.99 2.84 2.11
50 64 1.00 17.88 1.79 15.58 1.99 12.44 2.09
50 256 1.00 35.36 1.81 30.50 2.00 26.67 2.10

100 4 1.00 4.24 1.65 2.73 1.83 2.58 1.94
100 64 1.00 18.79 1.65 15.85 1.83 13.33 1.95
100 256 1.00 31.93 1.66 26.63 1.84 24.24 1.98

Table 3: Training gain of Jaccard* arrangement with respect to IND baseline for 104 × 104 stochastic
blocks. Peak is maximum precision at k = 10 quality for Jaccard*. We report the training for IND to
reach 75% , 95%, and 99% of peak with respective percent reduction in training with Jaccard*.
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Figure 9: Training (IND with b = 64) with different dimensions. From left: MOVIELENS1M (cosine
gap and precision for k = 50) and AMAZON (cosine gap and precision for k = 50).
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Figure 10: Training (IND b = 64) with different dimensions on 104 × 104 Stochastic blocks. From
left: B = 10 (cosine gap and precision at k = 10) andB = 100 (cosine gap and precision at k = 10).

On all data sets we can observe slightly faster convergence with higher dimension in terms of
number of training examples. The per-example training cost, however, increases much faster and
proportionally to the dimension. This means that lower dimension is more effective in terms of
computation in reaching a particular lower quality level. This supports methods like ours that leverage
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#blocks mbatch 0.75 0.95 0.99
B size b peak %gain ×106 %gain ×106 %gain ×106

10 4 1.00 10.55 2.18 9.84 2.44 8.56 2.57
10 64 1.00 11.47 2.18 10.66 2.44 11.92 2.60
10 256 1.00 23.29 2.19 22.45 2.45 20.99 2.62
20 4 1.00 11.00 2.00 9.87 2.23 10.21 2.35
20 64 1.00 12.50 2.00 11.66 2.23 12.29 2.36
20 256 1.00 24.62 1.99 23.32 2.23 21.43 2.38
50 4 1.00 12.29 1.79 11.06 1.99 9.62 2.08
50 64 1.00 16.20 1.79 14.57 1.99 11.06 2.08

100 4 1.00 12.12 1.65 9.84 1.83 7.33 1.91
100 64 1.00 18.18 1.65 15.30 1.83 11.92 1.93
100 256 1.00 28.31 1.66 24.32 1.85 22.34 1.97

Table 4: Training gain of angular* LSH MIX arrangement (based on d = 3 embeddings) with respect
to IND baseline for 104 × 104 stochastic blocks. Peak is maximum precision at k = 10 quality for
MIX. We report the training amount for IND to reach 75% , 95%, and 99% of peak with respective
percent reduction in training with MIX.

#blocks mbatch 0.75 0.95 0.99
B size b peak %gain ×106 %gain ×106 %gain ×106

10 4 1.09 6.58 3.04 4.90 3.67 4.76 4.20
10 64 1.09 9.87 3.04 8.45 3.67 7.35 4.22
10 256 1.08 20.20 3.07 17.25 3.71 16.32 4.29
20 64 1.03 11.36 2.73 9.28 3.34 7.77 3.86
20 256 1.03 21.61 2.73 18.58 3.39 16.33 3.92
50 4 1.00 8.37 2.39 6.69 2.99 5.43 3.50
50 64 1.00 12.97 2.39 10.00 3.00 7.43 3.50
50 256 1.00 23.24 2.41 18.27 3.01 15.77 3.55

100 4 0.99 8.41 2.14 6.23 2.73 5.57 3.23
100 64 0.99 14.02 2.14 10.58 2.74 7.74 3.23
100 256 0.99 21.76 2.16 17.09 2.75 15.50 3.29

Table 5: Training gain of Jaccard MIX arrangement with respect to IND arrangement baseline for
104×104 stochastic blocks. Peak is maximum cosine gap quality for MIX. We report training amount
for IND to reach 75% , 95%, and 99% of peak with respective percent reduction in training with MIX.

coarser, lower quality, but much more efficient to compute embeddings to accelerate the training of
more complex models.

On the recommendations data sets and for the precision quality measure on the stochastic blocks
data we can see that the peak quality increases with the dimension. In particular, we can see that the
peak quality for d = 3 is considerably lower than for d = 50. This means that higher dimension
are effective in providing better peak quality. This supports our use in the experiments of the d = 3
embedding at the basis of angular* COO+LSH microbatches in order to accelerate the training of
d = 50 embeddings, which are costlier to train but provide higher peak quality.
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#blocks mbatch 0.75 0.95 0.99
B size b peak %gain ×106 %gain ×106 %gain ×106

10 4 1.09 7.24 3.04 5.72 3.67 5.48 4.20
10 64 1.09 8.55 3.04 6.81 3.67 6.40 4.22
10 256 1.08 15.31 3.07 12.40 3.71 12.59 4.29
20 4 1.03 8.42 2.73 5.99 3.34 5.94 3.87
20 64 1.03 9.16 2.73 7.19 3.34 6.22 3.86
20 256 1.03 17.95 2.73 15.04 3.39 13.01 3.92
50 4 1.00 9.62 2.39 7.69 2.99 6.00 3.50
50 64 1.00 12.97 2.39 9.67 3.00 7.71 3.50

100 4 0.99 10.28 2.14 8.06 2.73 6.81 3.23
100 64 0.99 14.49 2.14 10.95 2.74 8.36 3.23
100 256 0.99 22.69 2.16 17.82 2.75 15.20 3.29

Table 6: Training gain of angular* LSH MIX arrangement (based on d = 3 embeddings) with respect
to IND baseline for 104 × 104 stochastic blocks. Peak is maximum cosine gap quality for MIX. We
report the amount of training for IND to reach 75% , 95%, and 99% of peak with respective percent
reduction in training with MIX.
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