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ABSTRACT

Using higher order knowledge to reduce training data has become a popular re-
search topic. However, the ability for available methods to draw effective deci-
sion boundaries is still limited: when training set is small, neural networks will
be biased to certain labels. Based on this observation, we consider constraining
output probability distribution as higher order domain knowledge. We design a
novel algorithm that jointly optimizes output probability distribution on a clus-
tered embedding space to make neural networks draw effective decision bound-
aries. While directly applying probability constraint is not effective, users need to
provide additional very weak supervisions: mark some batches that have output
distribution greatly differ from target probability distribution. We use experiments
to empirically prove that our model can converge to an accuracy higher than other
state-of-art semi-supervised learning models with less high quality labeled train-
ing examples.

1 INTRODUCTION

Probability is an abstract measure on how a certain event occurs independent of features of the
events. Knowing how likely a certain event occurs, people leverages such prior knowledge to their
decision making. For example, doctors know certain diseases are rare, even if they are told in
terms of probabilities instead of ”training examples”. Based on this knowledge, they make less
predictions on these diseases than those common ones. Do neural networks behave in a similar way?
Unfortunately, the answer is no. When we train a multi-layer perceptron(MLP) for MNIST classifier
(LeCun et al. (1998)) with limited labelled examples, the output distribution can be extremely biased
in favor of some of the labels. In Figure 1a, we compare the predicted number of labels with ground
truth. While the training accuracy is 1.0, the model clearly overfits to those training examples and
leave labels between training data points undefined in high dimensional feature space. As we plot
the last hidden layer of a MLP trained with 50 labelled MNIST data as shown in Figure 1b, we find
neural networks fail to learn the decision boundary correctly from a limited number of examples.

Thus, it is natural to consider introducing output label probability distribution as higher order knowl-
edge when we train neural networks. Different from traditional logical constraints (Xu et al. (2018))
or functional constraints (Stewart & Ermon (2016), we propose a novel embedding space proba-
bilistic constraint. Because of the sparsity of high dimensional feature space with only a few labeled
examples, we perform our probabilistic constraint on neural network’s embedding space, which
is constructed unsupervisedly by projecting data into low dimensional space through autoencoder.
Based on observation by Xie et al. (2016), Zhang et al. (2016), embedding space preserves informa-
tion of separations of different label clusters. In the embedding space, we pool softmax activation
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(a) Strong imbalanced output distribution of
labels when training set is limited

(b) Chaotic embedding space in the hidden
layer of the classifier trained with 50 labelled
examples

Figure 1: Limited training data cannot train neural networks to learn accurate decision boundaries

outputs and optimize towards target distribution. By training with very few high quality labelled
examples and marking on batches that have output distribution greatly different from target proba-
bility distribution, we use experiments to empirically prove that our model can converge to a high
accuracy faster than state-of-art semi-supervised learning methods.

2 RELATED WORKS

Weak Supervision Current supervised representation learning algorithms have gained great suc-
cess on various tasks in computer vision (He et al. (2017), Kostrikov et al. (2018)), natural language
processing (Trivedi et al. (2018), Athiwaratkun et al. (2018)) with little domain knowledge, but
they require large quantity and high-quality labels for training. Thus, there is a growing trend of
research that address this problem by transferring knowledge learned from different datasets (Aziz-
zadenesheli et al. (2018), Shen et al. (2017)) or introducing higher level knowledge.

In this work, we consider incomplete weak supervision problem (Zhou (2017)). A typical incom-
plete supervision problem (Chapelle et al. (2006)) is formulated as following: with a dataset {X, Y }
that consists of labeled dataset X1 = {X1, y1} and unlabeled dataset X2 = {X2, y2}, where {y2}
is not visible during training. |X1| � |X2|. This problem can usually be tackled by state-of-art
semi-supervised learning algorithms like AtlasRBF (Pitelis et al. (2014)), Neural Rendering Model
(Ho et al. (2018))or LadderNet (Rasmus et al. (2015) or using novel approaches such as logical con-
straints (Xu et al. (2018)). While they still rely on certain amount of high quality labeled data, while
in this work, we further decrease the number of labeled data needed for convergence.

Learning With Constraints Learning with constraints takes various higher order domain knowl-
edge into the optimization of neural networks. Based on domain knowledge, different constraints are
effective on different tasks. For example, Pathak et al. (2015) uses linear constraints on the output
space and optimizes the training objective as a biconvex optimization for linear models to perform
dense pixelwise semantic segmentation. Frameworks such as semantic loss by Xu et al. (2018) and
logical loss by Hu et al. (2016) specify logic rules when training neural networks. Stewart & Ermon
(2016) propose a novel framework that one can learn physical or causal relationship without labels.
In this work, we consider the case where limited labeled examples lead to biased output distribution.
Different from these arithmetic or logical constraints, we consider placing an output probability
constraint.

3 EMBEDDING SPACE PROBABILISTIC CONSTRAINT

In this section, we state our problem formulation and describe the proposed algorithm and architec-
ture for this problem.
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Figure 2: Flowchart of our probability constraint

Higher-order Knowledge Formulation Based on the incomplete weak supervision defined in
Section 2, we specify our introduced higher order knowledge. We assume from our domain knowl-
edge of output probability distribution, the model can acquire a set Q = {(k,P(Y = k) + ε}k∈{Y }).
One thing to note is that domain knowledge distribution Q does not necessarily cover all k ∈ Y .
We use ε ∈ R drawn from Gaussian distribution such that ε ∼ N (0, σ2) to reflect the vari-
ance of human domain knowledge from true Y . We use σ = 0.05 throughout this paper. We
need a training algorithm A({X1, y1},X2, Q}) such that it trains a multi-layer perceptron f(x) =
σ(Wm...Φ(W2Φ(W1x)), where Wi is model’s weights, Φ is an nonlinear function like ReLU, and
σ is the softmax function. This algorithm minimizes the loss function ` : {Y, f(X)} −→ R.

Batchwise Probability Constraint Following from this problem formulation, we define a loss
term `c : R2 −→ R to regulate the output distribution. We regard a single update batch {X′, Y ′} ∈
{X,Y } with size c as the unit of output probability distribution. Inspired by Liang et al. (2017) and
Hendrycks & Gimpel (2016), the activation of final softmax layer of classifier σ(·) can reflect neural
network’s confidence towards a certain label. Instead of performing counting the arguments of the
maxima for all labels, which is not inefficient, we consider calculating the mean pooling of all the
activation outputs(Wang et al. (2018)). It can be written mathematically as 1

c

∑c
i=0 f(X′i). Here we

use fk to denote the softmax activation of the kth label. This potentially improves the accuracy of
detecting low confidence or out-of-distribution examples. A basic flowchart of our mechanism can
be found in Figure 2.

It is natural to use Kullback-Leibler (KL) divergence as a metric of our output distribution different
from the reference domain knowledge probability distribution Q, that is,

`c = −1

c

∑
(k,q)∈Q

c∑
i=0

fk(X′i) log
qc∑c

i=0 fk(X′i)
(1)

One may notice the probability of labels in the batch does not always reflect the domain knowledge
distribution Q. That is, |P(Y ′ = k) − Q(k)| > ε for some ε > 0. For the simplicity of this work,
we assume additional but very weak supervision on identifying some of those batches and using
different but noisy batch probability distribution. However, this supervision can be easily done
through at-a-glance (abriel Ryan (2018)) supervision or auto-regressive algorithms similar to Reed
et al. (2017). Our proposed algorithm and its convergence analysis can be found in Appendix A.

Constraint on Embedding Space In order to use existing unlabeled data to draw decision
boundaries, we propose to jointly optimize this probability constrained classifier with an em-
bedding space regularizer. Embedding is a lower dimensional form that structurally preserves
data from original hyper-dimensional space. In our case, we treat a hyperparameter ith hidden
layer of perceptron E(x) as our embedding space, where E(x) = WiΦ(...Φ(W2Φ(W1x))) and
f(x) = σ(Wm(Φ(Wm−1(...Φ(Wi+1))) ◦ E(x), where the dimension of E(x) should be much
smaller than dimension of input x. Zhang et al. (2016) propose using unsupervised loss can pre-
serve information of separations between different label clusters. Thus, we adopt the structure of
decoder of autoencoder and define a multi-layer neural networkD(·) as a decoder of our embedding
space. For a single batch {X′, Y ′}, our loss function for training a separation-preserving embedding
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space by reconstructing the original input, that is,

`r =
1

c

c∑
i=0

||X′ −D(E(X′))||2

General Framework Our proposed method uses unsupervised loss `r to construct an embedding
in low dimensional space, uses limited labeled data to identify the cluster location in the embedding
space by original classification loss `original, and uses domain knowledge of output probability
distribution to determine the actual decision boundaries. Then our updating loss function is

` = λ1`original + λ2`r + λ3`c

, where λ1, λ2 and λ3 are hyperparameter constants.

4 EVALUATION

Experiment setup We evaluate our proposed embedding space probabilistic constraint in semi-
supervised learning setting. Using the similar base multilayer perceptron model as in Rasmus et al.
(2015) and Xu et al. (2018) All the experiments are repeated five times with different seeds. We add
an additional embedding layer with width 40, and the decoder has a symmetric architecture as the
feed forward neural network.

Model Description To guarantee that our comparison focuses on output probability distribution
instead of one single instance’s label, we train our models with batch size 128. We experiment our
model under different level of constraints. Datasetwise probability constraints assumes the target
output should be all 10%, and the noisy datasetwise probability constraints adds a random noise
drawn from N (0, 0.3) to simulate user’s knowledge. Also, we use batchwise probability constraint,
which assumes we know the probability of labels in every batch, as an upper bound for our algorithm.
We compare our model with other state-of-art semi-supervised learning models (Pitelis et al. (2014),
Rasmus et al. (2015)), and logical constraint model (Xu et al. (2018). Since we require more human
supervision than other semi-supervised learning models, we use their results to demonstrate our
model can converge to high accuracy with much less high quality labeled examples. We also choose
other baselines models without both losses and without embedding loss to show the benefit of our
architecture.

Accuracy/# of labelled per class 3 5 10 all
AtlasRBF (Pitelis et al. (2014)) 73.58± 0.95 84.28± 0.21 91.54± 0.13 98.20± 0.25
Ladder Net (Rasmus et al. (2015)) 79.39± 0.60 93.67± 1.42 97.69± 0.25 99.01± 0.22
Baseline: MLP 53.52± 0.07 64.07± 0.19 73.24± 0.13 98.82± 0.03
Semantic Loss (Xu et al. (2018)) 75.36± 1.02 82.53± 1.39 96.03± 1.39 98.53± 1.39
Baseline: MLP with constraint 78.39± 3.76 92.97± 3.28 96.82± 2.39 97.01± 3.03
Datasetwise Probability Constraint(noisy) 82.12± 1.34 96.05± 0.05 96.32± 0.24 97.85± 0.93
Datasetwise Probability Constraint 84.93± 1.08 97.65± 0.05 97.32± 0.24 98.45± 0.84
Batchwise Probability Constraint 95.87± 0.48 97.67± 0.39 98.67± 0.74 98.99± 0.21

Table 1: Semi-supervised learning on MNIST dataset

Accuracy/# of labelled per class 3 5 10 all
Baseline: MLP 49.72± 0.12 55.72± 0.11 68.64± 0.10 86.32± 0.21
LadderNet (Rasmus et al. (2015)) 69.87± 0.43 74.54± 0.32 81.87± 0.15 90.57± 0.28
Semantic Loss (Xu et al. (2018)) 70.24± 1.30 75.41± 0.21 83.25± 0.23 89.92± 0.32
Batchwise Probability Constraint 81.15± 0.02 85.15± 0.85 88.15± 0.92 89.01± 1.20

Table 2: Semi-supervised learning on FASHION dataset
5 DISCUSSION

In this paper, we present an algorithm that constraints output probability distribution in an embed-
ding space. Our result shows with a little more supervision than normal semi-supervised learning
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Accuracy/# of labelled per class 200 400 all
Baseline: CNN 59.72± 0.12 76.64± 0.10 90.32± 0.21
Semantic Loss(Xu et al. (2018)) 71.24± 1.30 79.41± 0.21 89.93± 0.45
Batchwise Probability Constraint 75.15± 0.52 86.15± 1.03 88.15± 0.92

Table 3: Semi-supervised learning on CIFAR 10 dataset

algorithms, we need far fewer high quality training examples to reach high accuracy. Thus, we con-
clude jointly optimizing the output constraint with hypothesis can draw a decision boundary with
smaller labelled training data than other state-of-art methods.

Our focus is to show the power of a very weak labelling method without high quality labelling tech-
nique. We leave it as a future research direction to design an auto-regressive algorithm that requires
less supervisions. In addition, since our formulation sums all the activation functions together as
a measure of confidence instead of counting-based probabilities, this allows us to use it as a future
direction on confidence of classification in semi-supervised learning setting.
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A ALGORITHM

In Bootstrap phase, we require users to provide an entry supervision mark {Θ}. It marks entries
that has unusually high probabilities of occurrence from target probability distribution. We need
this extra supervision because reliance on model’s own probabilistic judgement might converge to a
wrong model. Feeding additional but weak supervision can give model enough information to judge
if current probability distribution has such unusual batches. We also claim that we can bound it by
concentration inequalities, as shown in Theorem 1.

The probability of this mark happens can be bounded by Theorem 1.

Theorem 1 For a single batch {X, y} with size c, on a label k with domain knowledge output
probability Q(k). For all ε > 0, we have

P(
1

c

c∑
i=0

(P(|Y = k)−Q(k)| ≥ ε) ≤ 2 exp(−2cε2)

Proof of Theorem 1.1 This claim directly follows from Hoeffding inequality, which we state as
following:
For independent bounded random variables Xi ∈ [ai, bi] and for all t > 0, which has a ≤ X ≤ b,
for all ε, we have

P(
1

n

n∑
i=1

Xi − E[
1

n

n∑
i=1

Xi] ≥ ε) ≤ 2 exp(
−2n2t2∑n

i=1(ai − bi)2
)

The proof can be found in Shalev-Shwartz & Ben-David (2014).

In our case, our random variable is P(|Y = k), ranging from [0, 1], while the target distribution, by
higher knowledge, is E[P(|Y = k)] = Q(k). With batch size c, we have

P(
1

c

c∑
i=0

(P(|Y = k)−Q(k)| ≥ ε) ≤ 2 exp(−2cε2)

We state our bootstrap algorithm in Algorithm 1. When we found a marked batch with higher
probability, we redistribute our new target distribution based on its original target distribution. When
an output probability is marked, we rescale the target distribution of the label qmarked to adapt the
higher-than-usual probability by Equation 2. A detailed derivation can be found in Appendix B.2.

qnew = qmarked +

√
log(1/ε)

2c
(2)

Algorithm 1: Bootstrap Probabilistic Constraint
Data: Training batch {X, y} ∈ Rc×m × Rn, entry supervision mark {Θ}, error threshold ε,

Domain knowledge output distribution Q ∈ Rn, neural network f
Feed Forward f(X) and pool output activations by 1

c

∑c
i=0 f(Xi) ;

for i← 0 to m do
if this batch is marked then

k =
√

log(1/ε)
2c ;

qi = Qi + k;
else

q ← Qi − k
m−|Θ| ;

end
end
Train the network f with {X, y, q} by Equation 3;

The boundary between bootstrap phase and auto-regressive phase is a hyper-parameter. In this work,
we use validation set to observe the accuracy of current model. When the accuracy on validation
set is larger than 70%, we enter auto-regressive phase. A convergence plot example can be found in
Figure 3.
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Algorithm 2: Auto-Regressive Probabilistic Learning
Data: Training batch {X, y} ∈ Rc×m × Rn, error threshold ε, Domain knowledge output

distribution Q ∈ Rn, neural network f
Feed Forward f(X) ;
Ω← pool output activations by 1

c

∑c
i=0 f(Xi) ;

Θ← ∅;
for i← 0 to m do

if |Ωi −Qi| > ε then
Θ← Θ ∪ Ω;

else
end
q ← Q ∧ ¬Θ;
Train the network f with {X, y, q} by loss function from Equation 3;

Figure 3: Single run of algorithm on convergence when trained with 30 labeled examples

B DERIVATIONS

B.1 DERIVATIONS FOR EQUATION 1

Lemma 1 Let f be a feed forward neural network with softmax as the last layer’s activation function.
Then given a batch {X, y} ∈ Rc×m × Rn, the mean-pooling Ω = 1

c

∑c
i=0 f(Xi) is a probability

distribution.

Proof of Lemma 1.1 Without loss of generality, we write function f(x) as σ(·) ◦ g(x) for some
function g(x). Then for all x ∈ X , f(x) is in range of σ(·), that is, ∃y ∈ Rn, f(x) = σ(y). Then
for a vector z ∈ Rn, for any label i,

σ(z)i =
ezi∑n
k=1 e

z
i

Then we perform mean-pooling on σ(y)i, we have

Ωi =
1

c

c∑
i=0

f(Xi) =
1

c

c∑
i=0

σ(yi) =
1

c

c∑
i=0

ei∑n
k=1 e

y
i

The pooled output activation Ωi is trivially larger than 0, and since σ(z)i < 1 for all z,
mean(σ(z)i) < 1. Since

∑
i Ωi = 1, 1

c

∑c
i=0 f(Xi) = 1

c c = 1. Then we conclude it fullfills
all the axiom of a probability distribution.

Since Ω is a probability distribution by lemma 1, we can apply KL divergence to Ω from our target
distribution Q. With specified constraints set K, with fk(x) for the specific dimension of k ∈ K,
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we have

`c = KL(Ω||Q)

= −
∑
k∈K

Ω(k)(
Q(k)

Ω(k)
)

= −
∑
k∈K

1

c

c∑
i=0

fk(Xi)(
Q(k)

1
c

∑c
i=0 fk(Xi)

)

= −1

c

∑
k∈K

c∑
i=0

fk(X′i) log
Q(k)c∑c
i=0 fk(X′i)

B.2 DERIVATIONS FOR EQUATION 2

For a single training example xj ∈ X, the features for xj = {xj1, x
j
2...x

j
n} are dependent, so we

cannot apply statistical bounds by entries. However, when we compare training examples in the
same batch, that is, xj1 and xj+1

1 , they are independent. As a result, we can still use the Proof of
Theorem 1.1. When we would like to bound

P(
1

c

c∑
i=0

(P(|Y = k)−Q(k)| ≥ d) ≤ ε

for some error d, we rearrange

P

(
1

c

c∑
i=0

(P(Y = k)−Q(k) ≥ d

)
≤ exp(cd2) ≤ ε

that is,

d =

√
log(1/ε)

2c
(3)

In this case, we find a safe margin d that controls the tradeoff between human supervision and
training batch accuracy. Directly applying the upper bound is empirically fine when we perform our
experiments.

C IMPLEMENTATION DETAILS

This section includes main implementation details not included in main text.

C.1 DATASET DESCRIPTION

MNIST MNIST dataset (LeCun et al. (1998)) is a dataset of handwritten digits, which has 60000
training images and 10000 testing images. For each of the image, it is a grey-scale 28 × 28 matrix
that belongs to 10 classes from 1 to 10.

FASHION a dataset of clothes that possess similar structure as MNIST, which has 60000 training
images and 10000 testing images. For each of the image, it is a grey-scale 28 × 28 matrix that
belongs to 10 classes for different types of clothes.

CIFAR-10 CIFAR-10 (Krizhevsky (2009)) is a dataset that contains colored images with size
32 × 32. Each image belongs to one of ten classes like dog, cat, car. The training set has 50000
images and the testing set has 10000 images.

C.2 DATASET PREPARATION

Selection In order to make the probability the same for all classes, we keep the same number of
images among 10 classes. We choose the number as the minimum number of examples out of all
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classes. For example, for MNIST dataset, it has numbers of examples 5923, 6742, 5958, 6131,
5842, 5421, 5918, 6265, 5851 respectively from 0 to 1. Since 5421 is the minimum for all labels,
we choose 5421 as the number of examples we use. Based on this threshold, we choose the training
examples randomly from the dataset.

To make examples from different classes balanced, we choose randomly (number of labeled exam-
ples/number of classes) number of examples.

Processing We first normalize all images scale from 0 to 1. Then we have 50% of chance to per-
form two operations on training examples to prevent overfitting of the training set: adding Gaussian
noise and cropping. For Gaussian noise, we add to the image another matrix of random noise drawn
from Gaussian distribution with mean 0 and standard deviation 0.3. We crop the image by three
pixels. For example, if the original image has pixel 28× 28, our cropped image has 25× 25.

C.3 ARCHITECTURE

Multi-layer Perceptron We evaluate our proposed embedding space probabilistic constraint in
semi-supervised learning setting. Using the similar base multilayer perceptron model as in Rasmus
et al. (2015) and Xu et al. (2018) with layer of the size 784-1000-500-250-250-250-40-10, except
adding a layer with width 40 as embedding layer, we feed the output of the embedding layer to
another multilayer deocoder with size 40-250-250-1000-784. We also perform batch normalization
and dropout with a dropout rate 50% to increase robustivity of our model.

Convolution Neural Network To compare fairly with other state-of-art models, we adopt a basic
10-layer architecture similar to Xu et al. (2018) for classification. For every three layers, we use one
convolution layer with activation function ReLU, one 2× 2 max-pool layer with stride 2. We insert
one layer of dropout with a dropout rate 0.5 and one batch normalization layer as we described in
multi-layer perceptron. For the decoder, we use a symmetric decoder. For every three convolution
layers, we use a upsampling layer. We insert batch normalization layer and dropout layer between
them. The embedding space has a vector with dimension 50.

C.4 TRAINING

Detailed hyperparameter is as following: we use Stochastic Gradient Descent(SGD) to update our
neural network with a learning rate 10e− 4. For simplicity, we choose λ1, λ2 and λ3 to be 1. A rule
of thumb is to make λ1`original ≈ λ2`c. When they possess similar values, they can converge to the
solution quickly. The convergence of our algorithm can be shown in Figure 3.

In the cold start session, with batch size 128, we choose to find batch output probabilities p /∈
[0.02, 0.25]. Empirically this covers 98% of data, we can safely set them with probability 0.1, while
the rest but obvious data, we set them a manual probability, in our case, we set them 0.02 and 0.28.
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