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ABSTRACT

As a concise and classic framework for object detection and instance segmenta-
tion, Mask R-CNN achieves promising performance in both two tasks. However,
considering stronger feature representation for Mask R-CNN fashion framework,
there is room for improvement from two aspects. On the one hand, performing
multi-task prediction needs more credible feature extraction and multi-scale fea-
tures integration to handle objects with varied scales. In this paper, we address
this problem by using a novel neck module called SA-FPN (Scale Aware Feature
Pyramid Networks). With the enhanced feature representations, our model can
accurately detect and segment the objects of multiple scales. On the other hand,
in Mask R-CNN framework, isolation between parallel detection branch and in-
stance segmentation branch exists, causing the gap between training and testing
processes. To narrow this gap, we propose a unified head module named EJ-Head
(Effective Joint Head) to combine two branches into one head, not only realizing
the interaction between two tasks, but also enhancing the effectiveness of multi-
task learning. Comprehensive experiments show that our proposed methods bring
noticeable gains for object detection and instance segmentation. In particular, our
model outperforms the original Mask R-CNN by 1˜2 percent AP in both object
detection and instance segmentation task on MS-COCO benchmark. 1

1 INTRODUCTION

In the past few years, object detection and instance segmentation results were rapidly improved by
the powerful baseline system Mask R-CNN(He et al. (2017)), which extends Faster R-CNN(Girshick
(2015)) by adding a branch for predicting an object mask in parallel with the existing part for bound-
ing box recognition. This method is conceptually natural and offers extensibility and robustness,
shows a surprisingly smooth, flexible, and fast system for instance segmentation results.

However, this remarkable multi-task learning method suffers from a common problem of mod-
ern detection methods. That is scale variation, since Convolutional Neural Network is sensitive to
scales. And what’s more, performing multi-tasks needs more credible feature extraction execution
and multi-scale complementary features integration. Therefore, it is urgent to tackle this problem.
Feature pyramid is a common practice. FPN(Lin et al. (2017a)) augmented a top-down path with
lateral connections for object detection. It exploits the inherent multi-scale, pyramidal hierarchy of
deep convolutional networks to construct feature pyramids with marginal extra cost. Rethinking the
extracted multi-scale features of general FPN, the top-down pathway FPN only introduces high-level
semantic information to low-level feature, while ignore the role of low-level feature for localization.
FPN still has room for improvement.

Another aspect for improvement of Mask R-CNN in multi-task learning is about the parallel isolated
branches of Mask R-CNN. The segmentation branch of Mask R-CNN is based on the output of
Region Proposal Network (RPN) in training stage, which ignores the inherently tie in those two tasks
and is inconsistent with testing processes. In common sense, instance segmentation is connected
detection based on the bounding box strictly, which is more meticulous than the bounding box.
However, the bounding box is easy to obtain than the masking label. It is worthy of trying to explore
and enhance the interrelations between object detection and instance segmentation.

1Code will be available soon.
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In this paper, we make a natural extension of Mask R-CNN architecture, merging the detection
branch and the instance segmentation branch into single branch. This smart framework contribu-
tion of our work named EJ-Head (Effective Joint Head), including three operations: “Interleav-
ing”,“Enriched Feature” and “Boundary Refinement”. EJ-Head promotes both two tasks consis-
tently and provides an example for improving multi-task learning.

In general, we improve two aspects in Mask R-CNN by proposing SA-FPN (Scale Aware Feature
Pyramid Networks) and EJ-Head (Effective Joint Head). Experimental results on the challenging
COCO benchmark show that when using our proposed modules, detection and instance segmenta-
tion performances are improved by about 1.6 and 1.4 percent AP increment in box AP and mask AP,
respectively.

The main contributions of our work highlighted as follows. (1) We propose SA-FPN (Scale Aware
Feature Pyramid Networks), which effectively integrates multi-scale complementary feature and
solves the problem of scale variation in an innovative way. (2) We slickly mix the mask branch and
detection branch into one branch and introduce EJ-Head (Effective Joint Head), which can reinforce
each task and also eliminate the gap between training and testing processes. (3) We propose a newly
enhanced Mask R-CNN, which provides a reference and is helpful for further research on multi-task
learning.

2 RELATED WORK

2.1 DEEP OBJECT DETECTORS

Deep learning based methods(Girshick et al. (2014), He et al. (2015b)) have tremendously pushed
forward the remarkable progress in object detection over a short period of time. Mainstream ob-
ject detection frameworks roughly fall into two categories. Two-stage methods like Faster R-
CNN(Girshick (2015)), R-FCN(Dai et al. (2016b)), Mask R-CNN(He et al. (2017)) generate a sparse
set of candidate proposals that contain all objects while filtering out the majority of negative loca-
tions in the first stage, and then classify the proposals into foreground classes or background in the
second stage. Single-stage approaches, such as SSD(Liu et al. (2016)),YOLO(Redmon & Farhadi
(2016)),RetinaNet(Lin et al. (2017b)) directly regress to predict the bounding boxes. Detection
frameworks with multiple stages like Cascade R-CNN(Dai et al. (2016a)) are also popular and bring
tremendous improvement for object detection.

2.2 SCALE VARIATION

Scale variation across object instances has been treated as one of the most knotty problem in modern
development of detection. To address this challenge, several approaches have been proposed. Image
pyramid is an intuitive way, SNIP (Singh & Davis (2018)) and SNIPER(Singh et al. (2018)) select
a specific scale for each resolution during multi-scale training. However, these methods suffer a lot
from the inevitable increase of inference time. Instead of taking multiple images as input, feature
pyramid method uses multi-level features of different layers. FPN(Lin et al. (2017a)) is the most
famous representative of this strategy. It takes the fused feature map with the highest resolution to
pool features and achieves superior performance. SSD(Liu et al. (2016)), DSSD(Fu et al. (2017))
and MS-CNN(Cai et al. (2016)) perform object detection at multiple layers for objects of different
scales. PANet(Liu et al. (2018)) boosts information flow in proposal-base instance segmentation
framework, enhances the entire feature hierarchy with accurate localization signals in lower layers
by bottom-up path augmentation, which shortens the information path between lower and top layers
feature.

2.3 INSTANCE SEGMENTATION

Instance segmentation is a task to predict class label and pixel-wise instance mask in an image.
There are mainly two streams of methods in instance segmentation, segmentation based methods
and detection based methods. The former are less commonly used nowadays. Segmentation based
methods like (Zhang et al. (2016)) first predict the labels of each pixel and then identify object
instances therefrom. However the performances of these methods are always unsatisfactory.
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Figure 1: Architectures of the original Mask R-CNN in (a) and our proposed model in (b). Obvi-
ously, our model is different from the original model by reformimg two modules. SA-FPN (Scale
Aware Feature Pyramid Networks) combines TD-FPN (Top-Down style FPN, as shown in green)
and BU-FPN (Bottom-Up style FPN, as shown in yellow) together. And EJ-Head (Effective Joint
Head) proposes three operations. “Enriched feature” represents enhencing the extracted RoI feature,
“Boundary Refinement” means adding additional convolutions on this pathway for optimization of
the boundary , “Interleaving” is an operation to filter the predicted bounding boxes which get a high
IoU (Intersection-over-Union) with ground truth and then feed positive samples into the instance
segmentation branch.

Detection based methods follow a similar diagram: get the region of each instance and then predict
the mask, showing a strong connection to object detection. Instance-FCN(Dai et al. (2016a)) pro-
poses instance-sensitive FCNs to generate the position-sensitive to obtain the final masks. FCIS(Li
et al. (2017)) takes position-sensitive maps with inside/outside scores to generate the instance seg-
mentation results, but exhibits systematic errors on overlapping instances and creates spurious edges.
MaskLab(Chen et al. (2018b)) produces instance-aware masks by combining semantic and direction
predictions. Cascade Mask R-CNN is a multi-stage object detection and instance segmentation
framework derived from Cascade R-CNN (Cai & Vasconcelos (2018)), which comprises multiple
stages where the output of each stage is fed into the next one for higher quality refinement. But this
multi-stage mechanism inevitably brings extra computation overhead of inference.

3 FRAMEWORK

In this section, we will describe our proposed new framework for object detection and instance
segmentation in details.

Overview. Based on Mask R-CNN, as shown in Figure 1, it is distinctive in two aspects: (1) It
aims to remedy the problem of scale variation by fusing Top-Down style FPN and Bottom-Up style
FPN into a novel neck module called SA-FPN. (2) It explores the interrelations between object
detection and instance segmentation, eliminating the gap between training and testing processes and
enhancing both two tasks.

Overall, these changes to the framework architecture effectively improve two tasks and also provides
a reference for further research on multi-task learning.
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(a) TD-FPN (b) BU-FPN (c) BUF-FPN 

Figure 2: Three different architectures of FPNs. (a) is the most widely used Top-Down style FPN,
which is used in the baseline model. (b) and (c) are two newly designed Bottom-Up style FPNs.
The main difference is that in (b) each layer of feature pyramid combines with only neighboring
shallower layer, while in (c) both neighboring shallower and deeper features are fused. So we call
(c) Bottom-Up-Fusion FPN (BUF-FPN). Details are shown in purple dotted boxes in (b) and in
orange dotted boxes in (c). Experiments in Table 3 show that BU-F FPN performs better. And when
we concatenate (a) and (c) together and add 1x1 convolutions to reduce dimensions, we propose
SA-FPN (Scale Aware FPN), as illustrated in Figure 1 (a).

3.1 SCALE AWARE FEATURE PYRAMID NETWORKS

Scale variation across object instances is one of the most challenging problems in object detection,
especially for very small or huge objects. Simply using multi-scale image pyramids has some im-
provement in accuracy but suffers a lot from increasing inference time. Feature pyramid is popular
to deal with this knotty problem, and Top-Down style FPN in (Lin et al. (2017a)) is the most widely
used feature pyramid structure.

As illustrated in Figure 2 (a), a general FPN is a Top-Down style structure that feeds the last output
of the backbone into the top of feature pyramid, and the information flow direction is from shallow
to deep in the backbone and from the top to bottom in feature pyramid. Up-sampling operation
and lateral connection fusion are applied step by step to get a larger feature until the bottom of the
pyramid. Thus, deep feature map with high semantic information and shallow feature map with
high resolution are combined. This greatly boosts the performance on small objects detection and
therefore improves the overall detection performance.

However, the top-down pathway of general FPN only introduces high-level semantic information to
low-level feature, but ignore the subsidiary role of low-level feature like edges and textures which
also are important for accurately localizing instances. Most of the improvements caused by Top-
Down FPN come from more accurate detection on small objects. Shallow features with high res-
olution contain useful low-level features. Different layers are of different resolutions, the fusion
operation between neighbor shallower or deeper feature is also important.

Following the discussion above, we design two new Bottom-Up style FPNs, as illustrated in Figure 2
(b) BU-FPN and (c) BUF-FPN. Experiments in Table 3 show that (c) BUF-FPN performs better. The
main difference between (b) and (c) is the feature integration operation, Details are shown in purple
dotted boxes in (b) and in orange dotted boxes in (c). In (b) each layer of feature pyramid combines
with only neighboring shallower layer, while in (c) both neighboring shallower and deeper layers.
So we use (c) BUF-FPN as the default Bottom-Up style FPN for further experiments.

BU-FPN takes every level output of the backbone as the input of the next step and applies down-
sampling and fusion operation step by step to build a feature pyramid from bottom to top. Letting
low-level information guide high-level semantic information, BU-FPN is especially better at accu-
rate detection of large objects.

When we combine TD-FPN (Top-Down FPN) and BUF-FPN (Bottom-Up-Fusion FPN) together, a
scale sensitive neck module called SA-FPN (Scale Aware FPN) is proposed. Experiments in Table 3
show that concatenating performs better than element-wise addition. Then we add 1x1 convolutions
to reduce dimensions. In line with expectations, SA-FPN absorbs the advantages of two style FPNs
and improves both detection and instance segmentation in different object scales.
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Figure 3: Detail of Boundary Refinement(BR) module in EJ-Head. There are two branches, one is
two stacked convolutions, the other is a shortcut. Finally two branches are added at the pixel level,
which brings the boundary alignment effect.

3.2 EFFECTIVE JOINT HEAD.

For multi-task learning, parallel execution of tasks is a common practice. However, instance seg-
mentation in Mask R-CNN is such a detection based method that relies heavily on detection. Thus,
the interaction between these two tasks is worth further exploring.

Firstly, we simply connect the segmentation branch behind the detection head in series when train-
ing, feeding the bounding box predictions of the detection into the mask head. As shown in Figure 1
(b), green dotted boxes “Interleaving” represents this execution. “Interleaving” is an operation to
filter predicted bounding box which have IoU(Intersection over Union) with ground truth boxes of
at least 0.5 and feed positive samples of mask into instance segmentation branch. In this way, the
segmentation branch can take advantage of the detection process, realizing the interaction between
two tasks. Moreover, the training and testing pipelines are highly consistent. And experiments in
Table 4 prove this operation indeed improved performance.

Merging heavy mask branch into box branch may slightly increase the burden of box branch. We
enlarge the extracted RoI features from 7 x 7 to 14 x 14, and name it “Enriched Feature” as shown
in blue dotted boxes in Figure 1 (b). The quality of RoI features is enhanced by the enlarged re-
ceptive field. Richer features further help enhance both the detection and instance segmentation.
Experiments in Table 4 show the effectiveness of our operation.

The whole flow of information goes through an unified path. Despite increased resolution, we can
add additional convolutions on this pathway to further boost localization especially for details and
edges of objects. As shown in Figure 3 the yellow dotted boxes “Boundary Refinement” means this
execution. Boundary Refinement module is a residual structure for boundary alignment. Experi-
ments in Table 5 show that “Boundary Refinement” is more superior than directly two stacked 3 x 3
simple convolutions together.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets Description. We perform all experiments on MS-COCO(Lin et al. (2014)), which is the
most representative and challenging dataset for object detection as well as instance segmentation.
Following COCO-2017 settings, we train our models on 2017train (115k images) and present ex-
perimental results on 2017val and 2017test-dev.

Evaluation Metrics. We report the standard COCO-style evaluation metric AP (averaged over IoU
thresholds) on two tasks, including AP50, AP75 (AP at different IoU thresholds) and APS , APM ,
APL (AP at different scales). Both box AP and mask AP are evaluated.

4.2 IMPLEMENTATION DETAILS

In all experiments, we use ResNet(He et al. (2015a)) as backbones. In experiments based on ResNet-
50, we use 8 NVIDIA TITAN Xp GPUs (2 images per GPU). To ensure the consistency of the overall
batch size for heavier backbone network ResNet-101, we utilize 16 GPUs (one image per GPU) in
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our experiments. The input shape of images are resized to 1333 and 800 for training and testing.
We train all models with PyTorch(Paszke et al. (2017)) and mmdetection(Chen et al. (2018a)). We
adopt different training strategies to save the training time. Specifically, unless noted, for ablation
studies, we train for 12 epochs with an initial learning rate of 0.02, and decrease it by 0.1 after 9
and 11 epochs. While for the models used to compare with state-of-the-art methods, we train for 20
epochs with the same learning rate, and decrease it by 0.1 after 16 and 19 epochs.

4.3 BENCHMARKING RESULTS

We compare our model with the state-of-the-art object detection and instance segmentation ap-
proaches on the COCO dataset. In Table 1, we can see that our method exhibits substantial im-
provements compared to the single task (i.e., object detection or instance segmentation) methods.
In particular, our model is 4.5% absolutely better than Faster R-CNN(Ren et al. (2015)) (with RoI
Align) in the criterion of box AP. Our method also outperforms FCIS(Li et al. (2017)) model by
3.0% in mask AP.

Table 1: Comparison with state-of-the-art methods on COCO test-dev dataset. Note that Our main
research is about single-stage methods. Note that ”Res101” means ResNet-101.

Method Backbone box AP AP50 AP75 mask AP AP50 AP75

Faster R-CNN Res101-FPN 38.0 58.7 40.6 - - -
FCIS Res101 - - - 29.2 49.5 -
FCIS+ Res101 - - - 33.6 54.5 -
MaskLab Res101 39.6 60.2 43.3 35.4 57.4 37.4
MaskLab+ Res101 41.9 62.6 46.0 37.3 59.8 39.6
Mask R-CNN Res101-FPN 40.9 62.3 44.3 37.0 59.1 39.4
PANet Res101-FPN 42.8 64.0 46.4 38.0 60.5 40.4
Ours Res101-FPN 42.5 64.0 46.1 38.4 60.6 40.9

We then conduct the comparisons with multi-task learning methods that jointly predict object bound-
ing boxes and segmentation masks. Notably, comparing with Mask R-CNN, our model reports 1.6%
and 1.4% gains in terms of box AP and mask AP, respectively. Obviously, our model performs better
than MaskLab+(Chen et al. (2018b)). Compared with PANet(Liu et al. (2018)) which is the state-
of-the-art single-stage based method, our model performs even a little better. Although the proposed
model performs slightly worse than Cascaded Mask R-CNN, the multi-stage method consumes more
computing resources and time.

4.4 ABLATION STUDY

Component-wise Analysis. To evaluate the effectiveness and generalization ability of two main
components (i.e., SA-FPN and or EJ-Head), we conduct comparative experiments on different back-
bones and methods. From Table 2, we can see that the SA-FPN module improves the box AP and
mask AP by 0.6% and 0.5% respectively, compared to the Mask R-CNN methods based on ResNet-
50-FPN backbone. Accordingly, the EJ-Head contributes to 1.0% and 0.7% improvement under the
same settings. The combination of SA-FPN and EJ-Head modules brings significant improvements
by 1.7% and 1.4% respectively, demonstrating that these two modules work in a complementary
manner. Besides, consistent improvement is achieved based on the ResNet-101 backbone. It is also
worthy to note that the proposed SA-FPN and EJ-Head modules also provide considerable improve-
ments for multi-stage method like Cascaded Mask R-CNN, showing that our method can serve as
plugin units for existing methods.

SA-FPN Design. In this paper, SA-FPN module is proposed to address the problem of scale varia-
tion. As shown in Table 3, TD-FPN performs better for small objects while BU-FPN and BUF-FPN
are better for large objects. BUF-FPN fuses neighboring feature of both higher and lower level
performs better than BU-FPN which only exploits neighboring feature from lower layer. And con-
catenating performs better then element-wise addition, so we add 1x1 convolutions to reduce dimen-
sions. This demonstrating the bi-directional fusion manner obtains better feature representation in
Bottom-Up style FPN. Our SA-FPN module conbines Top-Down style FPN (TD-FPN) and Buttom-
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Table 2: Effects of each component in our design. Results are reported on COCO 2017val. Note
that ”Res50” means ResNet-50, ”Res101” means ResNet-101.

Model Backbone box AP mask AP
Mask R-CNN (Baseline) Res50-FPN 37.2 34.1
Mask R-CNN + SA-FPN Res50-FPN 37.8 34.6
Mask R-CNN + EJ-Head Res50-FPN 38.2 34.8
Mask R-CNN + SA-FPN + EJ-Head (Ours) Res50-FPN 38.9 35.5
Mask R-CNN Res101-FPN 39.4 35.9
Mask R-CNN + SA-FPN + EJ-Head (Ours) Res101-FPN 41.0 37.3
Cascade Mask R-CNN Res50-FPN 41.3 35.7
Cascade Mask R-CNN + SA-FPN + EJ-Head Res50-FPN 42.8 36.9

Up style FPN (BUF-FPN) and obtains 0.7% and 0.6% improvements respectively, indicating that
the combination facilitates the handling of objects with varied scales.

Table 3: Ablation study of FPN designs on COCO 2017val. BU-FPN (shown in Figure 2 (b)) means
using the fusion operation in Bottom-Up style FPN to compensate shallow feature by fusing only
shallower neighboring feature. While BUF-FPN (shown in Figure 2 (c)) fuse both higher and lower
level neighboring feature. APS , APM , APL means AP at small, middle and large scales. Note that
in the following discussion, we treat BUF-FPN as the default Buttom-Up style FPN.

FPN design box AP APS APM APL mask AP APS APM APL

TD-FPN 37.2 33.8 56.7 65.0 34.1 28.0 52.4 62.8
BU-FPN 34.6 30.0 53.0 65.2 31.8 24.8 49.0 63.0
BUF-FPN 36.8 32.0 55.9 66.1 33.7 26.6 50.9 63.9
TD-FPN add BUF-FPN 37.0 32.8 56.3 65.2 33.9 27.1 51.3 63.0
SA-FPN 37.9 34.5 57.4 65.6 34.8 29.4 52.7 63.3

EJ-Head Design. Next we investigate the effect of key ingredients of EJ-Head including “Enriched
feature”, “Boundary Refinement” and “Interleaving”. As shown in Table 4, each component per-
forms better than the Mask R-CNN. In particular, “Boundary Refinement” module brings the most
significant improvement over baseline model by 0.6% for box AP, indicating that the quality of RoI
is enhanced by the enlarged receptive field. In addition, “Interleaving” with “Enriched Feature”
exhibits the superior improvements over 0.6% for mask AP, which verifies the effectiveness of the
proposed modules. Overall, EJ-Head achieves 1.1% and 0.7% on box AP and mask AP, respectively.

In Table 5 we study the various designs of “Boundary Refinement” module in EJ-Head. The pro-
posed Boundary Refinement module performs better than directly stacked convolutions. The resid-
ual structure plays an important role for boundary alignment. Stacked convolutions also have a little
bit boost, but not very obvious as Boundary Refinement. When stacked more convolutions, it even
will harm the performance of mask prediction.

Table 4: Ablation study of EJ-Head on COCO 2017val. The original Mask R-CNN uses none of
three operations as shown in the first row in the table. Note that ”Int” means ”Interleaving”, ”EF”
means ”Enriched Feature”, ”BR” means ”Boundary Refinement”.

Method Int EF BR box AP mask AP
Mask R-CNN(Baseline) 37.2 34.1
Mask R-CNN X 37.2 34.5
Mask R-CNN X 37.6 34.4
Mask R-CNN X 37.8 34.2
Mask R-CNN X X 37.7 34.7
Mask R-CNN + EJ-Head X X X 38.3 34.8

Qualitative results of multi-task learning results are illustrated in Figure 4. These results are based
on ResNet-101-FPN, achieving a box AP of 42.5 and mask AP of 38.4. Masks are shown in color,
bounding boxes and categories are also shown. It can be clearly seen that people and cars of different
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Table 5: Ablation study of the design of “Boundary Refinement” on COCO-2017val. “Simple
Conv” means using common 3 x 3 stacked convolutions. “2 x Simple Conv + Shortcut” is shown in
Figure 3.

Boundary Refinement (BR) box AP mask AP
None 37.2 34.1
1 x Simple Conv 37.4 34.1
2 x Simple Conv 37.6 34.1
3 x Simple Conv 37.6 34.0
2 x Simple Conv + Shortcut 37.8 34.2

Figure 4: Examples of multi-task learning results on COCO 2017test-dev. Predicted detection re-
sults are shown in yellow bounding boxes, masks are also shown.

scales achieve accurate detection and robust instance segmentation, which shows the effectiveness
of our methods. Moreover, in real-world scenarios such as autonomous driving, video surveillance
and even in the wild, small objects are well parsed and sensed, and large objects have clear contour
boundaries and detailed information.

5 CONCLUSIONS AND FUTURE WORK

In this paper we improve Mask R-CNN by proposing SA-FPN and EJ-Head for multi-task learning.
This framework progressively integrates complementary multi-scale features in SA-FPN and en-
hances both detection and instance segmentation tasks with EJ-Head. It shows an innovative way to
remedy scale variation issue, and also interweaves detection and segmentation branches for multi-
task learning. Without bells and whistles, our overall system obtains remarkable improvements
on COCO test-set, achieving 42.5 box AP and 38.4 mask AP. We hope our simple and effective
approach will serve as a new baseline and contribute to both object detection and instance segmen-
tation.
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