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ABSTRACT

We study the roots of algorithmic progress in deep policy gradient algorithms
through a case study on two popular algorithms: Proximal Policy Optimization
(PPO) and Trust Region Policy Optimization (TRPO). Specifically, we investigate
the consequences of “code-level optimizations:” algorithm augmentations found
only in implementations or described as auxiliary details to the core algorithm.
Seemingly of secondary importance, such optimizations turn out to have a major
impact on agent behavior. Our results show that they (a) are responsible for most
of PPO’s gain in cumulative reward over TRPO, and (b) fundamentally change
how RL methods function. These insights show the difficulty, and importance, of
attributing performance gains in deep reinforcement learning.

1 INTRODUCTION

Deep reinforcement learning (RL) algorithms have fueled many of the most publicized achievements
in modern machine learning (Silver et al., 2017; OpenAI, 2018; Abbeel & Schulman, 2016; Mnih
et al., 2013). However, despite these accomplishments, deep RL methods still are not nearly as
reliable as their (deep) supervised learning counterparts. Indeed, recent research found the existing
deep RL methods to be brittle (Henderson et al., 2017; Zhang et al., 2018), hard to reproduce (Hen-
derson et al., 2017; Tucker et al., 2018), unreliable across runs (Henderson et al., 2017; 2018), and
sometimes outperformed by simple baselines (Mania et al., 2018).

The prevalence of these issues points to a broader problem: we do not understand how the parts
comprising deep RL algorithms impact agent training, either separately or as a whole. This unsat-
isfactory understanding suggests that we should re-evaluate the inner workings of our algorithms.
Indeed, the overall question motivating our work is: how do the multitude of mechanisms used in
deep RL training algorithms impact agent behavior?

Our contributions. We analyze the underpinnings of agent behavior—both through the traditional
metric of cumulative reward, and by measuring more fine-grained algorithmic properties. As a first
step towards tackling this question, we conduct a case study of two of the most popular deep policy-
gradient methods: Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017). These two methods are closely related: PPO
was originally developed as a refinement of TRPO.

We find that much of the PPO’s observed improvement in performance comes from seemingly small
modifications to the core algorithm that either can be found only in a paper’s original implementa-
tion, or are described as auxiliary details and are not present in the corresponding TRPO baselines. 1

We pinpoint these modifications, and perform an ablation study demonstrating that they are instru-
mental to the PPO’s performance.

∗Equal contribution. Work done in part as an intern at Two Sigma.
1Note that these code-level optimizations are separate from “implementation choices” like the choice of

PyTorch versus TensorFlow in that they intentionally change the training algorithm’s operation.

1



Published as a conference paper at ICLR 2019

This observation prompts us to study how such code-level optimizations change agent training dy-
namics, and whether we can truly think of them as merely auxiliary improvements. Our results
indicate that these optimizations fundamentally change algorithms’ operation, and go even beyond
improvements in agent reward. We find that they majorly impact a key algorithmic principle behind
TRPO and PPO’s operations: trust region enforcement.

Ultimately, we discover that the PPO code-optimizations are more important in terms of final re-
ward achieved than the choice of general training algorithm (TRPO vs. PPO). This result is in stark
contrast to the previous view that the central PPO clipping method drives the gains seen in Schulman
et al. (2017). In doing so, we demonstrate that the algorithmic changes imposed by such optimiza-
tions make rigorous comparisons of algorithms difficult. Without a rigorous understanding of the
full impact of code-level optimizations, we cannot hope to gain any reliable insight from comparing
algorithms on benchmark tasks.

Our results emphasize the importance of building RL methods in a modular manner. To progress
towards more performant and reliable algorithms, we need to understand each component’s impact
on agent behavior and performance—both individually, and as part of a whole.

Code for all the results shown in this work is available at https://github.com/MadryLab/
implementation-matters.

2 RELATED WORK

The idea of using gradient estimates to update neural network–based RL agents dates back at least
to the work of Williams (1992), who proposed the REINFORCE algorithm. Later, Sutton et al.
(1999) established a unifying framework that casts the previous algorithms as instances of the policy
gradient method.

Our work focuses on proximal policy optimization (PPO) (Schulman et al., 2017) and trust region
policy optimization (TRPO) (Schulman et al., 2015a), which are two of the most prominent policy
gradient algorithms used in deep RL. Much of the original inspiration for the usage of the trust
regions stems from the conservative policy update of Kakade (2001). This policy update, similarly
to TRPO, uses a natural gradient descent-based greedy policy update. TRPO also bears similarity
to the relative policy entropy search method of Peters et al. (2010), which constrains the distance
between marginal action distributions (whereas TRPO constrains the conditionals of such action
distributions).

Notably, Henderson et al. (2017) points out a number of brittleness, reproducibility, and experimen-
tal practice issues in deep RL algorithms. Importantly, we build on the observation of Henderson
et al. (2017) that final reward for a given algorithm is greatly influenced depending on the code
base used. Rajeswaran et al. (2017) and Mania et al. (2018) also demonstrate that on many of the
benchmark tasks, the performance of PPO and TRPO can be matched by fairly elementary random-
ized search approaches. Additionally, Tucker et al. (2018) showed that one of the recently proposed
extensions of the policy gradient framework, i.e., the usage of baseline functions that are also action-
dependent (in addition to being state-dependent), might not lead to better policies after all.

3 ATTRIBUTING SUCCESS IN PROXIMAL POLICY OPTIMIZATION

Our overarching goal is to better understand the underpinnings of the behavior of deep policy gra-
dient methods. We thus perform a careful study of two tightly linked algorithms: TRPO and PPO
(recall that PPO is motivated as TRPO with a different trust region enforcement mechanism). To
better understand these methods, we start by thoroughly investigating their implementations in prac-
tice. We find that in comparison to TRPO, the PPO implementation contains many non-trivial op-
timizations that are not (or only barely) described in its corresponding paper. Indeed, the standard
implementation of PPO 2 contains the following additional optimizations:

2From the OpenAI baselines GitHub repository: https://github.com/openai/baselines
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1. Value function clipping: Schulman et al. (2017) originally suggest fitting the value net-
work via regression to target values:

LV = (Vθt − Vtarg)2,
but the standard implementation instead fits the value network with a PPO-like objective:

LV = min
[
(Vθt − Vtarg)

2
,
(
clip

(
Vθt , Vθt−1

− ε, Vθt−1
+ ε
)
− Vtarg

)2]
,

where Vθ is clipped around the previous value estimates (and ε is fixed to the same value
as the value used in (2) to clip the probability ratios).

2. Reward scaling: Rather than feeding the rewards directly from the environment into the
objective, the PPO implementation performs a certain discount-based scaling scheme. In
this scheme, the rewards are divided through by the standard deviation of a rolling dis-
counted sum of the rewards (without subtracting and re-adding the mean)—see Algorithm 1
in Appendix A.2.

3. Orthogonal initialization and layer scaling: Instead of using the default weight initial-
ization scheme for the policy and value networks, the implementation uses an orthogonal
initialization scheme with scaling that varies from layer to layer.

4. Adam learning rate annealing: Depending on the task, the implementation sometimes
anneals the learning rate of Adam (Kingma & Ba, 2014) (an already adaptive method) for
optimization.

5. Reward Clipping: The implementation also clips the rewards within a preset range (usu-
ally [−5, 5] or [−10, 10]).

6. Observation Normalization: In a similar manner to the rewards, the raw states are also not
fed into the optimizer. Instead, the states are first normalized to mean-zero, variance-one
vectors.

7. Observation Clipping: Analagously to rewards, the observations are also clipped within a
range, usually [−10, 10].

8. Hyperbolic tan activations: As also observed by Henderson et al. (2017), implementa-
tions of policy gradient algorithms also also use hyperbolic tangent function activations
between layers in the policy and value networks.

9. Global Gradient Clipping: After computing the gradient with respect to the policy and
the value networks, the implementation clips the gradients such the “global `2 norm” (i.e.
the norm of the concatenated gradients of all parameters) does not exceed 0.5.

These optimizations may appear as merely surface-level or insignificant algorithmic changes to the
core policy gradient method at hand. However, we find that they dramatically affect the performance
of PPO. To demonstrate this, we start by performing a full ablation study on the four optimizations
mentioned above 3. Figure 1 shows a histogram of the final rewards of agents trained with every
possible configuration of the above optimizations—for each configuration, a grid search for the
optimal learning rate is performed, and we measure the reward of random agents trained using the
identified learning rate. Our findings suggest that many code-level optimizations are necessary for
PPO to attain its claimed performance.

The above findings show that our ability to understand PPO from an algorithmic perspective hinges
on the ability to distill out its fundamental principles from such algorithm-independent (in the sense
that these optimizations can be implemented for any policy gradient method) optimizations. We
thus consider a variant of PPO called PPO-MINIMAL (PPO-M) which implements only the core of
the algorithm. PPO-M uses the standard value network loss, no reward scaling, the default network
initialization, and Adam with a fixed learning rate. Importantly, PPO-M ignores all the code-level
optimizations listed above in the beginning of Section 3. We then explore PPO-M alongside PPO
and TRPO. We list all the algorithms we study and their defining properties in Table 1.

Overall, our results on the importance of these optimizations both corroborate results demonstrating
the brittleness of deep policy gradient methods, and demonstrate that even beyond environmental
brittleness, the algorithms themselves exhibit high sensitivity to implementation choices 4.

3Due to restrictions on computational resources, we could only perform a full ablation on the first four of
the identified optimizations.

4This might also explain the difference between different codebases observed in Henderson et al. (2017)
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Figure 1: An ablation study on the first four optimizations described in Section 3 (value clipping,
reward scaling, network initialization, and learning rate annealing). For each of the 24 possible con-
figurations of optimizations, we train a Humanoid-v2 (top) and Walker2d-v2 (bottom) agent using
PPO with five random seeds and a grid of learning rates, and choose the learning rate which gives
the best average reward (averaged over the random seeds). We then consider all rewards from the
“best learning rate” runs (a total of 5 × 24 agents), and plot histograms in which agents are parti-
tioned based on whether each optimization is on or off. Our results show that reward normalization,
Adam annealing, and network initialization each significantly impact the rewards landscape with re-
spect to hyperparameters, and were necessary for attaining the highest PPO reward within the tested
hyperparameter grid. We detail our experimental setup in Appendix A.1.

Table 1: List of algorithms studied in this work, with their crucial properties. Step method refers to
the method used to build each training step, PPO clipping refers to the use of clipping in the step
(as in Equation (2)), and PPO optimizations refer to the optimizations listed in Section 3.

Algorithm Section Step method Uses PPO clipping? Uses PPO optimizations?
PPO — PPO 3 As in (Dhariwal et al., 2017)
PPO-M Sec. 3 PPO 3 7
PPO-NOCLIP Sec. 4 PPO 7 Found via grid search
TRPO — TRPO — 7
TRPO+ Sec. 5 TRPO — Found via grid search

4 CODE-LEVEL OPTIMIZATIONS HAVE ALGORITHMIC EFFECTS

In the previous section, we found that canonical implementations of PPO contain many code-level
optimizations: implementation choices that are not integral to the method but profoundly impact
performance.

The seemingly disproportionate effect of code-level optimizations identified in our ablation study
may lead us to ask: how do these seemingly superficial code-level optimizations impact underlying
agent behavior? In this section, we demonstrate that the code-level optimizations fundamentally
alter agent behavior. Rather than merely improving ultimate cumulative award, such optimizations
directly impact the principles motivating the core algorithms.

Trust Region Optimization. A key property of policy gradient algorithms is that update steps
computed at any specific policy πθt are only guaranteed predictiveness in a neighborhood around
θt. Thus, to ensure that the update steps we derive remain predictive many policy gradient algo-
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rithms ensure that these steps stay in the vicinity of the current policy. The resulting “trust region”
methods (Kakade, 2001; Schulman et al., 2015a; 2017) try to constrain the local variation of the
parameters in policy-space by restricting the distributional distance between successive policies.

A popular method in this class is trust region policy optimization (TRPO) Schulman et al. (2015a).
TRPO constrains the KL divergence between successive policies on the optimization trajectory,
leading to the following problem:

max
θ

E(st,at)∼π

[
πθ(at|st)
π(at|st)

Âπ(st, at)

]
s.t. DKL(πθ(· | s)||π(· | s)) ≤ δ, ∀s . (1)

In practice, we maximize this objective with a second-order approximation of the KL divergence
and natural gradient descent, and replace the worst-case KL constraints over all possible states with
an approximation of the mean KL based on the states observed in the current trajectory.

Proximal policy optimization. One disadvantage of the TRPO algorithm is that it can be compu-
tationally costly—the step direction is estimated with nonlinear conjugate gradients, which requires
the computation of multiple Hessian-vector products. To address this issue, Schulman et al. (2017)
propose proximal policy optimization (PPO), which tries to enforce a trust region with a different
objective that does not require computing a projection. Concretely, PPO proposes replacing the
KL-constrained objective (1) of TRPO by clipping the objective function directly as:

max
θ

E(st,at)∼π

[
min

(
clip (ρt, 1− ε, 1 + ε) Âπ(st, at), ρtÂπ(st, at)

)]
(2)

where

ρt =
πθ(at|st)
π(at|st)

. (3)

Note that this objective can be optimized without an explicit projection step, leading to a simpler
parameter update during training. In addition to its simplicity, PPO is intended to be faster and more
sample-efficient than TRPO (Schulman et al., 2017).

Trust regions in TRPO and PPO. Enforcing a trust region is a core algorithmic property of
different policy gradient methods. However, whether or not a trust region is enforced is not directly
observable from the final rewards. So, how does this algorithmic property vary across state-of-the-art
policy gradient methods?

In Figure 2 we measure the mean KL divergence between successive policies in a training run of
both TRPO and PPO-M (PPO without code-level optimizations). Recall that TRPO is designed
specifically to constrain this KL-based trust region, while the clipping mechanism of PPO attempts
to approximate it. Indeed, we find that TRPO precisely enforces this trust region (this is unsuprising,
and nearly by construction).

We thus turn our attention to the trust regions induced by training with PPO and PPO-M. First, we
consider mathematically the contribution of a single state-action pair to the gradient of the PPO
objective, which is given by

∇θLPPO =

{
∇θLθ πθ(a|s)

π(a|s) ∈ [1− ε, 1 + ε] or LCθ < Lθ

0 otherwise
,

where Lθ := E(s,a)∈τ∼π

[
πθ(a|s)
π(a|s)

Aπ(s, a)

]
,

and LCθ := E(s,a)∈τ∼π

[
clip

(
πθ(a|s)
π(a|s)

, 1− ε, 1 + ε

)
Aπ(s, a)

]
are respectively the standard and clipped versions of the surrogate objective. As a result, since we
initialize πθ as π (and thus the ratios start all equal to one) the first step we take is identical to a
maximization step over the unclipped surrogate objective. It thus stands to reason that the nature of
the trust region enforced is heavily dependent on the method with which the clipped PPO objective
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Figure 2: Per step mean reward, maximum ratio (c.f. (2)), mean KL, and mean KL for agents
trained to solve the MuJoCo Humanoid-v2 task. The quantities are measured over the state-action
pairs collected in the training step. Each line represents a training curve from a separate agent. The
black dotted line represents the 1 + ε ratio constraint in the PPO algorithm, and we measure each
quantity every twenty five steps. We take mean and max KL over the KL divergences between the
conditional distributions induced by the current and previous policy on the observed states in training
(at each step). In the left plot we see the reward for each trained agent. From in the middle plot, we
can see that the PPO variants’ maximum ratios consistently violates the ratio “trust region.” In the
right plot, we see that both PPO and PPO-M constraint the KL well (compared to the TRPO bound
of 0.07). The two methods exhibit different behavior: while PPO-M KL trends up as the number
of iterations increases, PPO KL peaks halfway through training before trending down again. We
measure the quantities over a heldout set of state-action pairs and find little qualitative difference
in the results (seen in Figure 4 in the appendix), suggesting that TRPO does indeed enforce a mean
KL trust region. We show plots for additional tasks in the Appendix in Figure 3. We detail our
experimental setup in Appendix A.1.

is optimized, rather than on the objective itself. Therefore, the size of step we take is determined
solely be the steepness of the surrogate landscape (i.e. Lipschitz constant of the optimization prob-
lem we solve), and we can end up moving arbitrarily far from the trust region. We hypothesize that
this dependence of PPO on properties of the optimizer rather than the optimization objective con-
tributes to the brittleness of the algorithm to hyperparameters such as learning rate and momentum,
as observed by Henderson et al. (2018) and others.

The results we observe (shown in Figure 2) corroborate this intuition. For agents trained with op-
timal parameters, all three algorithms are able to maintain a KL-based trust region. First, we note
that all three algorithms fail to maintain a ratio-based trust region, despite PPO and PPO-M being
trained directly with a ratio-clipping objective. Furthermore, the nature of the KL trust region en-
forced differs between PPO and PPO-M, despite the fact that the core algorithm remains constant
between the two methods; while PPO-M KL trends up as the number of iterations increases, PPO
KL peaks halfway through training before trending down again.

The findings from this experiment and the corresponding calculations demonstrate that perhaps a
key factor in the behavior of PPO-trained agents even from an algorithmic viewpoint comes from
auxiliary optimizations, rather than the core methodology.

5 IDENTIFYING ROOTS OF ALGORITHMIC PROGRESS

State-of-the-art deep policy gradient methods are comprised of many interacting components. At
what is generally described as their core, these methods incorporate mechanisms like trust region-
enforcing steps, time-dependent value predictors, and advantage estimation methods for controlling
the exploitation/exploration trade-off (Schulman et al., 2015b). However, these algorithms also
incorporate many less oft-discussed optimizations (cf. Section 3) that ultimately dictate much of
agent behavior (cf. Section 4). Given the need to improve on these algorithms, the fact that such
optimizations are so important begs the question: how do we identify the true roots of algorithmic
progress in deep policy gradient methods?

Unfortunately, we find that answering this question is not easy. Going back to our study of PPO
and TRPO, it is widely believed (and claimed) that the key innovation of PPO responsible for its
improved performance over the baseline of TRPO is the ratio clipping mechanism discussed in
Section 4. However, we have already shown that this clipping mechanism is insufficient theoretically
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Table 2: Full ablation of step choices (PPO or TRPO) and presence of code-level optimizations
measuring agent performance on benchmark tasks. TRPO+ is a variant of TRPO that uses PPO
inspired code-level optimizations, and PPO-M is a variant of PPO that does not use PPO’s code-
level optimizations (cf. Section 3). We find that varying the use of code-level optimizations impacts
performance significantly more than varying whether the PPO or TRPO step is used. We detail our
experimental setup in Appendix A.1. We train at least 80 agents for each estimate (more for some
high-variance cases). We present 95% confidence intervals computed via a 1000-sample bootstrap.
We also present the AAI and ACLI metrics discussed in Section 5, which attempt to quantify the
relative contribution of algorithmic choice vs. use of code-level optimizations respectively.

MUJOCO TASK
STEP WALKER2D-V2 HOPPER-V2 HUMANOID-V2

PPO 3292 [3157, 3426] 2513 [2391, 2632] 806 [785, 827]
PPO-M 2735 [2602, 2866] 2142 [2008, 2279] 674 [656, 695]
TRPO 2791 [2709, 2873] 2043 [1948, 2136] 586 [576, 596]
TRPO+ 3050 [2976, 3126] 2466 [2381, 2549] 1030 [979, 1083]

AAI 242 99 224
ACLI 557 421 444

to maintain a trust region, and also that the method by which the objective is optimized appears to
have significant effect on the resulting trust region. If code-level optimizations are thus (at least
partially) responsible for algorithmic properties of PPO, is it possible that they are also a key factor
in PPO’s improved performance?

To address this question, we set out to further disentangle the impact of PPO’s core clipping mecha-
nism from its code-level optimizations by once again considering variations on the PPO and TRPO
algorithms. Specifically, we examine how employing the core PPO and TRPO steps changes model
performance while controlling for the effect of code-level optimizations identified in standard im-
plementations of PPO (in particular, we focus on those covered in Section 3). (Note that these
code-level optimizations are largely algorithm-independent: they can be straightforwardly applied
or lightly adapted to any policy gradient method.) The previously introduced PPO-M algorithm
corresponds to PPO without these optimizations. To further account for their effects, we study an
additional algorithm which we denote as TRPO+, consisting of the core algorithmic contribution of
TRPO in combination with PPO’s code-level optimizations as identified in Section 3 5. We note that
TRPO+ together with the other three algorithms introduced (PPO, PPO-M, and TRPO; all listed in
Table 1) now capture all combinations of core algorithms and code-level optimizations, allowing us
to study the impact of each in a fine-grained manner.

As our results show in Table 2, it turns out that code-level optimizations contribute to algorithms’
increased performance often significantly more than the choice of algorithm (i.e., using PPO vs.
TRPO). For example, on Hopper-v2, PPO and TRPO see 17% and 21% improvements (respectively)
when equipped with code-level optimizations. At the same time, for all tasks after fixing the choice
to use or not use optimizations, the core algorithm employed does not seem to have a significant
impact on reward. In Table 2 we quantify this contrast through the following two metrics, which we
denote average algorithmic improvement (AAI) and average code-level improvement (ACLI):

AAI = max{|PPO − TRPO+|, |PPO-M − TRPO|},

ACLI = max{|PPO − PPO-M|, |TRPO+ − TRPO|}.
In short, AAI measures the maximal effect of switching step algorithms (from PPO to TRPO or
vice-versa), whereas ACLI measures the maximal effect of adding in code-level optimizations for a
fixed choice of step algorithm.

PPO without clipping. Given the relative insignificance of the step mechanism compared to the
use of code-level optimizations, we are prompted to ask: to what extent is the clipping mechanism

5We also add a new code-level optimization, a KL decay, inapplicable to PPO but meant to serve as the
analog of Adam learning rate annealing.

7



Published as a conference paper at ICLR 2019

Table 3: Comparison of PPO performance to PPO without clipping. We find that there is little
difference between the rewards attained between the two algorithms on the benchmark tasks. Note
that both algorithms use code-level optimizations; our results indicate that the clipping mechanism is
often of comparable or lesser importance to the use of code-level optimizations. We detail our exper-
imental setup in Appendix A.1. We train at least 80 agents for each estimate (for some high-variance
cases, more agents were used). We present 95% confidence intervals computed via a 1000-sample
bootstrap. We also present results from the OpenAI baselines (Dhariwal et al., 2017) repository
where available.

WALKER2D-V2 HOPPER-V2 HUMANOID-V2

PPO 3292 [3157, 3426] 2513 [2391, 2632] 806 [785, 827]
PPO (BASELINES) 3424 2316 —
PPO-M 2735 [2602, 2866] 2142 [2008, 2279] 674 [656, 695]
PPO-NOCLIP 2867 [2701, 3024] 2371 [2316, 2424] 831 [798, 869]

of PPO actually responsible for the algorithm’s success? In Table 3, we assess this by considering
a PPO-NOCLIP algorithm which makes use of common code-level optimizations (by gridding over
the best possible combination of such optimizations) but does not employ a clipping mechanism (this
is the same algorithm we studied in Section 4 in the context of trust region enforcement)—recall that
we list all the algorithms studied in Table 1.

It turns out that the clipping mechanism is not necessary to achieve high performance—we find
that PPO-NOCLIP performs uniformly better than PPO-M, despite the latter employing the core
PPO clipping mechanism. Our results suggest that the introduction of code-level optimizations
outweighs even the core PPO algorithm in terms of effect on rewards. In fact, we find that with
sufficient hyperparameter tuning, PPO-NOCLIP often matches the performance of standard PPO,
which includes a standard configuration of code-level optimizations6. We also include benchmark
PPO numbers from the OpenAI baselines repository (Dhariwal et al., 2017) where available to
put results into context.

Our results suggest that it is difficult to attribute success to different aspects of policy gradient
algorithms without careful analysis.

6 CONCLUSION

In this work, we take a first step in examining how the mechanisms powering deep policy gradi-
ent methods impact agents both in terms of achieved reward and underlying algorithmic behavior.
Wanting to understand agent operation from the ground up, we take a deep dive into the operation of
two of the most popular deep policy gradient methods: TRPO and PPO. In doing so, we identify a
number of “code-level optimizations”—algorithm augmentations found only in algorithms’ imple-
mentations or described as auxiliary details in their presentation—and find that these optimizations
have a drastic effect on agent performance.

In fact, these seemingly unimportant optimizations fundamentally change algorithm operation in
ways unpredicted by the conceptual policy gradient framework. Indeed, the optimizations have
a profound effect on the nature of the trust region enforced by policy gradient algorithms, even
controlling for the surrogate objective being optimized. We go on to test the importance of code-
level optimizations in agent performance, and find that PPO’s marked improvement over TRPO (and
even stochastic gradient descent) can be largely attributed to these optimizations.

Overall, our results highlight the necessity of designing deep RL methods in a modular manner.
When building algorithms, we should understand precisely how each component impacts agent
training—both in terms of overall performance and underlying algorithmic behavior. It is impos-
sible to properly attribute successes and failures in the complicated systems that make up deep RL
methods without such diligence. More broadly, our findings suggest that developing an RL toolkit

6Note that it is possible that further refinement on the code-level optimizations could be added on top of
PPO to perhaps improve its performance to an even greater extent (after all, PPO-NOCLIP can only express a
subset the training algorithms covered by PPO, as the latter leaves the clipping severity ε to be free parameter)
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will require moving beyond the current benchmark-driven evaluation model to a more fine-grained
understanding of deep RL methods.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

All the hyperparameters used in this paper were obtained through grid searches. For PPO the exact
code-level optimizations and their associated hyperparameters (e.g. coefficients for entropy regular-
ization, reward clipping, etc.) were taken from the OpenAI baselines repository 7, and gridding is
performed over the value function learning rate, the clipping constant, and the learning rate sched-
ule. In TRPO, we grid over the same parameters (replacing learning rate schedule with the KL
constraint), but omit the code-level optimizations. For PPO-NoClip, we grid over the same param-
eters as PPO, in addition to the configuration of code-level optimizations (since we lack a good
reference for what the optimal configuration of these optimizations is). For TRPO+ we also grid
over the code-level optimizations, and also implement a “KL schedule” whereby the KL constraint
can change over training (analogous to the learning rate annealing optimization in PPO). Finally,
for PPO-M, we grid over the same parameters as PPO (just learning rate schedules), without any
code-level optimizations. The final parameters for each algorithm are given below:

Table 4: Hyperparameters for all algorithms for Walker2d-v2.

PPO TRPO PPO-NoClip PPO-M TRPO+

Timesteps per iteration 2048 2048 2048 2048 2048
Discount factor (γ) 0.99 0.99 0.99 0.99 0.99
GAE discount (λ) 0.95 0.95 0.85 0.95 0.95
Value network LR 0.0003 0.0003 0.0006 0.0002 0.0001
Value network num. epochs 10 10 10 10 10
Policy network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
Value network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
KL constraint (δ) N/A 0.04 N/A N/A 0.07
Fisher estimation fraction N/A 0.1 N/A N/A 0.1
Conjugate gradient steps N/A 10 N/A N/A 10
Conjugate gradient damping N/A 0.1 N/A N/A 0.1
Backtracking steps N/A 10 N/A N/A 10
Policy LR (Adam) 0.0004 N/A 7.25e-05 0.0001 N/A
Policy epochs 10 N/A 10 10 N/A
PPO Clipping ε 0.2 N/A 1e+32 0.2 N/A
Entropy coeff. 0 0 -0.01 0 0
Reward clipping [-10.0, 10.0] – [-30, 30] – [-10.0, 10.0]
Gradient clipping (`2 norm) -1 -1 0.1 -1 1
Reward normalization returns none rewards none returns
State clipping [-10.0, 10.0] – [-30, 30] – [-10.0, 10.0]

All error bars we plot are 95% confidence intervals, obtained via bootstrapped sampling.

7https://github.com/openai/baselines
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Table 5: Hyperparameters for all algorithms for Humanoid-v2.

PPO TRPO PPO-NoClip PPO-M TRPO+

Timesteps per iteration 2048 2048 2048 2048 2048
Discount factor (γ) 0.99 0.99 0.99 0.99 0.99
GAE discount (λ) 0.95 0.95 0.85 0.95 0.85
Value network LR 0.0001 0.0003 5e-05 0.0004 5e-05
Value network num. epochs 10 10 10 10 10
Policy network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
Value network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
KL constraint (δ) N/A 0.07 N/A N/A 0.1
Fisher estimation fraction N/A 0.1 N/A N/A 0.1
Conjugate gradient steps N/A 10 N/A N/A 10
Conjugate gradient damping N/A 0.1 N/A N/A 0.1
Backtracking steps N/A 10 N/A N/A 10
Policy LR (Adam) 0.00015 N/A 2e-05 9e-05 N/A
Policy epochs 10 N/A 10 10 N/A
PPO Clipping ε 0.2 N/A 1e+32 0.2 N/A
Entropy coeff. 0 0 0.005 0 0
Reward clipping [-10.0, 10.0] – [-10.0, 10.0] – [-10.0, 10.0]
Gradient clipping (`2 norm) -1 -1 0.5 -1 0.5
Reward normalization returns none returns none returns
State clipping [-10.0, 10.0] – [-10.0, 10.0] – [-10.0, 10.0]

Table 6: Hyperparameters for all algorithms for Hopper-v2.

PPO TRPO PPO-NoClip PPO-M TRPO+

Timesteps per iteration 2048 2048 2048 2048 2048
Discount factor (γ) 0.99 0.99 0.99 0.99 0.99
GAE discount (λ) 0.95 0.95 0.925 0.95 0.95
Value network LR 0.00025 0.0002 0.0004 0.0004 0.0002
Value network num. epochs 10 10 10 10 10
Policy network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
Value network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
KL constraint (δ) N/A 0.13 N/A N/A 0.04
Fisher estimation fraction N/A 0.1 N/A N/A 0.1
Conjugate gradient steps N/A 10 N/A N/A 10
Conjugate gradient damping N/A 0.1 N/A N/A 0.1
Backtracking steps N/A 10 N/A N/A 10
Policy LR (Adam) 0.0003 N/A 6e-05 0.00017 N/A
Policy epochs 10 N/A 10 10 N/A
PPO Clipping ε 0.2 N/A 1e+32 0.2 N/A
Entropy coeff. 0 0 -0.005 0 0
Reward clipping [-10.0, 10.0] – [-2.5, 2.5] – [-10.0, 10.0]
Gradient clipping (`2 norm) -1 -1 4 -1 1
Reward normalization returns none rewards none returns
State clipping [-10.0, 10.0] – [-2.5, 2.5] – [-10.0, 10.0]
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A.2 PPO CODE-LEVEL OPTIMIZATIONS

Algorithm 1 PPO scaling optimization.

1: procedure INITIALIZE-SCALING()
2: R0 ← 0
3: RS = RUNNINGSTATISTICS() . New running stats class that tracks mean, standard

deviation
4: procedure SCALE-OBSERVATION(rt) . Input: a reward rt
5: Rt ← γRt−1 + rt . γ is the reward discount
6: ADD(RS,Rt)
7: return rt/STANDARD-DEVIATION(RS) . Returns scaled reward

12
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A.3 TRUST REGION OPTIMIZATION
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(a) Walker2d-v2 (train)
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(b) Hopper-v2 (train)

Figure 3: Per step mean reward, maximum ratio (c.f. (2)), mean KL, and maximum versus mean
KL for agents trained to solve the MuJoCo Humanoid task. The quantities are measured over the
state-action pairs collected in the training step. Each line represents a training curve from a separate
agent. The black dotted line represents the 1 + ε ratio constraint in the PPO algorithm, and we
measure each quantity every twenty five steps. Compare the results here with Figure 4; they are
qualitatively nearly identical.
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(a) Humanoid-v2 (heldout)
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(b) Walker2d-v2 (heldout)
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(c) Hopper-v2 (heldout)

Figure 4: Per step mean reward, maximum ratio (c.f. (2)), mean KL, and maximum versus mean
KL for agents trained to solve the MuJoCo Humanoid task. The quantities are measured over state-
action pairs collected from heldout trajectories. Each line represents a curve from a separate agent.
The black dotted line represents the 1 + ε ratio constraint in the PPO algorithm, and we measure
each quantity every twenty five steps. See that the mean KL for TRPO nearly always stays within
the desired mean KL trust region (at 0.06).
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