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Abstract

Natural language communication is a key mechanism for
coordination in human–robot collaboration under partial
observability, where agents possess only local views of the
environment. While prior work often assumes fully reli-
able or unconstrained message channels, real-world set-
tings impose delivery uncertainty and range limitations
that complicate when and how agents should communi-
cate. We present Communicative PARTNR, an extension
of the PARTNR benchmark that introduces a range-limited
channel and four levels of system feedback information:
Opaque (no confirmation), Binary (success/failure), Causal
(failure reason), and Traceable (failure reason with part-
ner state). Using LLM-based embodied agents in decen-
tralized household tasks, we find that minimal and un-
clear feedback (Opaque) yields higher task success and
completion rates than richer alternatives, despite generat-
ing fewer and shorter dialogues. Analysis reveal that ex-
cessive detail can divert agent reasoning from task execu-
tion, whereas concise system feedback maintain focus and
coordination efficiency. These results underscore the im-
portance of designing dialogue strategies and context rep-
resentations that enable agents to exploit communication
outcome information effectively without incurring unneces-
sary cognitive or temporal overhead. Code is available in
https://github.com/HoBeom/Communicative-PARTNR.

1. Introduction
In human-robot collaborative scenarios, each agent typi-
cally perceives only a slice of the world. For example, a
domestic robot may have camera views of one room while
the human partner is in another, so neither has the full pic-
ture. Such partial observability fundamentally complicates
coordination, as agents must act with incomplete informa-
tion. Humans address this in teamwork by communicating:
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they ask questions, share relevant observations, and explain
their intentions. Enabling robots to engage in similar free-
form natural language communication with humans is a tan-
talizing goal that promises more flexible and general collab-
oration. However, it also raises challenges in interpretation,
generation, and deciding what to communicate and when,
especially under uncertainty.

Recent benchmarks like PARTNR (Planning and Rea-
soning Tasks in humaN-Robot collaboration) [2] have be-
gun to target these issues. PARTNR is a large-scale suite of
simulated household tasks for a human and a robot agent,
specified in natural language. Tasks involve spatial and tem-
poral constraints and require dividing responsibilities be-
tween agents. Crucially, scenarios can be configured with
partial observability to test decentralized cooperation. Ini-
tial studies on PARTNR reveal that even powerful LLM-
based planners struggle at collaborative consistency: they
often exhibit poor coordination, failing to track the human
partner’s actions or to recover from errors. Human-in-the-
Loop evaluations further show that, despite achieving high
success rates in some settings, LLM agents contribute far
less to the shared workload than their human partners (e.g.,
only 16% task offloading for Human-ReAct vs. 50% ideal
balance) [2]. This imbalance forces humans to shoulder the
majority of the task execution, slowing overall progress and
highlighting the need for richer, well-timed communication
strategies that enable robots to take on a fairer share of col-
laborative work.

Communication is an obvious avenue to bridge this gap.
By exchanging information, a robot can overcome its lim-
ited viewpoint, and a human can better understand the
robot’s intentions. Yet, naive implementations of free-form
agent chat can be problematic. Unstructured dialogues be-
tween agents may become inefficient or even counterpro-
ductive, as irrelevant or misleading utterances (so-called
“meaningless chatter”) can lead to confusion or cascading
hallucinations [12]. Indeed, recent multi-agent studies have
noted that unrestricted LLM agents conversing without con-
straints or protocols can veer off track. The challenge, then,
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Figure 1. Non-communicative vs. Communicative Human–Robot Collaboration under Partial Observability. Communicative coordination
mitigates conditional deadlock in partially observable human–robot collaboration. In the non-communicative setting (left), both agents
wait indefinitely due to mutually dependent goals, leading to deadlock. In the communicative setting (right), a brief utterance establishes
common ground and task order, enabling completion of the shared objective. (Illustration generated using AI tools)

is to harness the expressiveness of natural language while
maintaining grounding and relevance in communication.

In this work, we tackle the problem of natural language
communication for human-robot collaboration under partial
observability. We introduce Communicative PARTNR, an
extension of the PARTNR framework where the robot is en-
dowed with conversational abilities, and we systematically
study how different system feedback policies influence col-
laboration. We consider four modes that vary in delivery
transparency: Opaque (no confirmation of delivery), Binary
(success/failure only), Causal (failure reason provided), and
Traceable (failure reason plus partner state). This design al-
lows us to isolate the impact of feedback granularity on co-
ordination performance, highlighting that more informative
feedback does not necessarily lead to better outcomes under
spatial and perceptual constraints.

2. Related Work
Multi-agent Coordination under Partial Observability.
Coordinating agents with incomplete information is a cen-
tral challenge in cooperative AI. Decentralized partially ob-
servable Markov decision processes (Dec-POMDPs) for-
malize this setting and highlight its intractability [1]. Recent
work has shifted toward realistic multi-agent benchmarks
that explicitly evaluate coordination under uncertainty. The
PARTNR benchmark [2] is one such example, featuring hu-
man–robot household tasks where agents operate in sepa-
rate rooms with only local observations. These tasks can
be configured in centralized settings, where a single high-
level planner controls both agents and has access to their
combined state, or decentralized settings, where each agent
independently plans from its own partial view and must rea-
son about the partner’s behavior. This distinction captures
the coordination overhead introduced by limited observabil-

ity. Building on this line of work, EMOS [3] addresses het-
erogeneous robot collaboration by introducing a centralized
discussion phase in which all robots exchange high-level
action intents to build a joint plan. Once the plan is es-
tablished, each robot switches to a decentralized execution
phase, performing only its assigned subtasks. This structure
improves interoperability across heterogeneous agents and
reduces the need for continuous message exchange during
execution, while still benefiting from global plan alignment
achieved in the initial discussion.

LLM Agents in Dialogue. The emergence of large lan-
guage models has led to growing interest in using them
as decision-making and communication modules for mul-
tiple agents. CAMEL [6] demonstrated that two or more
LLM agents can be assigned complementary roles and
achieve shared goals by engaging in goal-directed natural
language dialogue, enabling dynamic plan alignment, adap-
tation to changes, and transparent reasoning. MetaGPT [4]
extended this paradigm to software engineering by coordi-
nating specialized LLM agents (e.g., product manager, en-
gineer, tester) that collaborate through structured conversa-
tion to deliver complete projects. Beyond small teams, Gen-
erative Agents [9] modeled an interactive town of 25 LLM-
powered characters whose conversations and collaborations
produced emergent social behaviors resembling real-world
dynamics. Collectively, these works illustrate the potential
of natural language as a unifying medium for cooperation,
enabling multi-agent systems to develop emergent strate-
gies and maintain interpretable reasoning processes across
a range of collaborative scenarios.

Natural Language in Embodied Collaboration. On
the human–robot collaboration front, CoELA (Cooperative
Embodied Language Agent) [13] provides a notable exam-
ple of an LLM-driven partner. It places a human and a



robot in a simulated home with an always-available chat
channel, enabling tasks like Communicative Watch-And-
Help and TDW-MAT. In this fully connected setting, the
robot agent frequently communicates its status and inten-
tions; however, unfettered dialog can become inefficient.
Users observed that the CoELA agent sometimes produced
verbose status reports or planning monologues that did not
directly help the human partner. To address such issues,
recent works propose more structured communication. Co-
operative Plan Optimization (CaPo) [8] inserts a dedicated
multi-turn planning phase before execution: all agents col-
laboratively formulate a high-level meta-plan through dis-
cussion, with one agent proposing the plan and others pro-
viding feedback, until consensus is reached. Another ap-
proach, REVECA [11], leverages a relevance-filtered LLM
architecture with adaptive planning and trajectory valida-
tion to keep conversations focused and avoid false assump-
tions. Both CaPo and REVECA demonstrate that constrain-
ing and guiding dialogue can boost efficiency, but they still
assume an ideal communication channel where agents can
message each other freely at any time. In fact, these meth-
ods allow an almost oracle-like exchange of information
(e.g. continuously sharing each agent’s location, action his-
tory, and state), which can lead to significant communica-
tion overhead [7]. In contrast to prior work, we investigate
human–robot collaboration in a more realistic setting char-
acterized by partial communication and asymmetric action
capabilities. Unlike fully connected benchmarks, our envi-
ronment constrains message exchange to situations where
the partners are physically close enough for the signal to
be received, and the household robot is unable to perform
certain operations that require human intervention. These
constraints make both the timing and the content of com-
munication critical for maintaining coordination.

3. Communicative PARTNR Benchmark

3.1. Problem Setting

We consider a collaborative household task environment
where a human and a robot work together to achieve a com-
mon goal. The tasks are drawn from the PARTNR bench-
mark, which consists of realistic home activities (e.g., “Help
me move the plant from the bedroom to the living room.”)
designed to evaluate human-robot coordination in simulated
multi-room houses. The environment is simulated in Habi-
tat [10] and populated with the Habitat Synthetic Scenes
Dataset (HSSD) [5] of household objects. Each agent per-
ceives only a limited egocentric view and cannot directly
access the partner’s observations. The robot lacks spe-
cific abilities such as cleaning, turning appliances on or off,
and pouring liquids, and must request the human’s assis-
tance when these actions are required. Communication is
proximity-limited so that spoken messages are only deliv-

Figure 2. Overview of the Communicative PARTNR architecture.
Two embodied LLM agents operate under partial observability,
each maintaining an independent world graph and high-level ac-
tion planning. The human agent possesses three additional capa-
bilities: Clean, Turn On/Off, and Pour, in addition to navigation
and manipulation primitives. A partial message channel enables
natural language exchange within range, with four system feed-
back modes (Opaque, Binary, Causal, Traceable) shaping coordi-
nation strategies.

ered if the listener is within range. This combination of per-
ceptual and communicative constraints necessitates careful
coordination strategies to ensure all task goals are com-
pleted efficiently.

We model the collaborative task as a decentralized plan-
ning problem with optional communication. At each plan-
ning step, the human and robot each receive their own ob-
servation (e.g., detected object list, delivered messages) and
then choose a high-level action. Human actions include
high-level instructions (e.g., clean, turn on, pour), while
the robot’s actions consist of navigation and manipulation
primitives (e.g., move, pick, place, open/close). In addi-
tion, both agents can invoke a communicate action to send
a natural language message to the other. There is no cen-
tral controller; instead, the human and robot plan their ac-
tions based on their individual observations and the shared
dialogue history. The objective is to fulfill all goal condi-
tions of the task collaboratively. We evaluate our approach
on tasks from PARTNR’s validation set, which comprises
12 house scenes containing varied objects and a total of
1,000 task instructions. This setup enables us to analyze
whether adding a communication channel helps resolve co-
ordination failures (such as action timing conflicts or “race
conditions”) observed in prior non-communicative configu-
rations.



3.2. LLM-based Embodied Agent
The embodied agent is controlled by a Large Language
Model (LLM) that maps dialogue and the perceptual
context represented by the World Graph into actions. At
each decision point, the LLM receives a structured textual
description containing the agent’s task instructions, avail-
able high-level actions, memory context of past actions,
and current observations. Based on this input, the LLM
generates an output that is parsed into either a physical
action command or a communication act. Our design
follows a ReAct-style approach, in which the LLM prompt
maintains a chain-of-thought and action history from
previous steps. In practice, the prompt-based agent simply
incorporates all prior “think–act–observation” traces as
contextual information for the next reasoning cycle. Any
message from the partner agent is appended to the observa-
tion description. For example, if the human agent invokes
the command SendMessageTool[Please bring
the backpack to the bedroom and place
it on the bed], the robot agent’s observation text
will include a corresponding line such as Message from
Agent 2: "Please bring the backpack to
the bedroom and place it on the bed".

We employ the Llama-3.3 model with 70B parameters
as the agent controller, selected for its strong reasoning ca-
pabilities. Preliminary experiments indicated that it out-
performed smaller variants as well as the previously used
Llama-3.1 model on PARTNR tasks, both of which were
evaluated for comparison. A central component of the agent
is the system prompt, a fixed prefix to the LLM input that
can enforce a specific communication style or strategy. By
modifying the system prompt, the robot’s communication
mode can be altered (e.g., verbose versus succinct, inquiry-
first versus act-first). In this study, however, the system
prompt is kept consistent and neutral across all experiments
to isolate the effects of external system feedback rather than
relying on handcrafted dialogue policies.

To enable explicit communication between agents, we
extend the Habitat action API with a SendMessage
tool. This tool allows the LLM planner to pro-
duce a natural language utterance as an explicit ac-
tion, with the content enclosed in square brackets (e.g.,
SendMessageTool[Message content]). By in-
cluding this tool in the LLM’s action space, the agent can
decide at any timestep whether to execute a physical op-
eration or send a message, thereby facilitating natural co-
ordination with the human partner. All other available ac-
tions follow those in the original PARTNR benchmark (e.g.,
Navigate, Explore, Open, Rearrange). The simu-
lated human agent is also implemented as an LLM-based
agent, with a distinct prompt reflecting human capabilities
and perspective, following prior work [13]. This human
proxy executes high-level instructions and engages in dia-

logue, enabling controlled and repeatable experiments. As
future work, we plan to replace this simulated human with
real participants for further validation.

3.3. System Feedback Strategies
In realistic scenarios, message delivery is not guaranteed;
for instance, the human partner may be too far away or lo-
cated in a different room. To examine the role of communi-
cation transparency, we introduce system feedback modes
that vary the information provided to the robot regarding
the delivery status of its sent messages. Specifically, after
the robot uses the SendMessage action, the environment
returns a feedback message indicating delivery success or
failure, with the level of detail determined by the feedback
mode. We consider four levels:
• Opaque: The robot receives no confirmation of deliv-

ery. The system returns a vague acknowledgement (e.g.,
“Message sent. Delivery status unknown.”), forcing the
robot to proceed under uncertainty. This represents a
highly lossy channel where confirmation is entirely ab-
sent.

• Binary: The robot is informed only whether the message
was successfully delivered (e.g., “Message delivered.” /
“Message failed.”). No explanation for failure is given,
requiring the robot to infer potential causes and adapt
without explicit guidance.

• Causal: In addition to success/failure, the robot receives
a brief reason for failure. For example, “Message failed
(partner not in the same room or beyond 7.0m range).”
Such contextual information allows the robot to take cor-
rective action, such as moving closer before retrying com-
munication.

• Traceable: The robot receives the delivery status, the
failure reason, and additional partner state information.
For example, “Message failed (not in range). Partner is
in ‘hallway1‘, approximately 8.3m away.” This richest
mode enables highly targeted adjustments, such as nav-
igating directly to the partner’s location to re-establish
communication.

The only difference between these modes is the informa-
tiveness of the feedback message; the LLM’s base planning
prompt and policy remain unchanged. The robot is not ex-
plicitly instructed on how to respond to communication un-
certainty, allowing us to observe emergent adaptation strate-
gies under varying levels of feedback transparency.

4. Experiments and Results

4.1. Evaluation Metrics.
We assess performance across four complementary metrics:

(1) Success Rate – the percentage of episodes in which
all task goals were achieved within the step limit (20,000
simulator steps). A task is considered successful only if all



Model System
Feedback

Sim
Steps↓

Success
Rate↑

Completion
Rate↑

Planning
Cycles↓

Comm.
Rate

Dialogue
Length

Llama3.1

W/O Message 3295.20 0.762 0.873 R13.80 / H15.42 - -
Opaque 3330.98 0.787 0.890 R14.83 / H15.41 65.6% 2.06±1.35
Binary 3365.32 0.774 0.875 R14.80 / H15.65 64.8% 2.11±1.37
Causal 3292.37 0.769 0.880 R22.21 / H15.23 63.1% 2.57±1.62
Traceable 3360.74 0.775 0.881 R36.94 / H15.03 65.5% 2.65±1.74

Llama3.3

W/O Message 3159.14 0.766 0.875 R12.80 / H13.64 - -
Opaque 3085.18 0.786 0.886 R13.67 / H13.62 56.2% 1.74±1.17
Binary 3072.99 0.776 0.878 R13.67 / H13.63 54.5% 1.82±1.26
Causal 3112.98 0.785 0.887 R16.13 / H13.84 54.2% 2.06±1.81
Traceable 3064.87 0.777 0.881 R13.77 / H13.87 55.8% 2.23±1.68

Table 1. Performance on Communicative PARTNR Validation Set. Opaque feedback achieved the highest success rates for both models,
despite yielding shorter dialogues than richer modes such as Causal or Traceable. Providing more detailed feedback increased dialogue
length but did not improve success, suggesting that excessive information can reduce task efficiency under partial observability. Commu-
nication rates remained stable within each model due to identical system prompts, with Llama3.1 generally initiating dialogue more often
than Llama3.3.

specified goal conditions are met.
(2) Completion Rate – the fraction of sub-goals com-

pleted, averaged across episodes. For example, if a task
contains four sub-goals and three are completed, the com-
pletion rate is 75%. This metric captures partial progress in
cases where the full task is not completed.

(3) Communication Rate – the proportion of episodes
in which the SendMessage action was used at least once.
This reflects the frequency with which the agents resort to
explicit communication.

(4) Dialogue Length – the average number of utterances
exchanged in episodes where communication occurs, mea-
suring the volume of message exchange. These metrics col-
lectively capture both task performance (success and com-
pletion rates) and communication behavior (frequency and
length), enabling analysis of how different feedback modes
influence coordination effectiveness.

4.2. Overall Evaluation Results
Table 1 summarizes the performance of Llama3.1-70B
and Llama3.3-70B agents across the four proposed feed-
back strategies and the no-communication baseline. Across
both models, the Opaque feedback condition consistently
achieved the highest task success and completion rates,
outperforming richer feedback modes such as Causal and
Traceable. For Llama3.3-70B, Opaque reached a success
rate of 0.786 and a completion rate of 0.886, represent-
ing approximately 2% absolute improvement over the no-
message baseline.

Richer feedback modes, particularly Traceable, tended
to produce longer dialogues, with the highest average ut-
terance count observed at 2.65 for Llama3.1 and 2.23 for
Llama3.3 per communicated episode. Providing partner
state information appears to encourage agents to commu-

nicate more frequently. However, increased dialogue vol-
ume did not correspond to higher task success. Both Causal
and Traceable modes underperformed the Opaque baseline
in success rate despite showing similar or slightly higher
completion rates. This suggests that the current ReAct-style
LLM agent does not integrate detailed partner information
effectively into task planning and may prioritize message
delivery over ongoing task execution.

Communication frequency remained relatively stable
within each model across feedback modes, with Llama3.3
maintaining approximately 54–56% of episodes involving
communication. This stability is likely due to the identical
system prompt used in all experimental conditions, meaning
that variations in feedback richness alone did not signifi-
cantly affect the decision to initiate dialogue. The main dif-
ference between models was that Llama3.1 initiated com-
munication in up to 65% of episodes, while Llama3.3 did so
roughly 10 percentage points less often, a difference likely
arising from inherent reasoning and action-selection ten-
dencies.

The most notable variation across feedback modes
was in dialogue length. Minimal-feedback modes such
as Opaque and Binary produced shorter conversations,
whereas richer modes such as Causal and Traceable re-
sulted in longer and more variable exchanges. Both mod-
els showed similar variance patterns, suggesting that de-
tailed feedback systematically increases conversational en-
gagement.

Qualitative inspection further revealed distinct behav-
ioral tendencies. In the Opaque mode, agents tended to
focus on task completion and refrained from repeatedly at-
tempting message delivery, instead relying on environmen-
tal observations to adjust their plans. By contrast, in the
Traceable mode, agents often prioritized ensuring success-



Figure 3. ∆ Success Rate across Spatial, Temporal, and Heteroge-
neous tasks relative to the no-message baseline for each feedback
mode. Opaque feedback achieves the largest gains in Spatial and
Heterogeneous settings, while Traceable feedback yields the high-
est improvement in Temporal tasks.

ful message transmission, sometimes abandoning their on-
going task to navigate toward the partner when a delivery
failed. This shift in focus appeared to introduce inefficien-
cies and delayed task execution.

Overall, these results highlight a counterintuitive find-
ing: minimal but well-targeted feedback can yield more
robust collaboration under partial observability than ver-
bose, information-rich feedback. We hypothesize that ex-
cessive feedback increases the cognitive load on the LLM
agent, leading to inefficient communication patterns and
execution delays. This points to an important future di-
rection—designing prompt structures and reasoning mech-
anisms that allow embodied LLM agents to selectively ex-
ploit detailed feedback without compromising primary task
performance.

4.3. Scenario-wise Analysis
We adopt the four scenario types defined in the PARTNR
benchmark to enable a more fine-grained analysis of perfor-
mance differences across task characteristics. Constraint-
free tasks involve simple instructions without ordering or
dependency constraints (e.g., “Place a book, a lamp, and
a stuffed toy in the cabinet”). Spatial tasks include loca-
tion or arrangement constraints (e.g., “Place the books on
the shelf next to each other”). Temporal tasks require exe-
cuting sub-goals in a specific order (e.g., “Remove the can-
dles from the table before bringing the plates”). Hetero-
geneous tasks require combining distinct agent capabilities
(e.g., “Move the cushion from the bedroom to the living
room sofa, then dust off the cushion” where only human
agent can perform the dusting action). In the PARTNR val-
idation set, approximately 25% of episodes are Constraint-
free, 35% involve Spatial constraints, 26% involve Tem-
poral ordering, and 22% involve Heterogeneous capabili-

ties. The total exceeds 100% because some tasks exhibit
multiple characteristics simultaneously; for example, “First,
put the spatula next to the watch on a dining room chair.
Then, move them to the counter in the kitchen” combines
both spatial arrangement and temporal ordering. Since
Constraint-free tasks showed no meaningful improvement
with communication, our analysis focuses on the three com-
plex categories-Spatial, Temporal, and Heterogeneous-that
better reflect the long-horizon, coordination-intensive sce-
narios encountered in real-world settings.

In Spatial tasks, Opaque feedback achieved the highest
improvement over the no-message baseline, as shown in
Figure 3. Agents in the Opaque mode often completed all
rearrangements themselves without delegating to the part-
ner. In contrast, other modes exhibited a pattern where an
agent that had finished its sub-task sent a completion mes-
sage to the partner and then terminated. Because message
delivery in Opaque mode is uncertain, agents tended to con-
firm whether the partner was performing the task correctly
before ending their own execution. This mutual observation
enabled correction and alignment between agents.

For Temporal tasks, Traceable feedback provided the
most notable gains. This mode allowed an agent to infer the
partner’s ongoing action sequence from spatial cues such as
room location and distance, even when a message failed to
transmit. Such inference helped maintain correct step order-
ing in sequential tasks and resulted in more robust execution
under partial communication failures. However, we also ob-
served that when messages failed, some agents abandoned
their current task and waited to ensure message delivery.
This indicates that not only the content of communication
but also its timing and prioritization are crucial for main-
taining efficiency in temporally constrained scenarios.

In Heterogeneous tasks, Opaque feedback led to the
largest improvement, while richer modes such as Causal
and Traceable underperformed. These scenarios require
agents to identify tasks beyond their capabilities and rely
on the partner to execute them. In Causal and Traceable
modes, agents frequently focused on exchanging detailed
progress information, which sometimes caused confusion
in recognizing their own skill limitations. This tendency to
prioritize dialogue over execution reduced efficiency, espe-
cially when agents were assigned tasks beyond their own
capabilities.

4.4. Qualitative Analysis
We qualitatively examine representative episodes to better
understand the behavioral differences between agents oper-
ating with and without communication. Figure 4 illustrates
two such cases.

In the Without Message case, the robot agent completed
its part of the task while holding a laptop and terminated
prematurely. The human agent, unaware of the robot’s ter-



(a) With Out Message Channel (b) With Message Channel

Figure 4. Qualitative examples from C-PARTNR: (a) The robot prematurely terminates while holding a laptop, causing the human to
continue an unproductive search until timeout; (b) The human queries the terminated robot for object locations, receives completion
confirmation, and ends the task. Communication enables recovery from misjudged termination conditions, synchronization in sequential
tasks, and resolution of deadlock situations.

mination and unable to query its status, continued navigat-
ing in search of another laptop until the simulator’s step
limit was reached, resulting in a failure. In a real-world
setting, this situation would require the human to explicitly
issue new instructions to the robot. Without a communi-
cation channel, agents cannot recover from such misjudg-
ments of termination conditions. This issue was particularly
frequent in heterogeneous settings, where the robot misin-
terpreted its inability to perform an action (e.g., filling a cup
with water) as a valid completion and stopped, or entered
an infinite loop attempting unsupported actions (e.g., dust-
ing a cushion without a Clean skill). Similar deadlock
situations were also observed in spatial scenarios, where
agents holding objects waited indefinitely for the partner to
place down its object before proceeding. While a real hu-
man could choose to break the stalemate by placing down
their object first, the proxy human agent in simulation ex-
hibited the same blocking behavior as the robot, creating a
race condition that could not be resolved without explicit
communication.

In the With Message case, the robot agent had completed
its task and terminated, but the human agent was unsure
whether the overall task was finished. The human initiated
a dialogue to request the location of the target objects, to
which the robot responded with their placement informa-
tion, allowing the human to confirm completion and termi-
nate. This example highlights that communication not only
facilitates real-time cooperation but also enables agents to
verify termination conditions through dialogue. In tempo-
rally constrained scenarios, we observed a frequent pattern
where an agent would transmit a message upon completing
a prerequisite step, enabling the partner to synchronize and
proceed with the dependent step. However, in the Binary
feedback mode, failed message transmissions often led the
agent to repeatedly execute Wait actions before retrying
the message, whereas for other actions like Pick, the agent

leveraged system feedback (e.g., “object too far to pick”) to
plan corrective navigation. These findings underscore that
the design of prompt and context handling for communica-
tive agents must account for both the informational content
of feedback and its impact on interaction strategies.

5. Conclusion
We explored natural language communication as a means to
enhance human–robot collaboration under partial observ-
ability in a decentralized setting. Our study with Com-
municative PARTNR shows that dialogue serves three key
purposes. It enables an agent to influence and predict the
partner’s actions through explicit intention sharing. It re-
solves conditional deadlocks by allowing timely assistance
requests when task progress is blocked by interdependent
goals. It facilitates effective sharing of execution history
and task-relevant state, preventing misunderstandings and
inefficient action loops in temporally constrained tasks.

The results indicate that the effectiveness of communi-
cation depends not only on the amount of information ex-
changed but also on its timing, relevance, and integration
into the agent’s reasoning. Minimal messages, as observed
in the Opaque mode, can yield more robust collaboration
than verbose, information-rich exchanges. Future work
should focus on developing context engineering methods
for embodied LLM agents that can manage conversational
content, selectively incorporate partner feedback, and align
dialogue strategies with task demands without overloading
cognitive resources or disrupting task execution.
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