
Robust Spoken Term Detection Automatically
Adjusted for a Given Threshold

Tzeviya Fuchs
Department of Computer Science

Bar Ilan University
Ramat Gan, Israel

fuchstz@cs.biu.ac.il

Joseph Keshet
Department of Computer Science

Bar Ilan University
Ramat Gan, Israel

jkeshet@cs.biu.ac.il

Abstract

Spoken term detection (STD) is the task of determining whether and where a given
word or phrase appears in a given segment of speech. Algorithms for STD are often
aimed at maximizing the gap between the scores of positive and negative examples.
As such they are focused on ensuring that utterances where the term appears are
ranked higher than utterances where the term does not appear. However, they do not
determine a detection threshold between the two. In this paper, we propose a new
approach for setting an absolute detection threshold for all terms by introducing a
new calibrated loss function. The advantage of minimizing this loss function during
training is that it aims at maximizing not only the relative ranking scores, but also
adjusts the system to use a fixed threshold and thus enhances system robustness
and maximizes the detection accuracy rates. We use the new loss function in
the structured prediction setting and extend the discriminative keyword spotting
algorithm for learning the spoken term detector with a single threshold for all terms.
We further demonstrate the effectiveness of the new loss function by applying it on
a deep neural Siamese network in a weakly supervised setting for template-based
spoken term detection, again with a single fixed threshold. Experiments with the
TIMIT, WSJ and Switchboard corpora showed that our approach not only improved
the accuracy rates when a fixed threshold was used but also obtained higher Area
Under Curve (AUC).

1 Introduction

Spoken term detection (STD) refers to the proper detection of any occurrence of a given word or
phrase in a speech signal. Typically, any such system assigns a confidence score to every term it
presumably detects. A speech signal is called positive or negative, depending on whether or not it
contains the desired term. Ideally, an STD system assigns a positive speech input with a score higher
than the score it assigns to a negative speech input.

During inference, a detection threshold is chosen to determine the point from which a score would be
considered positive or negative. The choice of the threshold represents a trade-off between different
operational settings, as a high value of the threshold could cause an excessive amount of false
negatives (instances incorrectly classified as negative), whereas a low value of the threshold could
cause additional false positives (instances incorrectly classified as positive).

The performance of STD systems can be measured by the Receiver Operation Characteristics (ROC)
curve, that is, a plot of the true positive (spotting a term correctly) rate as a function of the false
positive (mis-spotting a term) rate. Every point on the graph corresponds to a specific threshold value.
The area under the ROC curve (AUC) is the expected performance of the system for all threshold
values.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

A common practice for finding the threshold is to empirically select the desired value using a cross
validation procedure. In [3], the threshold was selected using the ROC curve. Similarly, in [8, 17]
and the references therein, the threshold was chosen such that the system maximized the Actual Term
Weighted Value (ATWV) score [15]. Additionally, [19] claims that a global threshold that was chosen
for all terms was inferior to using a term specific threshold [18].

In this paper we propose a new method to embed an automatic adjustment of the detection threshold
within a learning algorithm, so that it is fixed and known for all terms. We present two algorithmic
implementations of our method: the first is a structured prediction model that is a variant of the
discriminative keyword spotting algorithm proposed by [16, 21, 22], and the second implementation
extends the approach used for the structured prediction model on a variant of whole-word Siamese
deep network models [10, 2, 14]. Both of these approaches in their original form aim to assign
positive speech inputs with higher scores than those assigned to negative speech inputs, and were
shown to have good results on several datasets. However, maximizing the gap between the scores of
the positive and negative examples only ensures the correct relative order between those examples,
and does not fix a threshold between them; therefore it cannot guarantee a correct detection for a
global threshold. Our goal is to train a system adjusted to use a global threshold valid for all terms.

In this work, we set the threshold to be a fixed value, and adjust the decoding function accordingly.
To do so, we propose a new loss function that trains the ranking function to separate the positive
and negative instances; that is, instead of merely assigning a higher score to the positive examples,
it rather fixes the threshold to be a certain constant, and assigns the positive examples with scores
greater than the threshold, and the negative examples with scores less than the threshold. Additionally,
this loss function is a surrogate loss function which extends the hinge loss to penalize misdetected
instances, thus enhancing the system’s robustness. The new loss function is an upper bound to the
ranking loss function, hence minimizing the new loss function can lead to minimization of ranking
errors, or equivalently to the maximization of the AUC.

2 Problem Setting

In the STD task, we are provided with a speech utterance and a term and the goal is to decide whether
or not the term is uttered. The term can be provided as a sequence of phonemes or by an acoustic
representation given by a speech segment in which the term is known to be uttered.

Throughout the paper, scalars are denoted using lower case Latin letters, e.g., x, and vectors using
bold face letters, e.g., x. A sequence of elements is denoted with a bar (x̄) and its length is written as
|x̄|.
Formally, the speech signal is represented by a sequence of acoustic feature vectors x̄ = (x1, . . . ,xT),
where each feature vector is d dimensional xt ∈ Rd for all 1 ≤ t ≤ T . Note that in our setting the
number of frames T is not fixed. We denote by X = (Rd)∗ the set of all finite length sequences over
Rd. A sequence of Lr phonemes of a term r is denoted as p̄r = (p1, . . . , pLr), where pl ∈ P for
all 1 ≤ l ≤ Lr and P is the set of phoneme symbols. We denote by P∗ the set of all finite length
sequences over P .

A term is a word or a short phrase and is presented to the system either as a sequence of phonemes in
the strongly supervised setting or as an acoustic segment containing the term in the weakly supervised
setting. We denote the abstract domain of the term representations (as either a phoneme sequence or
an acoustic segment) byR. Our goal is to find a spoken term detector, which takes as input a speech
segment and a term and returns a binary output indicating whether the term was pronounced in the
acoustic segment or not. Most often the spoken term detector is a function that returns a real value
expressing the confidence that the target term has been uttered. The confidence score outputted by
this function is compared to a threshold, and if the score is above the threshold the term is declared to
have been pronounced in the speech segment. Formally, the detector is a function f from X ×R to
R. The detection threshold is denoted by the scalar θ ∈ R. Usually there is no single threshold for all
terms, and it needs to be adjusted after decoding.

Our goal in this work is to propose a new method to learn the spoken term detector from a training set
of examples, so that the model is adjusted to use a fixed given threshold for all terms. The function f
is found from a training set of examples, where each example is composed of two speech segments

2

and a representation of a term. Although the training set contains many different terms, the function
f should be able to detect any term, not only those already seen in the training phase.

3 Loss function for detection with a fixed threshold

In this section we describe our main idea, whereas in the next sections we propose two implementa-
tions: one with a structured prediction model where the training data is fully supervised and the term
is given as a phoneme sequence, and the other with a deep learning model where the training data is
weakly supervised and the term is given using a segment of speech.

Recall that during inference the input to the detector is a speech segment and a term and the output is
a confidence that the term was pronounced in the speech segment, which is compared to a threshold.
Since the detection threshold is typically not fixed and does depend on the input term, it is often
desired to learn the function f such that the confidence of a speech segment that contains the term is
higher than the confidence of a speech segment that does not contain the term.

Formally, let us consider two sets of speech segments. Denote by X r+ a set of speech segments in
which the term r is articulated. Similarly, denote by X r− a set of speech segments in which the term
r is not articulated. We assume that term r, and two instances x̄+ ∈ X r+ and x̄− ∈ X r− are drawn
from a fixed but unknown probability distribution, and we denote by P{π} and E[π] the probability
and the expectation of an event π under this distribution. The probability that the confidence of x̄+ is
higher than the confidence of x̄− is the area under the ROC curve (AUC) [11, 1]:

AUC = P {f(x̄+, r) > f(x̄−, r)}. (1)

Instead of keeping a threshold for each term, we adjust f so that the detection threshold will be fixed,
and set to a predefined value. Assume that the predefined threshold is θ, then the accuracy in the
prediction can be measured by

Accθ = P {f(x̄+, r) > θ ∧ f(x̄−, r) < θ}, (2)

where ∧ is the logical conjunction symbol. Hence our goal is to find the parameters of the function f
so as to maximize the accuracy Accθ for a given threshold θ. Equivalently we find the parameters of
function f that minimize the error defined as

Errθ = 1−Accθ (3)

= P {f(x̄+, r) < θ ∨ f(x̄−, r) > θ} (4)

= E
[
I{f(x̄+, r) < θ}+ I{f(x̄−, r) > θ}

]
, (5)

where ∨ is the logical disjunction symbol, and I{π} is the indicator function, that equals 1 if the
predicate π holds true and 0 otherwise.

Unfortunately, we cannot minimize the error function (5) directly, since it is a combinatorial quantity.
A common practice is to replace the error function with a surrogate loss function which is easy to
minimize. We suggest to minimize a convex upper-bound to the error function. Specifically, we
replace the last term with the hinge upper bound,

Errθ ≤ E
[
[1 + θ − f(x̄+, r)]+ + [1− θ + f(x̄−, r)]+

]
, (6)

where [π]+ = max{π, 0}. The last upper bound holds true since I{π < 0} ≤ [1 − π]+. Adding
the margin of 1 means that the function f faces a harder problem: not only does it need to have a
confidence greater than θ for a positive speech segment and a confidence lower than θ for a negative
speech segment – the confidence value must be at least θ + 1 and at most θ − 1 for positive and
negative speech segments, respectively.

We now turn to present two algorithmic implementations that are aimed at minimizing the loss
function derived from (6), namely,

`(x̄+, x̄−, r; θ) = [1 + θ − f(x̄+, r)]+ + [1− θ + f(x̄−, r)]+. (7)

Hopefully the minimization of this loss function will lead to the minimization of Errθ in (6).

3

4 Structured prediction model

Our first construction is based on previous work on discriminative keyword spotting and spoken term
detection [16, 21, 22], where the goal was to maximize the AUC. In this setting we assume that the
term is expressed as a sequence of phonemes denoted p̄r ∈ P∗.
In this fully-supervised setting we define the alignment between a phoneme sequence and a speech
signal. We denote by yl ∈ N the start time of phoneme pl (in frame units), and by el = yl+1 − 1
the end time of phoneme pl, except for the phoneme pL, where the end frame is eL. The alignment
sequence ȳr corresponding to the phonemes sequence p̄r is a sequence of start-times and an end-time,
ȳr = (y1, . . . , yL, eL), where yl is the start-time of phoneme pl and eL is the end-time of the last
phoneme pL.

Similar to previous work [16, 21, 22], our detection function f is composed of a predefined set of n
feature functions, {φj}nj=1, each of the form φj : X ∗ × P∗ × N∗ → R. Each feature function takes
as input an acoustic representation of a speech utterance x̄ ∈ X ∗, together with the term phoneme
sequence p̄r ∈ P∗, and a candidate alignment sequence ȳr ∈ N∗, and returns a scalar in R which
represents the confidence in the suggested alignment sequence given the term r. For example, one
element of the feature function can sum the number of times phoneme p comes after phoneme p′,
while other elements of the feature function may extract properties of each acoustic feature vector xt
provided that phoneme p is pronounced at time t. Our basic set of feature functions is the same as the
set used in [16].

We believe that the threshold value for each term depends on the term’s phonetic content and its
relative duration. In order to allow f to learn these subtle differences from the data we introduced
an additional set of 4 feature functions: a feature function representing a bias; a feature function
that counts the number of occurrences of a phoneme in a term, i.e., |{q|q ∈ p̄r}|; a feature function
holding the number of phonemes in the term, i.e., |p̄r|; and a feature function holding the average
length of the phonemes in a term, i.e., 1

Lr

∑Lr

i=1(yi+1 − yi).

As mentioned above, our goal is to learn a spoken term detector f , which takes as input a sequence of
acoustic features x̄, a term p̄r, and returns a confidence value in R. The form of the function f we
use is

f(x̄, p̄r) = max
ȳ

w · φ(x̄, p̄r, ȳ) , (8)

where w ∈ Rn is a vector of importance weights that should be learned and φ ∈ Rn is a vector
function composed out of the feature functions φj . In other words, f returns a confidence prediction
about the existence of the term in the utterance by maximizing a weighted sum of the scores returned
by the feature function elements over all possible alignment sequences. If the confidence of the
function f is above the threshold θ then we predict that the term is pronounced in the signal and
located in the time span defined by the alignment sequence ȳ that maximizes (8):

ȳ′ = arg max
ȳ

w · φ(x̄, p̄r, ȳ) , (9)

where the search for the best sequence is practically performed using the Viterbi algorithm as
described in [16]. Specifically, the algorithm finds the optimal time segment for the keyword r in the
speech signal x̄, and then aligns the phoneme sequence p̄r within the chosen time segment.

The parameters of the model w are found by minimizing the loss function defined in (7). In the fully
supervised case we use a slightly modified version of it, which is defined as

`(w, (x̄+, x̄−, p̄r, ȳr); θ) =
[
1 + θ −w>φ(x̄+, p̄r, ȳr)

]
+

+
[
1− θ + max

ȳ′
w>φ(x̄−, p̄r, ȳ′)

]
+
. (10)

This is a convex function in the vector of the parameters w. We use the Passive-Aggressive (PA)
algorithm [6, 16] to find the parameters w. The algorithm receives as input a set of training examples
S = {(p̄ri , x̄+

i , x̄
−
i , ȳ

ri)}mi=1 and examines each of them sequentially. Initially, we set w = 0. At
each iteration i, the algorithm updates w according to the current example (p̄ri , x̄+

i , x̄
−
i , ȳ

ri) as we
now describe.

4

Denote by wi−1 the value of the weight vector before the ith iteration. We set the next weight vector
wi to be the minimizer of the following optimization problem,

wi = argmin
w∈Rn,ξ≥0

1

2
||w −wi−1||2 + Cξ (11)

s.t. `(wi, (p̄
ri , x̄+

i , x̄
−
i , ȳ

ri); θ) ≤ ξ ,
where C serves as a complexity-accuracy trade-off parameter and ξ is a non-negative slack variable,
which indicates the loss of the ith example. Intuitively, we would like to minimize the loss of the
current example, i.e., the slack variable ξ, while keeping the weight vector w as close as possible to
our previous weight vector wi−1. The constraint makes the projection of the utterance in which the
term is uttered onto w greater than θ + 1, and the projection of the utterance in which the term is not
uttered onto w less than θ − 1. The closed form solution to the above optimization problem can be
derived using the Karush-Kuhn-Tucker conditions in the same lines of [6, App. A].

The loss in (10) is composed of two hinge functions and therefore introduces a more elaborate solution
than the one derived for the ranking loss of [16]. We call this algorithm PA-ACC (Passive-Aggressive
to maximize Accuracy). Details about the implementation of the algorithm can be seen in [9]. The
PA-ACC algorithm is an online algorithm, and deals with drifting hypotheses; therefore, it is highly
influenced by the recent examples. Common methods to convert an online algorithm to a batch
algorithm are either by taking the average over all the parameters {wi}, or by taking the best wi over
a validation set [7, 4].

5 Deep network model

We turn to exemplify our idea in the weakly supervised setting using deep networks. This implemen-
tation is based on recent work on whole-word segmental systems [10, 2, 14]. These works present
a Siamese network model trained with a ranking loss function. Siamese networks [5] are neural
networks with a tied set of parameters which take as input a pair of speech segments and are trained
to minimize or maximize the similarity between the segments depending on whether the same term
has been pronounced in the pair of segments.

In this setting the term r is represented by two speech segments rather than a phoneme sequence: a
speech segment in which the term r is pronounced, x̄+, and a speech segment, in which the term r
is not pronounced, x̄−. Similar to those works, we assume that each example in the training set is
composed of the triplet (x̄t, x̄+, x̄−), where x̄t, x̄+ ∈ X r+ and x̄− ∈ X r−. The goal in training the
network is that the similarity score between x̄t and x̄+ should be above the similarity score between
x̄t and x̄−.

Denote by gu : X ∗ → Rd a deep network (the specific architecture is discussed in Section 6) with a
set of parameters u, where d is the dimension of the output. Denote by ρ : Rd × Rd → R a measure
of similarity between two output vectors of size d. The spoken term detector fu : X ∗ × X ∗ → R
is the composition of Siamese networks gu and the similarity function. Hence an unknown speech
segment x̄t can be compared to a positive or negative speech segment, as follows:

fu(x̄t, x̄+) = ρ(gu(x̄t), gu(x̄+)), fu(x̄t, x̄−) = ρ(gu(x̄t), gu(x̄−)).

The tied parameters u of all the models were found in [10, 2, 14] using the minimization of the
ranking loss function

`(x̄t, x̄+, x̄−) =
[
γ − fu(x̄t, x̄+) + fu(x̄t, x̄−)

]
+

(12)

for different options of the similarity function ρ. In this work we propose to minimize the loss
function in (7), which is defined for the weakly supervised case as follows:

`(x̄t, x̄+, x̄−; θ) =
[
γ + θ − fu(x̄t, x̄+)

]
+

+
[
γ − θ + fu(x̄t, x̄−)

]
+

, (13)

when the margin of γ > 0 is used. In this case, the parameter γ is not set to 1, since the function fu
is not a linear function and hence is not scale invariant to the margin, as in the structured prediction
case.

In the next section we present our empirical comparison for all the loss functions on different speech
corpora.

5

6 Experiments

In this section we present experimental results that demonstrate the effectiveness of our proposed
calibrated loss function (7). We compared the proposed loss to the standard approach of maximizing
AUC using the ranking loss as in (12) where no fixed threshold can be set. The experiments on
the structured prediction model were conducted using fully supervised training sets of read speech
(TIMIT, WSJ). The experiments on the deep network model performed on a weakly supervised data
of conversational speech (Switchboard).

6.1 Structured prediction model

To validate the effectiveness of the proposed approach, we performed experiments with the TIMIT
corpus. The training and validation sets were taken from the TIMIT training set. The training set was
composed from 1,512 randomly chosen terms, corresponding to 11,139 pairs of positive and negative
utterances (each term repeated more than once). Similarly, the validation set was composed from 378
different randomly chosen terms, corresponding to 2,892 pairs. The validation set was used to tune
the algorithm’s parameters.

The test set was composed of 80 terms that were suggested as a benchmark in [16], and are distinct
from the terms used in the training and validation sets. For each term, we randomly picked at most
20 utterances in which the term was uttered and at most 20 utterances in which it was not uttered.
The utterances were taken from the TIMIT test set. The number of test utterances in which the term
was uttered was not always 20, since some terms were uttered less than 20 times in the whole TIMIT
test set.

We measure performance using the AUC defined in (1) and using the accuracy of a fixed threshold θ
denoted Accθ. Specifically, we calculate AUC on the test set of mtest examples according to

ÂUC =
1

mtest

mtest∑
i=1

I
{
f(x̄+

i , p̄
ri) ≥ f(x̄−i , p̄

ri)
}
, (14)

and the accuracy by

Âccθ =
1

mtest

mtest∑
i=1

I
{
f(x̄+

i , p̄
ri)>θ ∧ f(x̄−i , p̄

ri)<θ
}
. (15)

We tested the PA-ACC algorithm using two options. The first was whether the final weight vector was
a result of averaging or was the best to perform on the validation set. The second option was whether
the new feature functions we introduced were normalized by the length of the phoneme sequence
|p̄r| or not. The AUC and Accθ rates found on our validation and test set are presented in Table 1. In
training PA-ACC we chose arbitrarily θ = 0.

Table 1: AUC and ACCθ rates of the PA-ACC algorithm. The first column indicates whether the
new feature functions were normalized or not. The second column indicates whether the final weight
vector was a result of averaging or was the best to perform on the validation set.

Normalized AUC Accθ
feature func. Final w Validation Test Validation Test

False best. 0.978 1.000 0.846 0.931

False average. 0.978 1.000 0.829 0.920

True best. 0.978 1.000 0.813 0.926

True average. 0.964 0.994 0.811 0.943

We can see from the table that since the TIMIT dataset is very clean the detection rates are very good
and the AUC is almost always 1. The results presented here are improved over the results presented
in [16] due to the introduction of the new feature functions. It is interesting to note that the best Acc0

results on the validation set were obtained when the additional features were not normalized and the
final weight vector was selected over the validation set, while the best Acc0 results on the test set

6

were obtained with the opposite conditions: when the final weight vector was the average one and
the additional feature functions were normalized. Further research on feature functions should be
conducted and extended to a larger dataset.

We now turn to compare the performance of our algorithm against two other algorithms. The first is
the discriminative keyword spotting algorithm presented in [16], which is the Passive-Aggressive
algorithm trained with the ranking loss to maximize the AUC. It is denoted here as PA-AUC. We
introduce two versions of this algorithm: the original version and an extended version with the
additional set of feature functions described in Sec. 4. When using the extended version of PA-AUC,
normalizing the features had no affect on our results. Similarly, a comparison of using the final
weight vector versus the best weight vector yielded similar outcomes. The second algorithm is an
HMM-based spoken term detection algorithm presented in [16].1

For all the algorithms we report the AUC and Accθ in Table 2. For the two versions of PA-AUC we
selected a single threshold θ that gave the best Accθ on the validation set. Similarly we selected the
best threshold for the HMM algorithm. For PA-ACC we arbitrarily selected θ = 0.

Table 2: A comparison of Accθ and AUC rates of 3 algorithms: PA-AUC, HMM and PA-ACC on
the TIMIT corpus.

AUC Accθ

PA-AUC 0.988 0.846

PA-AUC (additional feature func., norm.) 0.994 0.926

PA-AUC (additional feature func., no norm.) 0.994 0.926

HMM 0.943 0.724

PA-ACC (norm, avg) 0.994 0.943

PA-ACC (no norm, best) 1 0.931

It is interesting to see that the AUC of PA-ACC is the same or even higher than that of the PA-AUC.
Since Accθ is a lower bound to AUC, the AUC can be thought of as Accθ with the best threshold
selected for every term in the set. Indeed from Table 2 we see that the Accθ was very close to the
AUC but did not reach it.

We evaluate the model trained on TIMIT on the Wall Street Journal (WSJ) corpus [20]. This corpus
corresponds to read articles of the Wall Street Journal, and hence presents a different linguistic context
compared to TIMIT. Both the discriminative system and the HMM-based system were trained on
the TIMIT corpus as described above and evaluated on a different set of 80 keywords from the WSJ
corpus. For each keyword, we randomly picked at most 20 utterances in which the keyword was
uttered and at most 20 utterances in which it was not uttered from the si_tr_s portion of the WSJ
corpus. We used the same setting as in [16]. As before we arbitrarily chose the threshold θ = 0. The
results are presented in Table 3.

Table 3: A comparison of Accθ and AUC rates of 3 algorithms: PA-AUC, HMM and PA-ACC on
the WSJ corpus.

AUC Accθ

PA-AUC 0.945 0.803

PA-AUC (additional feature func.) 0.951 0.821

HMM 0.879 0.578

PA-ACC (norm, avg) 0.949 0.827

PA-ACC (no norm, best) 0.952 0.833

1left-to-right HMM of 5 emitting states with 40 diagonal Gaussians trained as a phoneme recognizer.

7

Again we see from Table 3 that the model trained with the proposed loss function led to higher
accuracy rates with similar AUC rates, meaning a better separation between the positive speech
utterances and the negative speech utterances.

6.2 Deep network model

Our second set of experiments is focused on deep networks trained on weakly supervised data. Our
model is based on previous work on network training using the ranking loss [10, 2, 14]. We used the
same experimental setup as Kamper et al. (2016)[14]. The term weak supervision [14], refers to the
fact that supervision is given in the form of known word pairs, rather than the exact location of the
term and its phonetic content as in Subsection 6.1.

The data was taken from the Switchboard corpus of English conversational telephone speech. Mel-
frequency cepstral coefficients (MFCCs) with first and second order derivatives features were extracted
and cepstral mean and variance normalization (CMVN) was applied per conversation side. The
training set consisted of the set of about 10k word tokens from [12, 13]; it consisted of word
segments of at least 5 characters and 0.5 seconds in duration extracted from a forced alignment
of the transcriptions, and comprises about 105 minutes of speech. For the Siamese convolutional
neural networks (CNNs), this set results in about 100k word segment pairs. For testing, we used the
11k-token set from [12, 13].

The architecture of each network was the same as Kamper et al. (2016)[14]: 1-D convolution with 96
filters over 9 frames; ReLU (Rectified Linear Unit) ; max pooling over 3 units; 1-D convolution with
96 filters over 8 units; ReLU; max pooling over 3 units; 2048-unit fully-connected ReLU; 1024-unit
fully-connected linear layer. All weights were initialized randomly. Models were trained using
ADADELTA [23].

We reproduced the results in [14] by training the Siamese network using the ranking loss in (12) with
the cosine similarity as a similarity function ρ. The cosine similarity of two vectors v1 ∈ Rd and
v2 ∈ Rd is defined as

ρcos(v1,v2) =
v>1 v2

‖v1‖‖v2‖
,

where this function returns a number close to 1 if the two vectors are similar and a number close to -1
if the two vectors are not. We also train the network using the same similarity function using the Accθ
loss function with θ = 0 as in (13). For the ranking loss we used γ = 0.15 while for the Accθ loss
we used γ = 0.10, because the margin γ is counted twice for Accθ loss. These values were chosen by
maximizing Accθ on a validation set over 5 epochs. The AUC and Accθ values for training of 5 to 30
epochs are given in Table 4. Other training parameters and settings were exactly the same as in [14].

Table 4: Accθ and AUC results for acoustic word embedding on Switchboard data, using various
amounts of epochs. The training sets of all epochs are subsets of the 30 epoch training set.

5 Epochs 10 Epochs 15 Epochs 20 Epochs 25 Epochs 30 Epochs

loss type AUC Accθ AUC Accθ AUC Accθ AUC Accθ AUC Accθ AUC Accθ

ranking loss 0.923 0.703 0.923 0.711 0.925 0.708 0.923 0.707 0.920 0.706 0.925 0.709

Accθ loss 0.981 0.785 0.976 0.757 0.977 0.757 0.978 0.757 0.979 0.761 0.978 0.757

We can see in the table that both AUC and Accθ are higher when the system is trained with the
calibrated ranking loss function. The reason that the AUC was also improved is most likely because
the calibrated ranking loss function is harder to optimize than the ranking loss.

7 Conclusions

In this work, we introduced a new loss function that can be used to train a spoken term detection
system with a fixed desired threshold for all terms. We introduced a new discriminative structured
prediction model that is based on the Passive-Aggressive algorithm. We show that the new loss can
be used in training weakly supervised deep network models as well. Results suggest that our new
loss function yields AUC and accuracy values that are better than previous works’ results.

8

Acknowledgments

This work was supported by a grant from the MAGNET program of the Israeli Innovation Authority.
c© 2017 IEEE. Reprinted, with permission, from IEEE Journal of Selected Topics in Signal Processing,

Dec 2017, Volume 11, Issue 8, pp. 1-8.

References
[1] Donald Bamber. The area above the ordinal dominance graph and the area below the receiver

operating characteristic graph. Journal of mathematical psychology, 12(4):387–415, 1975.

[2] Samy Bengio and Georg Heigold. Word embeddings for speech recognition. In INTERSPEECH,
pages 1053–1057, 2014.

[3] Samy Bengio, Johnny Mariéthoz, and Mikaela Keller. The expected performance curve. In
International Conference on Machine Learning, ICML, Workshop on ROC Analysis in Machine
Learning, number EPFL-CONF-83266, 2005.

[4] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, September 2004.

[5] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively,
with application to face verification. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 539–546. IEEE, 2005.

[6] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive
algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

[7] O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. In Proceedings of
the Twenty-First International Conference on Machine Learning (ICML), 2004.

[8] Jonathan G Fiscus, Jerome Ajot, John S Garofolo, and George Doddingtion. Results of the
2006 spoken term detection evaluation. In Proc. SIGIR, volume 7, pages 51–57, 2007.

[9] Tzeviya Fuchs and Joseph Keshet. Spoken term detection automatically adjusted for a given
threshold. IEEE Journal of Selected Topics in Signal Processing, 11(8):1310–1317, 2017.

[10] D. Grangier and S. Bengio. Learning the inter-frame distance for discriminative template-based
keyword detection. In International Conference on Speech Processing (INTERSPEECH), 2007.

[11] James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[12] Aren Jansen, Samuel Thomas, and Hynek Hermansky. Weak top-down constraints for unsuper-
vised acoustic model training. In ICASSP, pages 8091–8095, 2013.

[13] Herman Kamper, Micha Elsner, Aren Jansen, and Sharon Goldwater. Unsupervised neural
network based feature extraction using weak top-down constraints. In Acoustics, Speech and
Signal Processing (ICASSP), 2015 IEEE International Conference on, pages 5818–5822. IEEE,
2015.

[14] Herman Kamper, Weiran Wang, and Karen Livescu. Deep convolutional acoustic word embed-
dings using word-pair side information. In Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on, pages 4950–4954. IEEE, 2016.

[15] Damianos Karakos, Richard Schwartz, Stavros Tsakalidis, Le Zhang, Shivesh Ranjan, Tim Tim
Ng, Roger Hsiao, Guruprasad Saikumar, Ivan Bulyko, Long Nguyen, et al. Score normalization
and system combination for improved keyword spotting. In Automatic Speech Recognition and
Understanding (ASRU), 2013 IEEE Workshop on, pages 210–215. IEEE, 2013.

[16] J. Keshet, D. Grangier, and S. Bengio. Discriminative keyword spotting. Speech Communication,
51(4):317–329, 2009.

9

[17] Jonathan Mamou, Bhuvana Ramabhadran, and Olivier Siohan. Vocabulary independent spoken
term detection. In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 615–622. ACM, 2007.

[18] David RH Miller, Michael Kleber, Chia-Lin Kao, Owen Kimball, Thomas Colthurst, Stephen A
Lowe, Richard M Schwartz, and Herbert Gish. Rapid and accurate spoken term detection. In
Eighth Annual Conference of the International Speech Communication Association, 2007.

[19] Carolina Parada, Abhinav Sethy, and Bhuvana Ramabhadran. Query-by-example spoken term
detection for oov terms. In Automatic Speech Recognition & Understanding, 2009. ASRU 2009.
IEEE Workshop on, pages 404–409. IEEE, 2009.

[20] Douglas B Paul and Janet M Baker. The design for the wall street journal-based csr corpus. In
Proceedings of the workshop on Speech and Natural Language, pages 357–362. Association for
Computational Linguistics, 1992.

[21] R. Prabhavalkar, J. Keshet, K. Livescu, and E. Fosler-Lussier. Discriminative spoken term
detection with limited data. In The 2nd Symposium on Machine Learning for Speech and
Language Processing, 2012.

[22] Rohit Prabhavalkar, Karen Livescu, Eric Fosler-Lussier, and Joseph Keshet. Discriminative
articulatory models for spoken term detection in low-resource conversational settings. In Proc.
of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8287–8291, 2013.

[23] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

10

	Introduction
	Problem Setting
	Loss function for detection with a fixed threshold
	Structured prediction model
	Deep network model
	Experiments
	Structured prediction model
	Deep network model

	Conclusions

