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ABSTRACT

An adversarial feature learning (AFL) is a powerful framework to learn represen-
tations invariant to a nuisance attribute, which uses an adversarial game between
a feature extractor and a categorical attribute classifier. It theoretically sounds
in term of it maximize conditional entropy between attribute and representation.
However, as shown in this paper, the AFL often causes unstable behavior that
slows down the convergence. We propose an attribute perception matching as
an alternative approach, based on the reformulation of conditional entropy max-
imization as pair-wise distribution matching. Although the naive approach for
realizing the pair-wise distribution matching requires the significantly large num-
ber of parameters, the proposed method requires the same number of parameters
with AFL but has a better convergence property. Experiments on both toy and
real-world dataset prove that our proposed method converges to better invariant
representation significantly faster than AFL.

1 INTRODUCTION

How to learn representations invariant to nuisance attribute a is technical challenges raised in domain
generalizaton (Blanchard et al., 2011; Muandet et al., 2013; Ghifary et al., 2015; Motiian et al.,
2017), fair classification, privacy-protection (Edwards & Storkey, 2016; Iwasawa et al., 2017), and
many other area. Assume that we are given a training dataset made of pairs S =

{
(xi, yi, ai)

}n
i=1

,
where x is an observation, y is a target of x, and a is a corresponding intrinsic attribute of K-way
categorical variable A. The goal of invariant representation learning is to obtain an encoder E that
reduces information about attribute a while maintaining information about y.

An adversarial game between a feature extractor and an attribute classifier, called adversarial feature
learning (Xie et al., 2017), is a powerful framework for this purpose. The key of AFL is to measure
the invariance by leveraging the discriminative power of neural network beyond the pre-defined
metric such as l2 distance or maximum mean discrepancy. That is, if the external network (also
referred to as a discriminator) can predict a from z = E(x), AFL regards z to have considerable
information about a. Formally, the AFL solves the following optimization problem:

min
E,M

max
D

E
x,y,a∈S

[− log qM (y|E(x)) + λ log qD(a|E(x))] , (1)

where qM and qD is the conditional probability that M and D gives a correct estimation of y and a
respectively. As Xie et al. (2017) explained, this alternating procedure can be regarded as a way to
maximize the conditional entropy H(A|Z) =

∑
a∈A,z∈Z −p(a, z) log p(a|z), where A and Z is a

support set of a and z. Xie et al. (2017) also showed that the min–max game has an equilibrium, in
which E maximize the conditional entropy H(A|Z). It has been show superior performance in fair-
classification, privacy-protection, and domain generalization tasks (Ganin et al., 2016; Edwards &
Storkey, 2016; Xie et al., 2017; Iwasawa et al., 2017), compared to the predifined metric approaches
(Zemel et al., 2013; Louizos et al., 2016; Motiian et al., 2017).

Despite the theoretical justifications, the above min–max formulation is suspicious for several prac-
tical issues. Namely, the gradient from the discriminator vanishes if the discriminator sufficiently
trained since E[log qD(a|z=E(x))] is small then. Besides, in mathematical level, it only keeps away
representations from the non-desired point where we can predict a label correctly, but not ensure that
it approaches the desired invariant point. Please also refer Fig. 1 for visualization of the instability.
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Note that, Generative Adversarial Networks community, which utilize similar formulation to gen-
erate realistic images, evade similar issues by the incorporating alternative objectives, such as the
Wasserstein distance (Arjovsky et al., 2017). However, the Wasserstein distance is defined over two
distributions and applying to our setting (consisting of multiple distributions) is not trivial.

This paper holds the following contributions to the invariant feature learning problem. First, we
empirically show that AFL is suffered from practical issues that significantly slow down the conver-
gence. We then reformulate the optimization problem of AFL as pair-wise distribution matching and
derive parameter practical realization of pairwise distribution matching while inheriting the merit of
AFL that leveraging the discriminative power to measure the invariance. It is worth mentioning that
the reformulation enable us to use Wasserstein metric in theory, however, it is still computationally
infeasible in practice because a naive way to calculate the Wasserstein distance between all the pair
of the distributions requires O(K2) discriminators, where K = |A|, which raise computational is-
sues both in terms of parameter size and forward/backward time. Finally, we empirically validate
the superior performance of our proposed method on both artificial dataset and real-world datasets.

2 CONVERGENCE ISSUES OF AFL
Figure 1-(a–e) visualize a behavior of AFL optimization on synthesized data. Each figure corre-
sponds to the different timestep of the alternating optimization. The dataset consists of samples
from three Gaussian distributions with different means ([sin( i

3π), cos(
i
3π)], for i ∈ 1, 2, 3, respec-

tively) and the same variance, assuming that each distribution corresponds to different attributes. In
each figure, dots represent the data point, color represents the attribute (domain id), and the contour
plot represents the discriminator’s decision boundary. A float value on the top of figures is the nega-
tive log-likelihood (NLL) of the dataset measured by the discriminatorD (the multi-layer perceptron
with 100 hidden units followed by a ReLU activation). Similarly, a float value in parenthesis on the
top of figures is an NLL of a post-hoc classifier Deval that have the same architecture as D. To
be more specific, we first train the discriminator 100 times with 128 batch size and train D and E
iteratively with stochastic gradient descent with learning rate=0.1. Figure 1-(f,g) shows the gradient
vector fields of different time steps for a = blue, where the arrow represents the direction of the
gradient, and the norm represents its magnitude. For simplicity, we only show the vector fields of
a = blue, but the observations are quite similar for the other a.

The figure reveals two practical issues in AFL optimization. (1) The distribution alignment is ini-
tially quite slow (compare with the behavior of the proposed method shown in Figure 2). This is
because the gradient is small when the discriminator correctly distinguishes a a. (2) AFL behavior
is unstable. The distributions somewhat align after 40 steps (given 0.683 NLL with the post-hoc
classifier), but it is catastrophically failed five steps later because the discriminator did not capture
the true conditional entropy (implied by the mostly similar counterplot of D) and therefore gave a
false gradient as shown in (f) and (g). The intuitive reason for this phenomenon is that AFLs loss
essentially tries to pull a distribution apart from the non-desired point, i.e., the point where we can
correctly predict the label. The problem of AFL is that it only keeps away a distribution from the
non-desired point, but not ensure it approaches the desired invariant point. After several steps, D
starts to follow the change of the distribution (as shown in Figure 1-e). The instability of the AFL
also appears in the significant gap between the NLL of the D and Deval. Note that the second
issue may be alleviated if D has a sufficiently large capacity and is trained many times at each it-
eration. However, this is not a realistic assumption since it is fair to say that real datasets are more
complicated than this toy situations, making it more challenging to find the supremum.

3 EFFICIENT PAIWRISE DISTRIBUTION MATCHING

The next question we must answer is how to maximize conditional entropy while avoiding the issues
mentioned above. Assume that A is a categorical random variable drawn from a uniform discrete
distribution, and denote that support set of a and z as A and Z; then, the following theorem holds:

Theorem 1. The maximum conditional entropy H(A|Z) is − log 1
K , and H(A|Z) is maximized if

and only if p(z|a=i) = p(z|a=j) for all i 6= j ∈ 1, · · · ,K and z ∈ Z .

The proof is followed in the appendix. One implication of the theorem is, the empirical measure-
ments of conditional entropy should be boudned. It suggests another problematic point of AFL
objective since it is not lower bounded. Another implication is that this theorem permits us to re-
think the problem of the conditional entropy maximization as a problem of aligning all pairs of

2



Published as a conference paper at ICLR 2019

NLL: 0.027

(a) Initial

NLL: 0.030(0.028)

(b) 5 steps

NLL: 0.856(0.683)
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NLL: 4.280(0.020)

(d) 45 steps

NLL: 1.853(0.010)

(e) 51 steps (f) GVF at c (g) GVF at d

Figure 1: Visualization of the unstable behavior of AFL. (a) A dataset used for the experiments. (b–
e) The visualization of representation space at different timesteps. (f, g) The gradient vector fields
(GVF) for blue data-points at (f) 38 steps and (g) 41 steps.
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Figure 2: Visulization of the behavior of the proposed method in the toy dataset.

distributions p(z|a = i) and p(z|a = j). This reformulation is significant since we can now use any
conventional measurement of two distributions. However, the naive approach requires to match all
pairs of the distributions (=KC2), which would be cumbersome to compute.

We, therefore, propose a computationally efficient way to realize pairwise distribution matching,
moving attribute perception matching. As with AFL, APM is based on the alternating training of
attribute classifierD and feature extractorE, but APM deceivesD differently. Formally, we propose
the following APM matching objective:

Vmap(E,D) = E
x,y,a∈S

[ 1

K − 1

∑
aj 6=a

kD(E(x), Caj
))
]
, (2)

where kD is some distance function defined over either a hidden representation of the discriminator
D or output probability qD(a|E(x)) itself andCaj is the moving average of the centroid for attribute
aj in the attribute perception. Although there are many valid choices for kD(., .), including the
simple l2 norm, we primarily use the well-known Kullback–Leibler (KL) divergence. We initialized
C0

aj
via computing the centroids using all training data points.

The key of the proposal is that it only requires the same number of parameters as AFL, but it ensures
that representations of an attribute approach to the representations of the other attributes. Also, it
inherits the merit of AFL that leveraging the discriminative power to measure the invariance. Figure
2-(a–c) shows the behavior of the APM under the exact same experimental settings shown in Figure
1. The proposed method maximizes the conditional entropy significantly faster than AFL: 1.061
after only five iterations, but AFL gives 0.683 after 40 iterations. Note that the value match the
theoretical maximum value of the conditional entropy (log 1

3 ≈ 1.061). The comparison of the full
plot of NLL (Figure 2-(d,e) also shows the faster convergence and stable behavior of the APM.

Another merit of the proposed method is that we can enforce semantic alignment with a simple
modification. Individually, semantic alignment can be carried out by merely computing the centroids
for each (attribute, label) tuple and aligning the perceptions of {x, y, a} between only centroids of
the same label y′ = y but different attributes a′ 6= a. Although this modification does not help
to maximize the conditional entropy, it prevents performance degradation of predicting y. Since
most applications of invariant feature learning require to keep a information about y we use this
modification for all the later-described experiments.

4 EXPERIMENTS

We use three domain generalization tasks and two user-anonymization tasks. MNISTR (Ghifary
et al., 2015) and PACS (Krizhevsky et al., 2012) is a well known image-based datasets designed for
the purpose of domain generalization. We also test the methods of noise-robust speech recognition
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Figure 3: Performance comparisons of invariant representation learning. AFL4 and APM4 is a
variant of the AFL and APM where the training steps of the discriminator κ = 4.

Table 1: Classification accuracies on unseen domains. We use κ=4 for AFL and APM on PACS.
MNISTR Speech PACS All

M0 M15 M30 M45 M60 M75 Avg dishes dishes+ tap tap+ Avg A C P S Avg Avg

CNN 82.7 99.1 96.9 91.3 97.8 88.5 92.72 86.7 83.3 86.7 81.7 84.61 57.1 61.9 80.9 58.7 64.66 80.66
RevGrad 85.6 98.8 97.6 90.6 96.3 87.5 92.73 86.2 83.8 88.2 81.9 85.01 57.0 61.1 81.9 58.7 64.65 80.80

AFL 85.2 98.0 97.5 92.0 95.9 87.3 92.64 86.8 83.6 87.6 81.8 84.93 59.0 61.0 83.9 60.5 66.11 81.23
Crossrad 84.3 98.9 97.7 92.7 98.2 88.0 93.30 86.2 84.8 87.8 82.8 85.42 57.5 62.1 81.4 63.6 66.17 81.63

AM 90.3 99.1 98.5 95.9 97.9 89.5 95.20 86.2 83.0 88.0 82.4 84.92 60.7 64.1 82.3 58.7 66.46 82.19
APM 90.4 98.6 98.2 94.2 98.0 87.9 94.57 88.7 84.0 87.3 83.9 85.98 62.5 63.7 83.4 59.5 67.27 82.61

scenarios using Google Speech Command Dataset (Speech). Regarding user-anonymization, we use
two user-anonymization tasks on the data of wearables, OppG and USC (Iwasawa et al., 2017). The
neural networks require to learn representations that help activity classification and at the same time,
prevent to access the information about users (userID). As baselines, we use (1) A CNN trained on
the aggregation of data from all source domains. (2) AFL (Xie et al., 2017), which was explained in
Section 3.1. (3) RevGrad (Ganin et al., 2016) is a slightly modified version of AFL, which uses the
gradient reversal layer to train all the networks. (4) CrossGrad (Shankar et al., 2018) is regarded
as a state-of-the-art method in domain generalization tasks. (5) Activation Matching (AM), which
trains the encoder with the regularization of the l2 distance on a feature space. (6) APM is our pro-
posal. For all datasets and methods, we used RMSprop for each optimization. For all datasets except
PACS, we set the learning rate to 0.001 and the batch size to 128. For PACS, we set the learning
rate to 5e − 5 and the batch size to 64. For a fair comparison, hyperparameters were tuned on a
validation set for each baseline. For the adversarial-training-based method, we optimized weight-
ing parameter λ from {0.001, 0.01, 0.1, 1.0}, except for MNISTR, for which it was optimized from
{0.01, 0.1, 1.0, 2.0}. The value of α for CrossGrad was selected from {0.1, 0.25, 0.5, 0.75, 0.9}. We
set the decay rate γ to 0.7 for all experiments. In all the experiments, we selected the data of one or
several domains for the test set and used the data of a disjoint domain as the training/validation data.
Specifically, we split the data of the disjoint domain into groupings of 80% and 20%. We denote
the test domain by a suffix (e.g., MNISTR-M0). We measured the label classification accuracy and
the level of invariance. We measured the level of invariance by training a post-hoc classifier feva
following previous studies Xie et al. (2017); Iwasawa et al. (2017).

Figure 3 compares the performance the invariance of representations. For each method, we used the
largest weighting parameter λ on the condition that label classification accuracy did not significantly
decrease. The results show that the proposed method stably achieves better invariant representations
except for speech dataset. For example, APM achieved 20% of the A-Acc in MNISTR, which is
nearly perfect invariance as there are five domains in the validation data, while RevGrad and AFL
achieved 30% at best. On speech dataset, the performance of AFL and APM is mostly similar. These
results confirm that the proposed method stably achieves more invariant representation compared
with AFL. Table 1 summarizes the methods’ classification performance on three different datasets:
MNISTR, Speech, and PACS. The leftmost column of each table represents the test domain. We
report the mean accuracy. We can make the following observations. (1) APM demonstrates the
best or comparable performance on all three datasets, including CrossGrad, which is regarded as the
state-of-the-art method in domain generalization tasks. (2) RevGrad and AFL often fail to improve
performance even when compared with a standard CNN. These results suggest that the previous
adversarial-training-based method suffered from the lack of semantic alignment when applied to
domain generalization. (3) The Wilcoxon rank sum test shows that APM is statistically better than
CNN, RevGrad, and AFL with p < 0.01, and than CrossGrad with p < 0.05.
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5 CONCLUSION

This paper proposes a new approach to incorporating desired invariance to representations learning,
based on the observations that the current state-of-the-art AFL has practical issues. Empirical results
on both toy and real-world datasets support the stable performance of the proposed method to learn
invariant features and superior performance on domain generalization tasks.
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A PROOF OF THE THEOREM 1

Proof. Using the Lagrange multiplier method, the derivative of

L = −
∑
a∈A

p(a, z) log p(a|z) + λ(1−
∑
a∈A

p(a|z)) (3)

is equal to zero for the maximum entropy H(A|Z). Solving the simultaneous equations, we can say
p(a=1|z) = p(a=2|z) = · · · = p(a=K|z) = 1

K for all z ∈ Z when the conditional entropy is
maximized, and based on the definition, the conditional entropy become − log 1

K .

From Bayes’ law,
p(z|a = i)p(a = i)

p(z)
=
p(z|a = j)p(a = j)

p(z)
(4)

holds ∀i 6= j ∈ A and z ∈ Z.
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