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ABSTRACT

State-of-the-art deep neural networks (DNNs) typically have tens of millions of
parameters, which might not fit into the upper levels of the memory hierarchy,
thus increasing the inference time and energy consumption significantly, and
prohibiting their use on edge devices such as mobile phones. The compression
of DNN models has therefore become an active area of research recently, with
connection pruning emerging as one of the most successful strategies. A very
natural approach is to prune connections of DNNs via `1 regularization, but recent
empirical investigations have suggested that this does not work as well in the context
of DNN compression. In this work, we revisit this simple strategy and analyze it
rigorously, to show that: (a) any stationary point of an `1-regularized layerwise-
pruning objective has its number of non-zero elements bounded by the number
of penalized prediction logits, regardless of the strength of the regularization; (b)
successful pruning highly relies on an accurate optimization solver, and there
is a trade-off between compression speed and distortion of prediction accuracy,
controlled by the strength of regularization. Our theoretical results thus suggest that
`1 pruning could be successful provided we use an accurate optimization solver. We
corroborate this in our experiments, where we show that simple `1 regularization
with an Adamax-L1(cumulative) solver gives pruning ratio competitive to the
state-of-the-art.

1 INTRODUCTION

State-of-the-art Deep Neural Networks (DNNs) typically have millions of parameters. For example,
the VGG-16 network (Simonyan and Zisserman (2014)), from the winning team of ILSVRC-2014,
contains more than one hundred million parameters; inference with this network on a single image
takes tens of billions of operations, prohibiting its use on edge devices such as mobile phones or in
real-time applications. In addition, the huge size of DNNs often precludes them from being placed
at the upper level of the memory hierarchy, with resulting slow access times and expensive energy
consumption.

A recent thread of research has thus focused on the question of how to compress DNNs. One
successful approach that has emerged is to trim the connections between neurons, which reduces
the number of non-zero parameters and thus the model size (Han et al. (2015a;b); Guo et al. (2016);
Molchanov et al. (2017); Aghasi et al. (2017); Dong et al. (2017); Tung and Mori (2018)). However,
there has been a gap between the theory and practice: the trimming algorithms that have been
practically successful (Han et al. (2015a;b); Guo et al. (2016)) do not have theoretical guarantees,
while theoretically-motivated approaches have been less competitive compared to the heuristics-based
approaches Aghasi et al. (2017), and often relies on stringent distributional assumption such as
Gaussian-distributed matrices which might not hold in practice. With a better theoretical understand-
ing, we might be able to answer how much pruning one can achieve via different approaches on
different tasks, and moreover when a given pruning approach might or might not work. Indeed, as we
discuss in our experiments, even the generally practically successful approaches are subject to certain
failure cases. Beyond simple connection pruning, there have been other works on structured pruning
that prune a whole filter, whole row, or whole column at a time (Anwar et al. (2017); Alvarez and
Salzmann (2016); Wen et al. (2016); Li et al. (2016); Luo and Wu (2017)). The structured pruning
strategy can often speed up inference speed at prediction time more than simple connection pruning,
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but the pruning ratios are typically not as high as non-structured connection pruning; so that the
storage complexity is still too high, so that the caveats we noted earlier largely remain.

A very natural strategy is to use `1 regularized training to prune DNNs, due to their considerable
practical success in general sparse estimation in shallow model settings. However, many recent
investigations seemed to suggest that such `1 regularization does not work as well with non-shallow
DNNs, especially compared to other proposed methods. Does `1 regularization not work as well in
non-shallow models? In this work, we theoretically analyze this question, revisit the trimming of
DNNs through `1 regularization. Our analysis provides two interesting findings: (a) for any stationary
point under `1 regularization, the number of non-zero parameters in each layer of a DNN is bounded
by the number of penalized prediction logits—an upper bound typically several orders of magnitude
smaller than the total number of DNN parameters, and (b) it is critical to employ an `1-friendly
optimization solver with a high precision in order to find the stationary point of sparse support.

Our theoretical findings thus suggest that one could achieve high pruning ratios even via `1 regu-
larization provided one uses high-precision solvers (which we emphasize are typically not required
if we only care about prediction error rather than sparsity). We corroborate these findings in our
experiments, where we show that solving the `1-regularized objective by the combination of SGD
pretraining and Adamax-L1(cumulative) yields competitive pruning results compared to the state-of-
the-art.

2 PROBLEM FORMULATION

Let X(0) : N × D(0)
1 · · · × D

(0)
p ×K0 be an input tensor where N is the number of samples (or

batch size). We are interested in DNNs of the form

X(j) := σW (j)(X(j−1)), l = j . . . J

where σW (j)(X(j−1)) are piecewise-linear functions of both the parameter tensor W (j) : K(j−1) ×
C

(j)
0 · · · ×C

(j)
p ×K(j) and the input tensor X(j−1) : N ×D(j−1)

1 · · · ×D(j−1)
p ×K(j−1) of (j)-th

layer. Examples of such piecewise-linear function include:

(a) convolution layers with Relu activation (using ◦ to denote the p-dimensional convolution
operator)

[σW (X)]i,k := [

K(j−1)∑
m=1

Xi,:,m ◦Wm,:,k]+,

(b) fully-connected layers with Relu activation

[σW (X)]i,k := [Xi,:W:,k]+,

(c) commonly used operations such as max-pooling, zero-padding and reshaping.

Note X(J) : N ×K provide K scores (i.e. logits) of each sample that relate to the labels of our
target task Y : N ×K. Denote L(X(J), Y ) as the task-specific loss function. We define Support
Labels of a DNN X(J) as indices (i, k) of non-zero loss subgradient w.r.t. the prediction logit:

Definition 1 (Support Labels). Let L(X,Y ) be a convex loss function w.r.t. the prediction logits X .
The Support Labels regarding DNN outputs X(J)(W ) are defined as

S(W ) :=
{
(i, k) ∈ [N ]× [K] | [Q]i,k 6= 0, for some Q ∈ ∂XL(X(J), Y )

}
.

We will denote kS(W ) := |S(W )|
N ≤ K as the average number of support labels per sample.

We illustrate these concepts in the context of some standard machine learning tasks.

Multiple Regression. In multiple regression, we are interested in multiple real-valued labels, such
as the location and orientation of objects in an image, which over the set of N samples, can be
expressed as an N ×K real-valued matrix Y . A popular loss function for such tasks is:

L(X,Y ) :=
1

2
‖X − Y ‖2F ,
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Figure 1: The level curves of the `1-regularized objective with 2 parameters and 1 sample: λ‖w‖1 +
1
2 (x

Tw − 1)2 where x = [0.6, 0.4]. Note that the stationary points have w2 = 0 as long as λ > 0.
However, smaller λ makes convergence to the stationary point harder for optimization algorithms.

which is convex and differentiable, and in general we have [∇XL]i,k 6= 0, therefore all labels are
support labels (i.e. kS = K).

Binary Classification. In binary classification, the labels are binary-valued, and over the set of N
samples, can be represented as a binary vector y ∈ {−1, 1}N . Popular loss functions include the
logistic loss:

L(x,y) :=

N∑
i=1

log(1 + exp(−yixi)), (1)

and the hinge loss:

L(x,y) :=

N∑
i=1

[1− yixi]+. (2)

For the logistic loss (1), we have kS = 1 since [∇L]i 6= 0,∀i ∈ [N ]. On the other hand, the hinge
loss (2) typically has only a small portion of samples i ∈ [N ] with [∂L]i 6= {0}, called Support
Vectors, and which coincides with our definition of Support Labels in this context. In applications
with unbalanced positive and negative examples, such as object detection, we have kS � 1.
Multiclass/Multilabel Classification. In multiclass or multilabel classification, the labels of each
sample can be represented as a K-dimensional binary vector {0, 1}K where 1/0 denotes the pres-
ence/absence of a class in the sample. Let Pi := {k | yik = 1} and Ni := {k | yik = 0} denote the
positive and negative label sets. Popular loss functions include the cross-entropy loss:

L(X,Y ) :=

N∑
i=1

(
log

K∑
k=1

exp(Xik)−
1

|Pi|
∑
k∈Pi

Xik

)
, (3)

and the maximum margin loss:

L(X,Y ) :=

N∑
i=1

(
max

j∈Ni,k∈Pi

1 +Xij −Xik

)
. (4)

Although the cross-entropy loss (3) has number of support labels kS = K, it has been shown that the
maximum-margin loss (4) typically has kS � K in recent studies of classification problems with
extremely large number of classes (Yen et al. (2016; 2017)).

3 DEEP-TRIM: THEORY
In this section, we aim to solve the following DNN compression problem.
Definition 2 (Deep-Trim (ε)). Suppose we are given a target loss function L(X,Y ) between pre-
diction X and training labels Y : N ×K, and a pre-trained DNN X(J) parameterized by weights
W := {W (j)}Jj=1, with loss L∗ := L(X(J)(W ), Y ). The Deep-Trim (ε) task is to find a com-

pressed DNN with weights Ŵ such that its number of non-zero parameters nnz(Ŵ ) ≤ τ , for some
τ � nnz(W ) and where L(X(J)(Ŵ ), Y ) ≤ L∗ + ε for some ε > 0.

In the following, we show that the Deep-Trim problem with budget τ = (NkS)× J can be solved
via simple `1 regularization under a couple of mild conditions, with the caveat that with suitable
optimization algorithms be used, and where kS is the maximum number of support labels for any W
with L(X(L)(W ), Y ) ≤ L∗.
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Trimming Objective Given a loss function L(., Y ) and a pre-trained DNN parameterized by
W ∗ := {W (j)}Jj=1, we initialize the iterate with W ∗ and apply an optimization algorithm that
guarantees descent of the following layerwise `1-regularized objective

min
W (j)

{
λ‖vec(W (j))‖1 + L(X(J)(W ), Y )

}
, (5)

for all j ∈ [J ], where vec(W (j)) denotes the vectorized version of the tensor W (j).

The following theorem states that most of stationary points of (5) have the number of non-zero
parameters per layer bounded by the total number of support labels in the training set.

Theorem 1 (Deep-Trim with `1 penalty). Let Ŵ (j) be any stationary point of objective (5) with
dim(W (j))=d that lies on a single linear piece of the piecewise-linear function X(J)(W ). Let
V : (NK)× d be the Jacobian matrix of that corresponding linear piece of the linear (vector-valued)
function vec(X(J))(vec(W (j))). For any regularization parameter λ > 0 and V in general position
we have

nnz(Ŵ (j)) ≤ N kS(Ŵ ).

where kS(Ŵ ) is the average number of support labels of the stationary point Ŵ (j).

Proof. Any stationary point of (5) should satisfy the condition

V T vec(A) + λρ = 0 (6)

where A ∈ ∂L is an N ×K subgradient matrix of the loss function w.r.t. the prediction logits, and
ρ ∈ ∂‖vec(W (j))‖1 is a d-dimensional subgradient of the `1 norm penalty. Then let Q := {r |
[vec(W (j))]r 6= 0} be the set of indices of non-zero parameters, we have [ρ]r ∈ {−1, 1} and thus
the linear system [

V T vec(A)

]
Q
= −λ[ρ]Q, (7)

cannot be satisfied if nnz(A) < nnz(W (j)) for V is in general position (as defined in, for example,
Tibshirani et al. (2013)). Therefore, we have nnz(A) = NkS ≥ nnz(W (j)) = |Q|.

Note the concept of general position is studied widely in the literature of LASSO and sparse recovery,
and it is a weak assumption in the sense that any matrix drawn from a continuous probability
distribution is in general position (Tibshirani et al. (2013)).

Figure 1 illustrates an example of a regression task where, no matter how small λ > 0 is, the second
coordinate is always 0 at the stationary point. Note since Theorem 1 holds for any λ > 0, one can
guarantee to trim a DNN without hurting the training loss by choosing an appropriately small λ, as
stated by the following corollary.
Corollary 1 (Deep-Trim without Distortion). Given a DNN with weights W and with loss L∗ :=
L(X(J)(W ), Y ), for any ε > 0, one can find weights Ŵ with L(X(J)(Ŵ ), Y ) ≤ L∗ + ε, and
nnz(Ŵ (j)) ≤ J N kS , where kS is a bound on the number of support labels of parameters Ŵ with
loss no more than L∗ + ε.

Proof. By choosing λ ≤ ε/(J‖vec(W (j))‖1), any descent optimization algorithm can guarantee to
find Ŵ (j) with

λ‖vec(Ŵ (j))‖1 + L(X(J)(W (1), . . . , Ŵ (j), . . . ,W (J)), Y ) ≤ λ‖vec(W (j))‖1 + L∗

by minimizing (5), which guarantees L(X(J)(W (1), . . . , Ŵ (j), . . . ,W (J)), Y ) ≤ L∗ + ε/J and
nnz(W (j)) ≤ NkS . Then by applying the procedure for each layer j ∈ [J ], one can obtain Ŵ with
L(X(J)(Ŵ ), Y ) ≤ L∗ + ε and nnz(Ŵ ) ≤ (NkS)× J .

In practice, however, the smaller λ, the harder for the optimization algorithm to get close to the
stationary point, as illustrated in the figure 1. Therefore, it is crucial to choose optimization algorithms
targeting for high precision for the convergence to the stationary point of (5) with sparse support,
while the widely-used Stochastic Gradient Descent (SGD) method is notorious for being inaccurate
in terms of the optimization precision.
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4 DEEP-TRIM: ALGORITHMS
Although our analysis is conducted on the layerwise pruning objective (5), in practice we have
observed joint pruning of all layers to be as effective as layerwise pruning. For ease of presentation
of this section, we will denote our objective function

min
vec(W )∈Rd

λ‖vec(W )‖1 + L(X(J)(W ), Y ) (8)

in the following form
min
w∈Rd

λ‖w‖1 + f(w) (9)

where w := vec(W ) and f(w) := L(X(J)(W ), Y ). Note the same formulation (9) can be also
used to represent the layerwise pruning objective (5) by simply replacing their definitions as

w := vec(W (j)) and f(w) := L(X(J)(W (1), . . . ,W (j), . . . ,W (J)), Y ).

As mentioned previously, even when the stationary point of an objective has sparse support, if the
optimization algorithm does not converge close enough to the stationary point, the iterates would
still have very dense support. In this section, we propose a two-phase strategy for the non-convex
optimization problem (9). In the first phase, we initialize with the given model and use a simple
Stochastic Gradient Descent (SGD) algorithm to optimize (9). During this phase, we do not aim to
reduce the number of non-zero parameters but only to reduce the `1 norm of the model parameters.
We run the SGD till both the training loss and `1 norm of model parameters have converged. Then
in the second phase, we employ an Adamax-L1 (cumulative) method to reduce the total number of
non-zero parameters, and achieves pruning result on-par with state-of-the-art methods.

SGD with L1 Penalty For a simple optimization problem minw∈Rd f(w), the SGD update
follows the form wt+1 = wt − ηt ∂f(w)

∂w . We consider general SGD-like algorithms which update in
the form wt+1 = wt − ηtg(∂f(w)

∂w , θ), where θ is a set of parameters specific to the SGD-like update
procedure. This includes the commonly used Momentum (Qian (1999)), Adamax, Adam (Kingma
and Ba (2014)), and RMSProp (Tieleman and Hinton (2012)) optimization algorithms.

When employing SGD-like optimizers, (9) can be rewritten as the following:

min
w∈Rd

Nb∑
j

(f(w, j) +
λ

N
‖w‖1), (10)

where j denotes one mini-batch of data and Nb is the number of mini-batches. The weight updated
by the SGD-like optimizers can then be performed as

wt+1
i = wt

i − ηt · g(
∂f(w, j)

∂wi
+

λ

Nb
sign(wt

i), θ), (11)

where sign(wi) = 0 when wi = 0. We note that after the update in (11), the weight does not
become 0 unlesswt

i = ηt · g(∂f(w,j)∂wi
+ λ
Nb

sign(wt
i), which rarely happens. Therefore, adding the L1

penalty term to SGD-like optimizers only minimizes the L1-norm but does not induce a sparse weight
matrix. To achieve a sparse solution, we combine the L1 friendly update trick SGD-L1 (cumulative)
(Tsuruoka et al. (2009)) along with SGD-like optimization algorithms.

Adamax-L1 (cumulative) SGD-L1 (clipping) is an alternative to perform L1 regularizing along
with SGD to obtain a sparse w (Carpenter (2008)). Different to (11), SGD-L1 (clipping) divides
the update into two steps. The first step is updated without considering the L1 penalty term, and the
second step updates the L1 penalty separately. In the second step, any weight that has changed its
sign during the update will be set to 0. In other words, when the L1 penalty is larger than the weight
value, it will be truncated to the weight value. Therefore, SGD-L1 (clipping) can be seen as a special
case of truncated gradient. With a learning rate ηk, the update algorithm can be written as

w
t+ 1

2
i = wt

i − ηk · g(
∂f(w, j)

∂wi
, θ),

if wt+ 1
2

i > 0, wt+1
i = max(0,w

t+ 1
2

i − λ

Nb
ηt),

if wt+ 1
2

i ≤ 0, wt+1
i = min(0,w

t+ 1
2

i +
λ

Nb
ηt).

(12)
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SGD-L1 (cumulative) is a modification of the SGD-L1 (clipping) algorithm proposed by Tsuruoka
et al. (2009), but uses the cumulative L1 penalty instead of the standard L1 penalty. The intuition
is that the cumulative L1 penalty is the amount of penalty that would be applied on the weight if
true gradient is applied instead of stochastic gradient. By applying the cumulative L1 penalty, the
weight would not be moved away from zero by the noise of the stochastic gradient. When applied to
SGD-like optimization algorithms, the update rule can be written as

uk =

k∑
t=1

λ

Nb
ηt,

w
t+ 1

2
i = wt

i − ηk · g(
∂f(w)

∂wi
, θ),

if wt+ 1
2

i > 0, wt+1
i = max(0,w

t+ 1
2

i − (uk + qk−1i )),

if wt+ 1
2

i ≤ 0, wt+1
i = min(0,w

t+ 1
2

i + (uk − qk−1i )),

(13)

where qki is the total amount of L1 penalty received until now qki =
∑k
t=1(w

t+1
i − wt+

1
2

i ).

By updating with (13) and adopting the Adamax optimization algorithm (Kingma and Ba (2014)), we
obtain Adamax-L1 (cumulative). Originally, SGD-L1 (cumulative) was proposed to be used with the
vanilla SGD optimizer, where we generalize it to be used with any SGD-like optimizer by separating
the update on objective f(w) and the l1-cumulative update on λ‖w‖1.

5 EXPERIMENTS

In this section, we compare the `-regularized pruning method discussed in section 4 with other
state-of-the-art approaches. In section 5.1, we evaluate different pruning methods on the convolution
network LeNet-5 1on the Mnist data set. In section 5.2, we compare our method to VD on pruning
VGG-16 network Simonyan and Zisserman (2014) on the CIFAR-10 data set. In section 5.3, we then
conduct experiments with Resnet on CIFAR-10. Finally, we show the trade-off for pruning Resnet-50
on the ILSVRC dataset.

Method Acc.% nnz per Layer% ‖W‖
‖W‖6=0

FLOP%

Prune 99.2 68− 12− 8.0− 19.0 12 16
DNS 99.09 14− 3.1− 0.7− 4.3 111 –
VD 99.25 33− 2.0− 0.2− 5.0 280 –

L1 Naive 99.25 100− 100− 100− 100 1 100
Ours 99.05 20− 1.9− 0.2− 3.2 260 1.2

Table 1: Compression Results with LeNet-5 model on MNIST.

5.1 LENET-5 ON MNIST

We first compare our methods with other compression methods on the standard MNIST dataset
with the LeNet-5 architecture. We consider the following methods: Prune: The pruning algorithm
proposed in Han et al. (2015a), which iterates between pruning the network after training with
L2 regularization and retraining. DNS: Dynamic Network Surgery pruning algorithm proposed in
Guo et al. (2016), which was reported to improve upon the iterative pruning method proposed in
Han et al. (2015a) by dynamically pruning and splicing variables during the training process. VD:
Variational Dropout method introduced by Molchanov et al. (2017), a variant of dropout that induces
sparsity during the training process with unbounded dropout rates. L1 Naive: Ablation study of our
method by training the `1-regularized objective with SGD. Ours: Our method which optimizes the
`1-regularized objective (8) in two phases (SGD and Adamax-L1(cumulative)).

The LeNet-5 network is trained from a random initialization and without data augmentation which
achieves 99.2% accuracy. We report the per layer sparsity and the total reduction of weights and

1We use the modified version of LeNet5 from (LeCun et al., 1998) with Caffe Model specification: https:
//goo.gl/4yI3dL .
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Models Base Model VD Ours

Layers Weights FLOP Weights% FLOP% Weights% FLOPS%

Conv1_1 1.7K 716K 67.8 65.8 38.4 38.4
Conv1_2 36.8K 17.3M 25.1 39.3 16.8 26.6

Conv2_1 73.7K 11.7M 33.8 28.9 27.5 28.4
Conv2_2 147.5K 15.5M 27.6 28.3 24.3 25.2

Conv3_1 294.9K 7.9M 22.1 20.9 20.0 20.4
Conv3_2 589.8K 8.7M 11.5 11.1 11.2 11.7
Conv3_3 589.8K 7.8M 8.6 7.8 6.0 5.1

Conv4_1 1.2M 6.4M 2.3 0.83 1.4 0.75
Conv4_2 2.4M 8.8M 0.65 0.04 0.22 0.13
Conv4_3 2.4M 13.4M 0.23 0.03 0.11 0.11

Conv5_1 2.4M 6.3M 0.07 0.02 0.04 0.04
Conv5_2 2.4M 5.7M 0.06 0.06 0.04 0.04
Conv5_3 2.4M 6.7M 0.05 0.04 0.07 0.07

FC6 262.1K 239.0K 0.79 0.2 2.6 2.7
FC7 5.1K 1.0K 41.8 57.3 88.1 75.3

Total 15.0M 117.3M 2.1 15.6 1.8 13.0
‖W‖
‖W‖6=0

1 47.5 57.1

Acc. % 92.9 92.2∗ 92.8

Table 2: Compression Results with VGG-like model on CIFAR-10 for VD and our method.

FLOP in Table 1. For LeNet-5, our method achieves comparable sparsity performance against other
methods, with a slight accuracy drop. Nevertheless, our compressed model still achieves over 99
percent testing accuracy, while achieving 260× weight reduction and 84× FLOP reduction. We
also observe that the L1 Naive does not induce any sparsity, even when the L1-norm is significantly
reduced. This demonstrates the effectiveness of adopting a L1-friendly optimization algorithm.

5.2 VGG-LIKE ON CIFAR-10

To test how our method works on large scale modern architecture, we perform experiments on the
VGG-like network with CIFAR-10 dataset, which is used in Molchanov et al. (2017). The network
contains 13 convolution layers and 2 fully connected layers and achieves 92.9% accuracy with
pretraining. We report the per layer weights and FLOP reduction for our Deep-Trim algorithm and
VD (Molchanov et al. (2017)) in Table 5.
Our model achieves a weight pruning ratio of 57× and reduces FLOP by 7.7× with a negligible
accuracy drop, and VD achieves 48× weight pruning ratio and reduces FLOP by 6.4×.2 Compared to
VD, our model achieved sparser weights from Conv1_1 to Conv5_2 and VD achieved sparser weights
from Conv5_2 to FC layers. Interestingly, we observe that in both pruning methods, most remaining
nnz and FLOPs lie in block2 and block3, where originally block4 and block5 have dominating amount
of weights and equal amount of FLOPs.

The layer with the most non-zero parameters after pruning is conv3_2 with 65.9K. In the experiments
we employ the cross-entropy loss (3) which has a number of support labels NK = 500K on the
CIFAR-10 data set. We suspect a more careful analysis could improve our Theorem 1 to give a
tighter bound for loss with entries of gradient close to 0 but not exactly 0, making the bound for
cross-entropy loss (3) closer to that of maximum-margin loss (4).

2We ran the experiments based on authors’ code and tuned the coefficient of dropout regularization loss
within the interval [102, 10−3] with binary search. We note that although we are able to reproduce the 48×
weight reduction ratio in the VD paper, we are only able to achieve Acc. 92.2% instead of 92.7% as reported in
their paper.
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5.3 RESNET-32 ON CIFAR-10

While VGG-network are notorious for its large parameter size, it is not surprising that a large
compression rate can be achieved. Therefore, we evaluate the compression performance of our
Deep-Trim algorithm on a smaller Resnet-32 model trained on CIFAR-10 data. The Resnet-32 model
contains 3 main blocks. The first block contains the first 11 convolution layers with 64 filters in each
layer, the second block contains the next 10 convolution layers with 128 filters each, and the last
block contains 10 convolution layers with 256 filters and a fully connected layer. We list the detailed
architecture in the supplementary. The pretrained Resnet-32 model reaches 94.0% accuracy.

We evaluate our Deep-Trim algorithm and compare it to variational dropout (Molchanov et al. (2017))
and report the results in Table 3. We report the pruning results for each main block of the resnet-32
model. Our model achieves a 33× overall pruning ratio and 21× reduced FLOP with an accuracy
drop of 1.4%, where VD has attained 28× overall pruning ratio and 13.5× reduction with similar
accuracy. We further observe that nnz(W) increases much gentler from the first block to the third
block compared to the total number of parameters in each block. This is not surprising since the upper
bound of nnz(W) per layer given by Corollary 1 does not depend on the total number of unpruned
parameters.

Method Acc.% nnz(W) per block ‖W‖
‖W‖ 6=0

FLOP%

Resnet Ref. 94.0 371K-1.4M-5.6M 1 100

VD 92.5 37.8K-90.4K-136.9K 27.6 7.4
Ours 92.6 34.6K-65.2K-120.9K 33.3 4.8

Table 3: Compression Results with Resnet-32 model on CIFAR-10.

5.4 EFFECT OF DATA ON PRUNING

In this section, we compare the pruning results of our method on VGG-16 with different number of
samples. The pruning ratio and number of non-zero parameters are shown in Table 4, we can see that
the number of non-zero parameters after pruning clearly grows with the number of samples. This can
be understood intuitively, as the number of constraints to be satisfied grows in the training set, the
more degree of freedom the model needs to fit the data. This shows that our theory analysis matches
our empirical results well.

Training data Train Acc.% Test Acc.% nnz(W) ‖W‖
‖W‖ 6=0

50,000 100.0 92.8 262.1K 57.1

5,000 100.0 84.7 76.3K 196.3

500 100.0 57.9 18.9K 792.5

Table 4: Compression Results with VGG-like on CIFAR-10 with varying number of training data.

6 CONCLUSION

In this work, we revisit the simple idea of pruning connections of DNNs through `1 regularization.
While recent empirical investigations suggested that this might not necessarily achieve high sparsity
levels in the context of DNNs, we provide a rigorous theoretical analysis that does provide small
upper bounds on the number of non-zero elements, but with the caveat that one needs to use a
high-precision optimization solver (which is typically not needed if we care only about prediction
error rather than sparsity). When using such an accurate optimization solver, we can converge closer
to stationary points than traditional SGD, and achieve much better pruning ratios than SGD, which
might explain the poorer performance of `1 regularization in recent investigations. We perform
experiments across different datasets and networks and demonstrate state-of-the-art result with such
simple `1 regularization.
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SUPPLEMENTARY MATERIAL

A DETAILED ARCHITECTURE FOR RESNET-32

Layers Input number of channels/output units

Conv1_0 32*32 64

Conv1_1 32*32 64
Conv1_2 32*32 64

Conv1_3 32*32 64
Conv1_4 32*32 64

Conv1_5 32*32 64
Conv1_6 32*32 64

Conv1_7 32*32 64
Conv1_8 32*32 64

Conv1_9 32*32 64
Conv1_10 32*32 64

Conv2_1 16*16 128
Conv2_2 16*16 128

Conv2_3 16*16 128
Conv2_4 16*16 128

Conv2_5 16*16 128
Conv2_6 16*16 128

Conv2_7 16*16 128
Conv2_8 16*16 128

Conv2_9 16*16 128
Conv2_10 16*16 128

Conv3_1 8*8 256
Conv3_2 8*8 256

Conv3_3 8*8 256
Conv3_4 8*8 256

Conv3_5 8*8 256
Conv3_6 8*8 256

Conv3_7 8*8 256
Conv3_8 8*8 256

Conv3_9 8*8 256
Conv3_10 8*8 256

FC3_11 256 10

Table 5: Per-layer Resnet-32 architecture. There are 3 main convolutional blocks with downsampling
through stride=2 for the first layer of each block. After the convloutional layers, global pooling is
applied on the spatial axes and a fully-connected layer is appended for the output. Each set of rows is
a residual block.
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