
Under review as a conference paper at ICLR 2019

PIXEL REDRAWN FOR A ROBUST ADVERSARIAL
DEFENSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, an adversarial example becomes a serious problem to be aware of be-
cause it can fool trained neural networks easily. To prevent the issue, many re-
searchers have proposed several defense techniques such as adversarial training,
input transformation, stochastic activation pruning, etc. In this paper, we propose
a novel defense technique, Pixel Redrawn (PR) method, which redraws every pixel
of training images to convert them into distorted images. The motivation for our
PR method is from the observation that the adversarial attacks have redrawn some
pixels of the original image with the known parameters of the trained neural net-
work. Mimicking these attacks, our PR method redraws the image without any
knowledge of the trained neural network. This method can be similar to the ad-
versarial training method but our PR method can be used to prevent future attacks.
Experimental results on several benchmark datasets indicate our PR method not
only relieves the over-fitting issue when we train neural networks with a large
number of epochs, but it also boosts the robustness of the neural network.

1 INTRODUCTION

Deep neural networks have exhibited very accurate results, but, are also vulnerable to adversarial
examples (Szegedy et al., 2013). Adversarial example is a generated output that induces a trained
machine to misclassify a test datum with a high probability. In other words, the adversarial example
can fool the trained machine to fail its task (Dhillon et al., 2018b; Goodfellow et al., 2014; Szegedy
et al., 2013). We call the method that generates adversarial examples as an attack technique. For
instance, in image classification, an attack technique is creating an adversarial image by perturbing
some pixels of the original image in which the adversarial image is remained to be perceptible by
the human. Obviously, the lesser the pixels to be perturbed, the better the attack technique it is.
Defense techniques to prevent those attacks usually need to produce a robust neural network model
which can detect adversarial examples or label the adversarial examples correctly. There are many
researchers who have studied both attacking and defense techniques, and it is generally believed that
the defense techniques are more challenging than the attack techniques.

In this paper, we focus on the defense technique that generates a robust neural network. For this
purpose, we have to understand the fundamental idea of generating the adversarial example. In
image classification, usually, an adversarial image is generated by perturbing its pixels’ value (for
example, L2 or L∞ attack). If we regard the perturbed pixels to be formed by adding some noises,
then the technique of creating the noises can be recognized as a dropout (Srivastava et al., 2014) (if
the perturbed pixel value is zero) or other regularization techniques (Adeli & Wu, 1998; Krogh &
Hertz, 1992; Nowlan & Hinton, 1992). The neural network with the regularization method usually
shows higher performance than the one without the regularization method (normal testing). From
another viewpoint, we can regard adversarial examples as a subset from the training dataset universe.
Due to the difficulty of collecting all possible examples in the world, we usually just use the clean
(unperturbed) examples (Kurakin et al., 2016b; Yuan et al., 2017) as the representative of our training
dataset.

In order to solve the problem, we propose Pixel Redrawn (PR) method, which is a pre-processing
method that redraws a pixel value of the original image into a different pixel value. The PR method is
motivated by two observations. The first observation is based on the lesson provided by Carlini and
Wagner in (Carlini & Wagner, 2017), which the randomization can increase the distortion required

1

Under review as a conference paper at ICLR 2019

for attack. The paper has mentioned that the most effective defense technique so far is the dropout
randomization which has increased nearly five times more difficulty in generating the adversarial
examples on CIFAR dataset. We agree that the randomization method makes it difficult to compute
the derivation during the back-propagation and it could replace the perturbed pixel with another
value by some random chances during the feed-forward.

The second observation is that humans usually can recognize images regardless of the colors in
which the image has been drawn (e.g. in various colors or in gray level). This indicates that we
usually (human) may not need to have a colorful image just for image classification. We discuss this
in more detail with our proposed method in Section 2.

In this study, we focus on the following:

• We analyze the influence of our PR method toward a normal deep neural network without
any adversarial machine learning.

• We evaluate the effectiveness of our PR method applied in the deep neural network against
the adversarial example.

• And, we compare our PR method with a random noise injection.

Our research contributions can be summarized as follows:

• Our PR method effectively generates adversarial training images that are not covered in the
original dataset.

• Hence, our PR method increases the robustness in neural network training.

To promote reproducible research, we release the implementation of our defense. 1

2 PIXEL REDRAWN METHOD

2.1 PRELIMINARIES

Let X be the image for the input of neural networks. If the size of the image is m × n, then
{xi|xi ∈ X}, where xi= x1, x2, . . . , xm×n is the pixel of the image. A classifier F (·) is a function
to produce a predicted label Ŷ for X . Let Y be the true label of image X .

An attack technique A(·) is a function to generate an adversarial image Xadv from X with (or
without) the knowledge of F (·).

2.2 OUR APPROACH

As aforementioned, PR is a pre-processing method PR(·) which reproduces a new image by re-
drawing the pixels of the original image. We called the generated image as PR image Xpr. We list
the three main steps of PR method as follows:

1. Discretization Let C be the range of color C ∈ [0, 255]. Note that we use a normalized
pixel value C ∈ [0, 1] in the experiment section (Section 4). If we discretize the color into
k sets, then {ci|ci ∈ C}, where ci = c1, c2, . . . , ck is the sub-range of color in C. For each
ci, the range starts from a minimum value sprimin

and ends with a maximum value sprimax

(e.g. c1 = [spr1min
, spr1max

] = [0, 51] if k = 5 and C is equally divided).

2. Prediction We train a PR model (describe more in Section 2.3) and then we use it to predict
each pixel of an image.

ŷpri = wxi + b (1)

where ŷpri is a prediction label of a pixel from PR model, w is a weight of PR model, xi is
a pixel of an image, and b is a bias of PR model (shown in ‘PR process’ of Fig. 1).

1We modify and extend the scripts from CleverHans. Our scripts are available at
https://github.com/canboy123/pixel-redrawn

2

Under review as a conference paper at ICLR 2019

Figure 1: Pixel Redrawn concept with MNIST example.

Figure 2: Example of original images and PR images from MNIST dataset. From a pair of an image,
the left-hand side is the original image and the right-hand side is the PR image.

3. Mapping We redraw the pixel with the sub-range of color ci that has predicted from PR
model.

ci = colorset(ypri) (2)

xpri = randomci(s
pr
imin

, sprimax
) (3)

where colorset(·) is the color set that has defined by the user, ci is the sub-range of color
with a minimum value sprimin

and a maximum value sprimax
, and randomci(·) is a random

function that generates a random value between sprimin
and sprimax

.

In Fig. 1, we perform pre-processing (PR process) for the original image. We reassign each pixel
of the image to a random value, such that the range of the random value is based on the chosen
sub-range of color which is predicted from PR model. The newly generated PR image is then fed
into a neural network.

We depict some examples from a real dataset (i.e. MNIST (LeCun et al., 1998) dataset) with PR
method in Fig. 2. The intuition of redrawing each pixel with a certain value in an accepted interval
is that, for a certain training image, the training dataset does not include all possible combination
of the training image with human-acceptably varying pixel values. With the PR method, we try to
include those missing data in the training phase. Another advantage of using the PR method is that
we can generate more accurate neural network models (discussed in more detail in Section 2.5).
In the following sub-sections, we explain PR model for effectively generating new pixel redrawn
images by our PR method.

2.3 GENERATING PIXEL REDRAWN MODEL

Given a pixel value from the original training image xi, PR model predicts the output pixel value
ŷpri , perturbed within an accepted range ci, for the corresponding pixel location of the new image
xpri . Since we redraw each pixel of the image (either grayscale or color) independently which the
pixel is the only input for the PR model, and we need the PR model to produce several outputs,
then single-layer Perceptron is qualified in this case. Firstly, we train the PR model by generating a
batch of random examples with the corresponding labels initialized with the ci. After the PR model
is converged, we predict each pixel of the original image with the newly trained PR model. Lastly,
we assign a predicted output value of the winning node at the last layer in the trained PR model to
the corresponding pixel location of the new image. Note that the output value is within the accepted
range which is initialized by the user. The final output should look similar as the right-hand side
image of a pair image in Fig. 2).

3

Under review as a conference paper at ICLR 2019

2.4 PSEUDO-CODE OF THE PIXEL REDRAWN METHOD

In order to have a clear description of our proposed method, we provide the pseudo-code of the
PR method in Algorithm 1. First, we initialize the settings of the PR models, which include the
range of each color value ci, the number of the input (always 1) and output (k), the number of
the epochs/iterations, and some random weights. Then, we train the PR model by generating some
random inputs with a corresponding label which the label is based on the range of each color value.
After we train the PR model, we generate a PR image (Xpr) by using the trained PR model to redraw
all pixels of the original image (X). Next, we use the newly generated PR image (Xpr) as the input
of the neural network during the training phase and testing phase. In the end, the trained network
show the output label of the test data.

Algorithm 1 The pseudo-code of the Pixel Redrawn Method
1: Input: Image dataset.
2: Initialize k, ci where ci = c1, . . . , ck, random weights
3: Preprocessing phase:
4: Train a PR model with a batch of random generated values which has assigned with a proper label
5: Predict each pixel of the original image (training and test data) with the trained PR model
6: Generate a PR image Xpr by assigning a new pixel value for each pixel of the original image which is

based on the output of the trained PR model
7: Training phase:
8: Train a neural network with Xpr

9: Testing phase:
10: Classify Xpr with the trained neural network
11: Output: The class label of the test image

2.5 EXTENSION OF THE PIXEL REDRAWN MODEL

One direct extension is using multiple PR models. We train d PR models and predict each pixel of
the original image with one of the trained PR models. In other words, we randomly select one PR
model out of d PR models to predict a pixel of the original image. Then, we repeat the same steps
until all pixels are redrawn.

Another extension is partially converged PR models (less accurate) to redraw a pixel to a totally
different color value. The partially converged PR model is generated when we prematurely stop the
training phase on purpose after a few epochs so that the model is not fully trained. For example,
if a black and white (k = 2) PR model has 70% accuracy to predict a pixel either black or white
color, then a black color pixel can have 30% chance to be converted into a white color. Note that
this may or may not influence the content of the image depending on the number of the pixels that
are different from the original input. In the extreme case, PR method may able to change an eye
color from black to blue for example, by using the partially converged PR models. The motivation
of using the partially converged PR models is because the adversarial example changes a pixel value
into a different value which the changed value is far from the original value (L∞ attack).

In summary, using several PR models (including some partially converged PR models) increase the
robustness of the neural network.

3 EXPERIMENTAL SETTINGS

3.1 DATASET

For experimental analysis of our propose methods, we use three public benchmark datasets in this
study. The datasets include MNIST, Fashion MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2010). For the CIFAR-10 dataset, we generate another grayscale CIFAR-10 for the purpose
of analyzing the influence of our proposed method on the color image. MNIST and Fashion MNIST
have 60,000 training images and 10,000 test images associated with a label from ten classes. The
size of each image is 28×28 grayscale. CIFAR-10, however, has 50,000 training images and 10,000
test images with ten classes. Each image is 32×32 color image.

4

Under review as a conference paper at ICLR 2019

We use a basic convolutional neural network (CNN) (Krizhevsky et al., 2012) as the neural network
architecture for all datasets. The neural network architecture is shown in Fig. 1. We use three
convolutional layers and one fully connected layer. The convolutional layers are followed by the
Rectifier Linear Unit (ReLU) activation function. The fully connected layer is followed by the
Softmax activation function.

3.2 ATTACK TECHNIQUE

There are two kinds of attacks, which are white-box attack and black-box attack. In the white-
box attack, attackers know all parameters of the attacked model, whereas in the black-box attack,
attackers have no knowledge about the parameters of the attacked model. In this experiment, we
run the white-box attack because it is the hardest to defend. The attack can be targeted attack
or untargeted attack. In the targeted attack, the attacker tries to deceive the trained network to
misclassify the datum as the targeted label. The untargeted attack, on the other hand, is fooling the
trained model to misclassify the datum as any label except the true label. We choose the untargeted
attack in the experiment because it is easier for the attacker than the targeted attack.

We use several state-of-the-art attack techniques for the evaluation of our proposed method. The
attack techniques include Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014), basic iter-
ative method (BIM) (Kurakin et al., 2016a), momentum iterative method (MIM) (Dong et al., 2018)
and L2-Carlini & Wagner’s (L2-CW) (Carlini & Wagner, 2016) attack. During the experiments,
when we apply with the FGSM, BIM, and MIM attacks, we set ε = 0.3 for the MNIST dataset
and ε = 8

256 for the Fashion MNIST and CIFAR-10 datasets . For CW attack, we set 1,000 in the
number of iterations to run the attack.

FGSM It is a fast and simple attack technique to generate the adversarial example which has pro-
posed by Goodfellow et al. (2014). We set this technique as the baseline of attack techniques. The
equation of FGSM is computed by

Xadv = X + ε sign(∇XL(X, y)) (4)

where ε is the maximum perturbation allowed for each pixel and L(X, y) is a loss function.

BIM It is an extension of FGSM by applying multiple iterations with small step size in order to
obtain the least perturbations of the image. This technique is proposed by Kurakin et al. (2016a).
The computation of the technique is shown in Eq. 5

Xadv
0 = X, Xadv

N+1 = ClipX,ε{Xadv
N + α sign(∇XL(Xadv

N , y))} (5)

where ClipX,ε is a function to clip the output image to be within the ε-ball of X.

MIM It is more advanced than BIM with momentum algorithm. This technique is proposed by Dong
et al. (2018). The computation of the technique is shown in Eq. 6

Xadv
t+1 = Xadv

t + α · gt+1

||gt+1||2
(6)

where gt+1 is shown in Eq. 7.

gt+1 = µ · gt +
J(xadvt , y)

||∇xJ(xadvt , y)||1
(7)

CW It is an efficient attack technique in finding the adversarial example with the smallest perturba-
tions. The equation is shown as follow.

minimize ‖ 1

2
(tanh(w) + 1)− x ‖22 + c · f(1

2
(tanh(w) + 1)) (8)

3.3 DEFENSE TECHNIQUE

We categorize the defense techniques into two different categories. They are white-box defense and
black-box defense. In the white-box defense, defenders use only the known attack techniques to
generate adversarial examples to be included in a training dataset (e.g. adversarial training (Good-
fellow et al., 2014; Madry et al., 2017; Tramèr et al., 2017)). In the black-box defense, on the other

5

Under review as a conference paper at ICLR 2019

hand, defenders have no knowledge about the attack techniques and they try to generate a robust
neural network model (e.g. stochastic activation pruning (SAP) (Dhillon et al., 2018a), input trans-
formations (Guo et al., 2018), etc.). The white-box defense is usually performed better than the
black-box defense because it can use the state-of-the-art attack technique to create adversarial ex-
amples for the training purpose and then the trained model can prevent the attacks with the similar
level (or weaker levels) of the known attack technique. However, unlike the black-box defense, the
white-box defense might not be able to defend strong attacks devised in the future. Due to the dis-
ability of the white-box defense in defending future attacks, the black-box defense is more reliable
to be studied. Therefore, most state-of-the-art defense techniques are the black-box defense.

3.4 CASE STUDY WITH DIFFERENT ATTACK SCENARIOS

In this paper, we evaluate our method in several cases with different attack scenarios. The case
studies are included as follows:

• Normal: No attack technique is used. Test the neural networks with a legitimate datum.
Ŷ = F (PR(X))

• Case A: The attackers have no knowledge of the PR method but they knows the parameters
of the trained neural networks. The attackers create an adversarial image from an image
with the parameters of the trained neural networks. The defense mechanism receives the
adversarial image as the input for the PR model and then generate PR image for the input
of the trained neural networks.
Ŷ = F (PR(A(F,X)))

• Case B: No PR method is used during the testing phase. The attackers have no knowledge
of PR method but they knows the parameters of the trained neural networks. The attackers
generate an adversarial image from an image with the parameters of the trained neural
networks. The trained neural networks use the adversarial image as the input without being
pre-processed by the PR method.
Ŷ = F (A(F,X))

• Case C: The attackers know both the PR method and the trained neural networks. The at-
tackers produce an adversarial image from an image with the parameters of the PR method
and trained neural network. The trained neural networks use the adversarial image as the
input without being pre-processed by the PR method.
Ŷ = F (A(F, PR,X))

• Case D: The attackers know both the PR method and the trained neural networks. The at-
tackers produce an adversarial image from an image with the parameters of the PR method
and trained neural network. The defense mechanism receives the adversarial image as the
input for the PR model and the newly created PR image is used as the input of the trained
neural networks.
Ŷ = F (PR(A(F, PR,X)))

We illustrate some adversarial images generated from the MNIST dataset for each case in Fig. 3.
Note that the adversarial example generated from the case C and D can cause high L0, L2 and L∞
distances because the attacker has used a distorted image instead of a clean image. In other words,
the perturbed pixels from the adversarial image can be perceptible by the human.

4 EXPERIMENTAL RESULTS

In this study, we perform several experiments based on the following questions:

1. What is the influence of applying the PR method in different phases with a legitimate test
datum?

2. What is the influence of using the PR method in different case studies?
3. What is the difference between multiple PR models and a single PR model applying in the

neural networks?
4. What is the difference between the PR method and the random noise injection?

6

Under review as a conference paper at ICLR 2019

Figure 3: The example of the input images for the classifier from MNIST dataset with FGSM
(ε = 0.3), BIM (ε = 0.3), MIM (ε = 0.3), and L2-CW attack techniques in five cases.

4.1 EXPERIMENT TO ANSWER QUESTION # 1

The objective of performing these experiments is to demonstrate that PR augmented training method
has more advantages than common training methods. From Table 1, we produce four different results
by applying the PR method in different phases. These include (1) applying no PR method, denoted
as non-PR (i.e. common training method), (2) applying PR method during the training phase, (3)
testing phase (4) and both phases. We analyze that applying PR method (either during the training
phase or both phases) is not significantly different with non-PR case in terms of the accuracy. This
means that neural networks trained with PR method show comparable performance to those trained
without PR method. From the results of “Testing Phase” in Table 1, it can be seen that neural
networks trained without PR (i.e. non-PR) are not sufficiently robust when they are exposed to
images perturbed by PR method. In other words, we can use PR method as an attack technique to
fool the trained neural networks. The accuracy for the MNIST and Fashion MNIST datasets are
greatly decreased in Table 1 could be caused by over-fitting when a large number of epochs have
passed. However, our method can relieve the over-fitting issue as shown in Table 1 when we apply
PR method in the training phase only. The neural networks can classify clean images correctly
after we train them with PR method. We conjecture PR method has performed regularization while
training the neural networks. Common regularization methods (e.g. dropout, weight decay, etc.)
usually are related with neural networks architecture, but our PR method is applied to the data
themselves.

Table 1: Comparison results of applying pixel redrawn method during various phases.

Dataset Epoch Accuracy
Non-PR Training Phase Testing Phase Both Phases

MNIST
50 0.9921 0.9905 0.8097 0.9893

500 0.9885 0.9824 0.4964 0.9879
1000 0.9893 0.9671 0.2765 0.9865

Fashion MNIST
50 0.9106 0.8879 0.3538 0.8724

500 0.9058 0.8795 0.3018 0.8670
1000 0.8964 0.8788 0.2550 0.8632

CIFAR-10
50 0.6179 0.5703 0.5144 0.5386

500 0.5989 0.5557 0.4864 0.5323
1000 0.5873 0.5495 0.4739 0.5204

CIFAR-10
(grayscale)

50 0.5697 0.5099 0.3764 0.4845
500 0.5466 0.4864 0.3429 0.4609
1000 0.5369 0.4761 0.3370 0.4569

7

Under review as a conference paper at ICLR 2019

4.2 EXPERIMENT TO ANSWER QUESTION # 2

The goal of operating these experiments is to validate whether PR method can be effectively used
as a defense technique against the state-of-the-art attack techniques. We conduct five cases that we
have discussed in Section 3.4 in this sub-section. From Table 2, PR method can defend most attacks
in the case A and D. One interesting observation that we have found in the case B is that the neural
networks which have been trained with PR method during the training phase are robust to defend
most attacks (except the L2-CW attack) even if we do not apply PR method during the testing phase.
This shows that our PR method boosts the robustness of the neural networks. For the case C, the
performance of the neural networks is significantly degraded due to large increase of Lp distance
(i.e. the distance between the original image and the adversarial image). As we know, the case C is
not practical because the Lp distance has to be as low as possible in order to create an adversarial
example. Although the case C is impractical, we still perform the case D to validate our PR method
can increase the robustness of the neural network (except MNIST dataset with FGSM technique
because of high distortion of the generated adversarial image as shown in Fig. 3). We conjecture our
method which can defend the attacks effectively because it has eliminated most adversarial pixels
during the pre-processing phase. Furthermore, we can see that our PR method performs better in the
grayscale dataset from the comparison between CIFAR-10 and CIFAR-10 (grayscale) dataset.

Table 2: Results for several datasets in the case A, B, C, and D with 1,000 epochs and k=3. Note
that in the case A, we classify as F (PR(A(F,X))). In the case B, we classify as F (A(F,X)). In
the case C, we classify as F (A(F, PR,X)). In the case D, we classify as F (PR(A(F, PR,X))).

Dataset Attack Accuracy, k=3
Normal Case A Case B Case C Case D

MNIST

FGSM, ε = 0.300

0.9870

0.9689 0.8787 0.6396 0.3664
BIM, ε = 0.300 0.9831 0.7930 0.5115 0.7697
MIM, ε = 0.300 0.9680 0.7504 0.4264 0.5209

L2-CW 0.9853 0.6621 0.1526 0.9690

Fashion
MNIST

FGSM, ε = 0.031

0.8632

0.8426 0.7642 0.6887 0.7430
BIM, ε = 0.031 0.8420 0.7271 0.6277 0.7376
MIM, ε = 0.031 0.8340 0.6815 0.5847 0.7137

L2-CW 0.8450 0.1048 0.0932 0.8159

CIFAR-10

FGSM, ε = 0.031

0.5204

0.3343 0.2265 0.2177 0.2236
BIM, ε = 0.031 0.3554 0.2104 0.2054 0.2216
MIM, ε = 0.031 0.3025 0.1904 0.1913 0.1938

L2-CW 0.4667 0.1728 0.1654 0.4156

CIFAR-10
(grayscale)

FGSM, ε = 0.031

0.4569

0.3371 0.2217 0.2016 0.2502
BIM, ε = 0.031 0.3487 0.2079 0.1969 0.2633
MIM, ε = 0.031 0.3216 0.1888 0.1854 0.2291

L2-CW 0.4290 0.1845 0.1727 0.3868

In addition, we compare the performance between a neural network trained with PR method (during
the training phase) and a neural network trained without PR method under four different attacks,
shown in Table 3. Note that we do not apply PR method during testing phase for the neural network
that has been trained with PR method (case B). From Table 3, neural networks trained with PR
method show higher performance than non-PR neural networks except in the normal case. This
result indicates our PR method can increase the robustness of the neural network.

4.3 EXPERIMENT TO ANSWER QUESTION # 3

The target of implementing these experiments is to present the benefit of using the multiple PR
models rather than the single PR model. As aforementioned, the case C is impractical since the
case C will cause high Lp distance. Hence, we do not include case C (and D) in this sub-section.
From Table 4, the one with the multiple PR models outperforms the one with a single PR model. In
average of the accuracy, the multiple PR models produce 1.86% and 1.16% higher than the single
PR model for case A and B respectively. This shows the multiple PR models produce a stronger
defense than the single PR model. We leave the experiments for the parameters tuning of multiple
PR models in the future.

8

Under review as a conference paper at ICLR 2019

Table 3: Comparison of using non-PR model and PR model (case B) in several datasets with 1,000
epochs under four different attacks.

Dataset Model Accuracy
Normal FGSM BIM MIM L2-CW

MNIST Non-PR 0.9893 0.1114 0.1005 0.0844 0.1568
PR (case B), k=3 0.9870 0.8787 0.7930 0.7504 0.6621

Fashion
MNIST

Non-PR 0.8964 0.6308 0.4221 0.2718 0.0680
PR (case B), k=3 0.8632 0.7642 0.7271 0.6815 0.1048

CIFAR-10 Non-PR 0.5873 0.1807 0.1819 0.1761 0.1612
PR (case B), k=3 0.5204 0.2265 0.2104 0.1904 0.1728

CIFAR-10
(grayscale)

Non-PR 0.5369 0.1816 0.1876 0.1839 0.1670
PR (case B), k=3 0.4569 0.2217 0.2079 0.1888 0.1845

Table 4: The comparison of using a PR model and multiple PR models in several datasets with 1,000
epochs for the case A and B.

Dataset Attack
Accuracy

single PR multiple PR
Case A Case B Case A Case B

MNIST

FGSM, ε = 0.300 0.9689 0.8787 0.9752 0.9371
BIM, ε = 0.300 0.9831 0.7930 0.9865 0.8003
MIM, ε = 0.300 0.9680 0.7504 0.9706 0.7693

L2-CW 0.9853 0.6621 0.9875 0.5767

Fashion
MNIST

FGSM, ε = 0.031 0.8426 0.7642 0.8564 0.8059
BIM, ε = 0.031 0.8420 0.7271 0.8555 0.7703
MIM, ε = 0.031 0.8340 0.6815 0.8501 0.7422

L2-CW 0.8450 0.1048 0.8476 0.1615

CIFAR-10

FGSM, ε = 0.031 0.3343 0.2265 0.3630 0.2181
BIM, ε = 0.031 0.3554 0.2104 0.3859 0.2040
MIM, ε = 0.031 0.3025 0.1904 0.3353 0.1853

L2-CW 0.4667 0.1728 0.4964 0.1717

CIFAR-10
(grayscale)

FGSM, ε = 0.031 0.3371 0.2217 0.3655 0.2222
BIM, ε = 0.031 0.3487 0.2079 0.3812 0.2118
MIM, ε = 0.031 0.3216 0.1888 0.3532 0.1948

L2-CW 0.4290 0.1845 0.4526 0.1795

4.4 EXPERIMENT TO ANSWER QUESTION # 4

The aim of conducting these experiments are to distinguish between PR model and random noise
injection. Note that the value of the random noise that we used in this sub-section is between -1.0 and
1.0 with the uniform distribution and we clip the value of the pixel between 0.0 and 1.0 (normalized
pixel value). We list several outputs with the use of the PR method and random noise injection in
Fig. 4.

Besides that, we show the experiment results for the random noises injection with the legitimate
data in Table 5. We use a similar settings in Section 4.1 to only apply the random noises injection
during the training phase, testing phase and both phases. Comparing the results of the PR method
(shown in Table 1) and those of the random noise injection (shown in Table 5), we can see that
the PR method outperforms the random noise injection in “Training Phase” and “Both Phases”.

Figure 4: Examples of using PR method and some random noises in MNIST, Fashion MNIST and
CIFAR-10 datasets. For every three images from the left, the leftmost one is the original image, the
middle one is the image after adding some random noises, and the rightmost one is the PR image.

9

Under review as a conference paper at ICLR 2019

Although the random noise injection has high performance in fooling the trained neural networks
(in the case when we apply the random noise injection during the testing phase only), the L2 distance
is larger than our method since the image generated with the random noise injection cannot be easily
recognized by the human. (shown in Fig. 4) In summary, the PR method is different from the random
noise injection in terms of the performance in maintaining the accuracy when the number of the
epoch is increased. Moreover, the PR method can maintain the newly generated image perceptible
by the human.

Table 5: Comparison results of applying the some random noises on the image during the different
phase.

Dataset Epoch Accuracy
Training Phase Testing Phase Both Phases

MNIST
50 0.9871 0.1650 0.9596

500 0.2789 0.1958 0.9705
1000 0.1021 0.1695 0.9758

Fashion MNIST
50 0.8275 0.1435 0.8161

500 0.7308 0.1357 0.8446
1000 0.7263 0.1297 0.8449

CIFAR-10
50 0.5112 0.2205 0.4779

500 0.4296 0.1883 0.4674
1000 0.4194 0.4739 0.4718

4.5 SUMMARY OF PR METHOD

From the experiment results, we summarize the contribution of using the PR method as follows:

• The PR method relieves the over-fitting issue by generating different possible output of the
image. (Q1)

• The PR method increases the robustness of the neural networks.(Q2)

• The defense level for the one with the multiple PR models is stronger than the one with the
single PR model. (Q3)

• The PR model has higher performance than the random noise injection. (Q4)

5 CONCLUSION

In this study, we propose a novel method, namely Pixel Redrawn method which regenerates the
image to all possible forms without compromising human perception. We address four questions
in our experiments: Q1 What is the influence of applying the PR method in different phases with a
legitimate test datum?, Q2 What is the influence of using the PR method in different case studies?,
Q3 What is the difference between multiple PR models and a single PR model applying in the neural
networks?, and Q4 What is the difference between the PR method and the random noise injection?
From the experimental results, our method shows that it can prevent the over-fitting problem while
maintaining the performance of the neural network, it also improves the robustness of the neural
network. Furthermore, our method is more reliable than using some random noises.

REFERENCES

Hojjat Adeli and Mingyang Wu. Regularization neural network for construction cost estimation.
Journal of construction engineering and management, 124(1):18–24, 1998.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. arXiv
preprint arXiv:1608.04644, 2016.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pp. 3–14. ACM, 2017.

10

Under review as a conference paper at ICLR 2019

Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran Khanna,
Zachary C. Lipton, and Animashree Anandkumar. Stochastic activation pruning for robust
adversarial defense. In International Conference on Learning Representations, 2018a. URL
https://openreview.net/forum?id=H1uR4GZRZ.

Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein, Jean Kossaifi,
Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial de-
fense. arXiv preprint arXiv:1803.01442, 2018b.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
ing adversarial attacks with momentum. arXiv preprint, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial
images using input transformations. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=SyJ7ClWCb.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www. cs. toronto. edu/kriz/cifar. html, 2010.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances
in neural information processing systems, pp. 950–957, 1992.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016a.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016b.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks by soft weight-sharing.
Neural computation, 4(4):473–493, 1992.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xiaoyong Yuan, Pan He, Qile Zhu, Rajendra Rana Bhat, and Xiaolin Li. Adversarial examples:
Attacks and defenses for deep learning. arXiv preprint arXiv:1712.07107, 2017.

11

https://openreview.net/forum?id=H1uR4GZRZ
https://openreview.net/forum?id=SyJ7ClWCb

Under review as a conference paper at ICLR 2019

A APPENDIX

A.1 EXPERIMENTS TO ANSWER QUESTION #2

In this appendix, we provide Table 6, which is the extended version of Table 2 in Section 4.2. Note
that more results with 50 and 500 epochs are added. We also provide Table 7 and 8 with k = 4 and
k = 10 respectively. The purpose of the experiments is to analyze the influence of the k value (the
number of colors) to the performance of the neural network. From Table 6, 7 and 8, we observe that
the bigger the k, the higher the accuracy when we test with the legitimate example, but the lower
the accuracy when we test with the adversarial examples. In other words, we have to deal with a
trade-off between legitimate examples and adversarial examples. Although we believe that multiple
PR models could increase the accuracy for adversarial examples while using a large value of k, we
leave these experiments in the future.

A.2 EXPERIMENTS TO ANSWER QUESTION #3

In this appendix, we show Table 10 as the extended version of Table 4 in Section 4.3 with the results
of the multiple PR models and the single PR model with two epochs (i.e. 500 and 1,000 epochs). In
Table 10, it can be seen that the multiple PR models outperforms the single PR model, because the
multiple PR models provide more new images to train as was discussed in Section 2.5.

A.3 EXPERIMENTS TO ANSWER QUESTION #4

In this appendix, we show the comparison results between PR method (case A) and adversarial
training with 1,000 epochs for several datasets in Table 11. We apply MIM attack technique during
the adversarial training. In Table 11, it can be seen that our method outperforms adversarial training
in most cases.

12

Under review as a conference paper at ICLR 2019

Table 6: Results for several datasets in the case A, B, C, and D with 50, 500, and 1000 epochs
and k=3. Note that in the case A, we classify as F (PR(A(F,X))). In the case B, we classify
as F (A(F,X)). In the case C, we classify as F (A(F, PR,X)). In the case D, we classify as
F (PR(A(F, PR,X))).

Dataset Attack Epoch Accuracy, k=3
Normal Case A Case B Case C Case D

MNIST

FGSM,
ε = 0.300

50 0.9897 0.9570 0.8527 0.4187 0.3413
500 0.9867 0.9698 0.9045 0.5870 0.3919

1000 0.9870 0.9689 0.8787 0.6396 0.3664

BIM,
ε = 0.300

50 0.9897 0.9601 0.4485 0.0260 0.2230
500 0.9867 0.9786 0.8003 0.3982 0.7223

1000 0.9870 0.9831 0.7930 0.5115 0.7697

MIM,
ε = 0.300

50 0.9897 0.9450 0.3651 0.0119 0.1043
500 0.9867 0.9636 0.7574 0.3272 0.4788

1000 0.9870 0.9680 0.7504 0.3956 0.5209

L2-CW
50 0.9897 0.9824 0.1617 0.0079 0.9666

500 0.9867 0.9842 0.6758 0.0837 0.9724
1000 0.9870 0.9853 0.6621 0.1526 0.9690

Fashion
MNIST

FGSM,
ε = 0.031

50 0.8724 0.8291 0.7366 0.6001 0.6811
500 0.8670 0.8380 0.7492 0.6748 0.7376

1000 0.8632 0.8426 0.7642 0.6887 0.7430

BIM,
ε = 0.031

50 0.8724 0.8215 0.6944 0.4886 0.6578
500 0.8670 0.8360 0.7038 0.5899 0.7229

1000 0.8632 0.8420 0.7271 0.6277 0.7376

MIM,
ε = 0.031

50 0.8724 0.8186 0.6662 0.4510 0.6312
500 0.8670 0.8302 0.6644 0.5484 0.6998

1000 0.8632 0.8340 0.6815 0.5847 0.7137

L2-CW
50 0.8724 0.8292 0.0770 0.0888 0.8170

500 0.8670 0.8444 0.0826 0.0826 0.8196
1000 0.8632 0.8450 0.1048 0.0932 0.8159

CIFAR-10

FGSM,
ε = 0.031

50 0.5386 0.2968 0.1931 0.1893 0.2103
500 0.5323 0.3256 0.2053 0.2001 0.2186

1000 0.5204 0.3343 0.2265 0.2155 0.2236

BIM,
ε = 0.031

50 0.5386 0.3127 0.1876 0.1865 0.2038
500 0.5323 0.3385 0.1932 0.1957 0.2114

1000 0.5204 0.3554 0.2104 0.2054 0.2216

MIM,
ε = 0.031

50 0.5386 0.2772 0.1783 0.1815 0.1920
500 0.5323 0.2898 0.1775 0.1839 0.1916

1000 0.5204 0.3025 0.1904 0.1913 0.1938

L2-CW
50 0.5386 0.4728 0.1646 0.1687 0.4256

500 0.5323 0.4708 0.1626 0.1765 0.4234
1000 0.5204 0.4667 0.1728 0.1654 0.4156

CIFAR-10
(grayscale)

FGSM,
ε = 0.031

50 0.4845 0.3430 0.2216 0.2002 0.2285
500 0.4609 0.3357 0.2098 0.1960 0.2472

1000 0.4569 0.3371 0.2217 0.2016 0.2502

BIM,
ε = 0.031

50 0.4845 0.3518 0.2112 0.1910 0.2387
500 0.4609 0.3494 0.2005 0.1924 0.2531

1000 0.4569 0.3451 0.2079 0.1895 0.2633

MIM,
ε = 0.031

50 0.4845 0.3270 0.1971 0.1851 0.2165
500 0.4609 0.3181 0.1834 0.1819 0.2289

1000 0.4569 0.3158 0.1888 0.1808 0.2291

L2-CW
50 0.4845 0.4424 0.1817 0.1788 0.3865

500 0.4609 0.4363 0.1727 0.1719 0.3945
1000 0.4569 0.4290 0.1845 0.1727 0.3868

13

Under review as a conference paper at ICLR 2019

Table 7: Results for several datasets in the case A, B, C, and D with 50, 500, and 1000 epochs
and k=4. Note that in the case A, we classify as F (PR(A(F,X))). In the case B, we classify
as F (A(F,X)). In the case C, we classify as F (A(F, PR,X)). In the case D, we classify as
F (PR(A(F, PR,X))).

Dataset Attack Epoch Accuracy, k=4
Normal Case A Case B Case C Case D

MNIST

FGSM,
ε = 0.300

50 0.9932 0.7421 0.7908 0.5384 0.5502
500 0.9891 0.8596 0.8756 0.8131 0.8238

1000 0.9908 0.8114 0.8409 0.7198 0.6961

BIM,
ε = 0.300

50 0.9932 0.5126 0.3372 0.0810 0.1680
500 0.9891 0.9144 0.7817 0.6947 0.8227

1000 0.9908 0.9283 0.6446 0.4903 0.7386

MIM,
ε = 0.300

50 0.9932 0.3238 0.2487 0.0517 0.0978
500 0.9891 0.7932 0.7231 0.6441 0.7019

1000 0.9908 0.6979 0.5380 0.3920 0.4730

L2-CW
50 0.9932 0.9885 0.2584 0.0471 0.9914

500 0.9891 0.9881 0.8142 0.7988 0.9892
1000 0.9908 0.9902 0.8437 0.8034 0.9906

Fashion
MNIST

FGSM,
ε = 0.031

50 0.8896 0.8132 0.7363 0.6531 0.7836
500 0.8841 0.8450 0.8071 0.7671 0.8220

1000 0.8830 0.8507 0.8212 0.7761 0.8242

BIM,
ε = 0.031

50 0.8896 0.7864 0.6371 0.5140 0.7626
500 0.8841 0.8330 0.7419 0.6536 0.8170

1000 0.8830 0.8463 0.7913 0.7207 0.8248

MIM,
ε = 0.031

50 0.8896 0.7792 0.6253 0.4984 0.7477
500 0.8841 0.8280 0.7232 0.6277 0.8070

1000 0.8830 0.8419 0.7622 0.6811 0.8020

L2-CW
50 0.8896 0.8424 0.0739 0.0746 0.8759

500 0.8841 0.8430 0.1345 0.1217 0.8677
1000 0.8830 0.8501 0.1590 0.1650 0.8668

CIFAR-10

FGSM,
ε = 0.031

50 0.5969 0.2398 0.1889 0.1902 0.2038
500 0.5838 0.2667 0.2020 0.1983 0.2199

1000 0.5764 0.2809 0.2254 0.2132 0.2391

BIM,
ε = 0.031

50 0.5969 0.2397 0.1820 0.1881 0.1993
500 0.5838 0.2682 0.1916 0.1904 0.2078

1000 0.5764 0.2887 0.2072 0.1985 0.2253

MIM,
ε = 0.031

50 0.5969 0.2126 0.1760 0.1828 0.1890
500 0.5838 0.2203 0.1755 0.1789 0.1857

1000 0.5764 0.2347 0.1851 0.1812 0.1961

L2-CW
50 0.5969 0.4758 0.1626 0.1681 0.4661

500 0.5838 0.4716 0.1645 0.1696 0.4573
1000 0.5764 0.4668 0.1742 0.1705 0.4595

CIFAR-10
(grayscale)

FGSM,
ε = 0.031

50 0.5362 0.2805 0.1964 0.1904 0.2344
500 0.5316 0.3061 0.1999 0.1999 0.2501

1000 0.5210 0.3076 0.2079 0.2027 0.2588

BIM,
ε = 0.031

50 0.5362 0.2860 0.1964 0.1839 0.2435
500 0.5316 0.3135 0.1999 0.1892 0.2591

1000 0.5210 0.3191 0.2079 0.1928 0.2663

MIM,
ε = 0.031

50 0.5362 0.2571 0.1864 0.1802 0.2218
500 0.5316 0.2679 0.1830 0.1773 0.2221

1000 0.5210 0.2719 0.1903 0.1813 0.2238

L2-CW
50 0.5362 0.4710 0.1762 0.1672 0.4543

500 0.5316 0.4642 0.1668 0.1693 0.4557
1000 0.5210 0.4595 0.1763 0.1680 0.4494

14

Under review as a conference paper at ICLR 2019

Table 8: Results for several datasets in the case A, B, C, and D with 50, 500, and 1000 epochs
and k=10. Note that in the case A, we classify as F (PR(A(F,X))). In the case B, we classify
as F (A(F,X)). In the case C, we classify as F (A(F, PR,X)). In the case D, we classify as
F (PR(A(F, PR,X))).

Dataset Attack Epoch Accuracy, k=10
Normal Case A Case B Case C Case D

MNIST

FGSM,
ε = 0.300

50 0.9933 0.8324 0.6713 0.4700 0.6466
500 0.9897 0.8754 0.7677 0.7641 0.8184

1000 0.9890 0.8196 0.7500 0.6874 0.6644

BIM,
ε = 0.300

50 0.9933 0.4206 0.1431 0.0681 0.1809
500 0.9897 0.8125 0.5887 0.5203 0.7374

1000 0.9890 0.8583 0.5935 0.5968 0.7864

MIM,
ε = 0.300

50 0.9933 0.2076 0.0758 0.0333 0.0693
500 0.9897 0.5491 0.4203 0.3167 0.3952

1000 0.9890 0.5912 0.4350 0.3323 0.3881

L2-CW
50 0.9933 0.9906 0.0877 0.0231 0.9928

500 0.9897 0.9892 0.8272 0.5395 0.9896
1000 0.9890 0.9877 0.4854 0.4725 0.9880

Fashion
MNIST

FGSM,
ε = 0.031

50 0.8957 0.7773 0.6876 0.6381 0.7889
500 0.8864 0.8156 0.7825 0.7558 0.8172

1000 0.8802 0.8257 0.8029 0.7700 0.8188

BIM,
ε = 0.031

50 0.8957 0.7282 0.5497 0.4788 0.7643
500 0.8864 0.7935 0.7055 0.6570 0.8142

1000 0.8802 0.8265 0.7712 0.7141 0.8288

MIM,
ε = 0.031

50 0.8957 0.7154 0.5449 0.4728 0.7531
500 0.8864 0.7753 0.6710 0.6124 0.7985

1000 0.8802 0.8147 0.7241 0.6501 0.8177

L2-CW
50 0.8957 0.8369 0.0681 0.0714 0.8854

500 0.8864 0.8185 0.1400 0.1374 0.8682
1000 0.8802 0.8282 0.1532 0.1475 0.8633

CIFAR-10

FGSM,
ε = 0.031

50 0.6087 0.1928 0.1855 0.1808 0.1883
500 0.5989 0.1945 0.1836 0.1840 0.1936

1000 0.5918 0.2006 0.1906 0.1903 0.2022

BIM,
ε = 0.031

50 0.6087 0.1892 0.1822 0.1795 0.1885
500 0.5989 0.1901 0.1801 0.1819 0.1951

1000 0.5918 0.1971 0.1868 0.1828 0.2013

MIM,
ε = 0.031

50 0.6087 0.1840 0.1797 0.1766 0.1780
500 0.5989 0.1766 0.1742 0.1754 0.1815

1000 0.5918 0.1819 0.1781 0.1763 0.1811

L2-CW
50 0.6087 0.3658 0.1591 0.1608 0.3792

500 0.5989 0.3967 0.1672 0.1678 0.4038
1000 0.5918 0.3884 0.1665 0.1640 0.4063

CIFAR-10
(grayscale)

FGSM,
ε = 0.031

50 0.5626 0.1973 0.1895 0.1886 0.1941
500 0.5566 0.2012 0.1872 0.1834 0.1894

1000 0.5545 0.2126 0.1949 0.1923 0.2027

BIM,
ε = 0.031

50 0.5626 0.1980 0.1857 0.1865 0.1932
500 0.5566 0.1945 0.1799 0.1800 0.1929

1000 0.5545 0.2083 0.1869 0.1850 0.1982

MIM,
ε = 0.031

50 0.5626 0.1890 0.1813 0.1816 0.1857
500 0.5566 0.1761 0.1704 0.1733 0.1778

1000 0.5545 0.1841 0.1757 0.1757 0.1801

L2-CW
50 0.5626 0.4075 0.1664 0.1689 0.4189

500 0.5566 0.4206 0.1594 0.1591 0.4373
1000 0.5545 0.4247 0.1656 0.1629 0.4336

15

Under review as a conference paper at ICLR 2019

Table 9: Comparison of using non-PR model and PR model (case B) in several datasets with 50,
500, and 1,000 epochs under four different attacks.

Dataset Attack Epoch Accuracy
non-PR PR (case B), k=3

MNIST

Normal
50 0.9921 0.9897

500 0.9885 0.9867
1000 0.9893 0.9870

FGSM,
ε = 0.300

50 0.2004 0.8527
500 0.2187 0.9045

1000 0.1114 0.8787
BIM,

ε = 0.300

50 0.0369 0.4485
500 0.0576 0.8003

1000 0.1005 0.7930
MIM,

ε = 0.300

50 0.0230 0.3651
500 0.0549 0.7574

1000 0.0844 0.7504

L2-CW
50 0.0156 0.1617

500 0.1018 0.6758
1000 0.1568 0.6621

Fashion
MNIST

Normal
50 0.9106 0.8724

500 0.9058 0.8670
1000 0.8964 0.8632

FGSM,
ε = 0.031

50 0.6083 0.7366
500 0.6624 0.7492

1000 0.6308 0.7642
BIM,

ε = 0.031

50 0.4265 0.6944
500 0.4064 0.7038

1000 0.4221 0.7271
MIM,

ε = 0.031

50 0.3566 0.6662
500 0.2401 0.6644

1000 0.2718 0.6815

L2-CW
50 0.0647 0.0700

500 0.0652 0.0826
1000 0.0680 0.1048

CIFAR-10

Normal
50 0.6179 0.5386

500 0.5989 0.5323
1000 0.5873 0.5204

FGSM,
ε = 0.031

50 0.1801 0.1931
500 0.1753 0.2053

1000 0.1807 0.2265
BIM,

ε = 0.031

50 0.1767 0.1876
500 0.1751 0.1932

1000 0.1819 0.2104
MIM,

ε = 0.031

50 0.1741 0.1783
500 0.1723 0.1775

1000 0.1761 0.1904

L2-CW
50 0.1603 0.1646

500 0.1576 0.1626
1000 0.1612 0.1728

CIFAR-10
(grayscale)

Normal
50 0.5697 0.4845

500 0.5466 0.4609
1000 0.5369 0.4569

FGSM,
ε = 0.031

50 0.1781 0.2216
500 0.1732 0.2098

1000 0.1816 0.2217
BIM,

ε = 0.031

50 0.1786 0.2112
500 0.1768 0.2005

1000 0.1876 0.2079
MIM,

ε = 0.031

50 0.1745 0.1971
500 0.1744 0.1834

1000 0.1839 0.1888

L2-CW
50 0.1597 0.1817

500 0.1621 0.1727
1000 0.1670 0.1845

16

Under review as a conference paper at ICLR 2019

Table 10: The comparison of using a PR model and multiple PR models in several datasets with 500
and 1,000 epochs respectively, for case A and case B.

Dataset Attack Epoch
Accuracy

single PR multiple PR
Case A Case B Case A Case B

MNIST,
ε = 0.300

FGSM
500 0.9698 0.9045 0.9724 0.9350

1000 0.9698 0.8787 0.9752 0.9371

BIM
500 0.9786 0.8003 0.9816 0.8224

1000 0.9831 0.7930 0.9865 0.8003

MIM
500 0.9636 0.7574 0.9645 0.7806

1000 0.9680 0.7504 0.9706 0.7693

L2-CW
500 0.9842 0.6758 0.9872 0.3273

1000 0.9853 0.6621 0.9875 0.5767

Fashion
MNIST,
ε = 0.031

FGSM
500 0.8380 0.7492 0.8582 0.7903

1000 0.8426 0.7642 0.8564 0.8059

BIM
500 0.8360 0.7038 0.8527 0.7575

1000 0.8420 0.7271 0.8555 0.7703

MIM
500 0.8302 0.6644 0.8503 0.7310

1000 0.8340 0.6815 0.8501 0.7422

L2-CW
500 0.8444 0.0826 0.8487 0.1432

1000 0.8450 0.1048 0.8476 0.1615

CIFAR-10,
ε = 0.031

FGSM
500 0.3256 0.2053 0.3470 0.2104

1000 0.3343 0.2265 0.3630 0.2181

BIM
500 0.3385 0.1932 0.3689 0.2013

1000 0.3554 0.2104 0.3859 0.2040

MIM
500 0.2898 0.1775 0.3189 0.1847

1000 0.3025 0.1904 0.3353 0.1853

L2-CW
500 0.4708 0.1626 0.4947 0.1709

1000 0.4667 0.1728 0.4964 0.1717

CIFAR-10
(grayscale),
ε = 0.031

FGSM
500 0.3357 0.2098 0.3665 0.2174

1000 0.3371 0.2217 0.3655 0.2222

BIM
500 0.3534 0.2005 0.3750 0.2083

1000 0.3487 0.2079 0.3812 0.2118

MIM
500 0.3234 0.1834 0.3526 0.1917

1000 0.3216 0.1888 0.3532 0.1948

L2-CW
500 0.4363 0.1727 0.4483 0.1829

1000 0.4290 0.1845 0.4526 0.1795

Table 11: Comparison between PR method (case A) and adversarial training in several datasets with
1,000 epochs.

Dataset Attack Accuracy
PR Adversarial Training

MNIST,
ε = 0.300

FGSM 0.9691 0.9712
BIM 0.9825 0.9264
MIM 0.9672 0.9287

Fashion MNIST,
ε = 0.031

FGSM 0.8503 0.8408
BIM 0.8489 0.8190
MIM 0.8446 0.8059

CIFAR-10,
ε = 0.031

FGSM 0.3343 0.3830
BIM 0.3554 0.3495
MIM 0.3025 0.3072

17

	Introduction
	Pixel Redrawn Method
	Preliminaries
	Our Approach
	Generating Pixel Redrawn Model
	Pseudo-code of the Pixel Redrawn Method
	Extension of the Pixel Redrawn Model

	Experimental Settings
	Dataset
	attack technique
	Defense Technique
	Case Study with Different Attack Scenarios

	Experimental Results
	Experiment to answer Question # 1
	Experiment to answer Question # 2
	Experiment to answer Question # 3
	Experiment to answer Question # 4
	Summary of PR method

	Conclusion
	Appendix
	Experiments to answer Question #2
	Experiments to answer Question #3
	Experiments to answer Question #4

