
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Towards Mixed Optimization for
Reinforcement Learning with Program Synthesis

Anonymous Authors1

Abstract

Deep reinforcement learning has led to many re-
cent breakthroughs, but the learnt policies are
often based on black-box neural networks, which
makes them difficult to interpret and to impose
desired specification constraints during learning.
We present an iterative framework, MORL, for
improving the learned policies using program syn-
thesis. Concretely, we propose to use synthesis
techniques to obtain a symbolic representation of
the learned policy, which can then be debugged
manually or automatically using program repair.
After the repair step, we use behavior cloning to
obtain the policy corresponding to the repaired
program, which is then further improved using
gradient descent. This process continues until the
learned policy satisfies desired constraints. We in-
stantiate MORL for the simple CartPole problem
and show that the programmatic representation
allows for high-level modifications that in turn
lead to improved learning of the policies.

1. Introduction
There have been many recent successes in using deep re-
inforcement learning (DRL) to solve challenging problems
such as learning to play Go and Atari games (Silver et al.,
2016; 2017; Mnih et al., 2015). While the effectiveness
of these reinforcement learning methods in these domains
has been impressive, some shortcomings for these learned
policies based on black-box deep neural networks are that
they are difficult to interpret and that it is challenging to
impose and validate certain desirable policy specifications,
such as worst-case guarantees or safety constraints. This
make it difficult to debug and improve these policies and
therefore hinders their use for safety-critical domains.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

There has been some recent work on using program synthe-
sis techniques to interpret learned policies using higher-level
programs (Verma et al., 2018) and decision trees (Bastani
et al., 2018). The key idea in PIRL (Verma et al., 2018)
is to first train a DRL policy using standard methods and
then use an imitation learning-like approach to search for a
program in a domain-specific language (DSL) that conforms
to the behavior traces sampled from the policy. Similarly,
VIPER (Bastani et al., 2018) uses imitiation learning (a mod-
ified form of the DAGGER algorithm (Ross et al., 2011)) to
extract a decision tree corresponding to the learned policy.
The main goal of these works is to extract a symbolic high-
level representation of the policy as a DSL program or a
decision tree that is more interpretable and also amenable
for program verification techniques.

We build upon these recent advances to propose an itera-
tive framework for learning interpretable and safe policies.
The main steps in the workflow of our framework are as
follows. We first start with an initial random policy π0. We
then use program synthesis techniques similar to PIRL and
VIPER to learn a symbolic representation of the learned
policy as a program P0. After obtaining a programmatic
representation of the policy, we then perform program re-
pair (Weimer et al., 2009; Jobstmann et al., 2005) to ob-
tain a repaired program P ′0 that satisfies some set of con-
straints. Note that the program repair step can be performed
either automatically using a safety specification constraint
or it can be performed manually by a human expert that
modifies P0 to remove undesirable behaviors (or add de-
sired behaviors). We then use behavioral cloning (Bratko
et al., 1995) to obtain the corresponding improved policy π′0,
which is then further improved using standard gradient de-
scent to obtain π1. This process of improving policies from
πt → Pt → P ′t → π′t → πt+1 is repeated iteratively until
achieving desirable performance and safety guarantees. We
name this iterative procedure a mixed optimization scheme
for reinforcement learning, or MORL.

As a first step towards a full realization of MORL, we
present a simple instantiation of our framework for the Cart-
Pole (Barto et al., 1983) problem, where we demonstrate
the efficacy of our approach to learn near-optimal policies,
while enabling the user to better interpret the learned policy.



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Towards Mixed Optimization for Reinforcement Learning with Program Synthesis

Figure 1. An overview of the proposed method. We decompose policy learning into alternating between policy optimization and program
repair. Starting from a black-box policy πt, we consider the following steps (1) Synthesis, which generates a program Pt corresponding
to the policy πt. The program is sampled from an underlying Domain Specific Language (DSL) D (2) Repair, which corresponds to
debugging the program ,which allows us to impose high-level constraints on the learned program. (3) Imitation corresponds to distilling
the program back into a reactive representation. (4) Policy Optimization in this case corresponds to gradient-based policy optimization.

In addition, we argue that the scheme has a natural interpre-
tation and can be readily extended to capture more notions
of policy improvement and discuss the potential benefits
and obstacles of using such an approach.

This paper makes the following key contributions:

• We propose a simple framework for iterative policy
refinement by performing repair at the level of pro-
grammatic representation of learned policies.

• We instantiate the framework for the CartPole problem
and show the effectiveness of performing modifications
in the symbolic representation of the learned policies.

2. Mixed Optimization for Reinforcement
Learning

Our goal is to improve policy learning by decomposing
the usual gradient-based optimization scheme into an it-
erative two-stage algorithm. In this context, we can view
improvement as either making the policies (1) safe – to
ensure performance under safety, (2) interpretable – allow-
ing some level of introspection into the policy’s decisions,
(3) sample efficient, or (4) alignment with priors. While
there are other notions of improvement, for the remainder
of the paper, we focus on sample efficiency as a notion of
policy improvement. We include a discussion of the other
approaches as they apply to our framework.

2.1. Problem Definition

Consider the typical Markov decision process (MDP) setup
(S,A,R, T , ρ0, γ), with a state space S, an action space
A, a reward function R, the transition dynamics of the
environment T , the initial starting state distribution ρ0, and
the discount factor γ. The goal will be to find a policy, or
function π : S → A, that achieves the maximum expected
reward. Normally, the reward design and specification for a
task T corresponds to defining the reward functionR(s, a),

such that an optimal policy π∗ solves the task.

An alternative view of solving the task could be defined as
having access to an oracle policy π or a fixed number of
trajectories from it. In this setting, our goal is learning a
policy by imitation learning, which would also equivalently
solve the task. In this work, we focus on improving policy
learning using imitation learning (Abbeel & Ng, 2004; Ho
& Ermon, 2016), though the framework is more general and
extends well to reinforcement learning.

We consider a symbolic representation D (such as a DSL)
that is expressive enough to represent different policies. The
synthesis problem can then be defined as learning a program
P ∈ D such that ∀s ∈ S : π(s) ≈ P (s), i.e. the learned
program P produces approximately the same output actions
as the actions produced by the policy π for all (or a sampled
set of) input states S.

2.2. Model

In MORL we maintain two representations of a policy:

• a reactive, black-box policy where we represent the
policy as a differentiable function, such as a neural net-
work, allowing us to use gradient-based optimization
methods like TRPO (Schulman et al., 2015) or PPO
(Schulman et al., 2017).
• a symbolic program, which represents the policy as

an interpretable program. The symbolic program rep-
resentations are amenable for analysis and transforma-
tions using automated program verification and repair
techniques, or human inspection.

With these intermediate representations, we are able to al-
ternate between the following; the first allows us to finetune
poicies in a function space, while the second allows us to
impose hard constraints or incorporate human debugging.
The general procedure (shown in Fig 1) consists of four key
steps as detailed below.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Towards Mixed Optimization for Reinforcement Learning with Program Synthesis

Figure 2. Evaluating the usefulness of maintaining differentiable,
and symbolic representations of the policy. Each plot corre-
sponds to finetuning a policy cloned from a program (in this
case decision trees) with TRPO (averaged over 5 runs). In this
case, Near-Optimal is obtained by manual debugging of the
Intermediate policy, which is obtained from Worst policy.

Synthesis: Given a task T, we consider a Domain Specific
Language D, such that there exists some program P ∈ D
that is a sufficient representation of the task. In the first
step of MORL, we seek to synthesize such a program that is
equivalent to the corresponding policy π. A programmatic
representation of the policy allows us to leverage approaches
such as program repair and verification to provide guaran-
tees for the underlying policy. For this step, and in the scope
of this paper, we assume that we can utilize existing pro-
gram synthesis methods such as VIPER or PIRL, so we do
not attempt to perform this step explicitly. We focus on the
following steps in the MORL scheme.

Repair: In this step, we modify the synthesized program
accordingly to satisfy constraints imposed either on D, or
on the synthesized program P . This step allows us to mean-
ingfully debug the policy, either through human-in-the-loop
verification for interpretability, or through automated pro-
gram repair techniques that involve defining Constraint Sat-
isfaction Problems (CSP) typically solved using SAT/SMT
solvers (Singh et al., 2013). For the scope of this paper,
we mimic the repair process by manually modifying the
initial program to obtain three programs that achieve three
different levels of success at the task of interest.

Imitation: Following the program synthesis and repair
steps, we then distill the program back into a reactive policy
using imitation learning. Given that we have access to an or-
acle P

′

t , we find that we reliably imitate the program (Ross
et al., 2011). Note that it is possible to stop the optimization
here. Indeed, we observe that a user may end the optimiza-

Figure 3. An important step in the algorithm is alternating between
symbolic and policy representations. Here we plot the convergence
rate of randomly initialized policies to the program behavior. In
this work, we used simple behavioral cloning to retrain the policies.
We note that more sample efficient algorithms would be able to
emulate the behavior from the program more quickly.

tion procedure here of MORL if a certain performance or
safety bound has been reached, and may skip the last step.

Policy Optimization Finally, we may finetune the policy
using gradient descent. We posit that by optimizing in both
program space and over the space of policies in a differen-
tiable space, we are able to better escape local minima while
still maintaining an underlying intuition for how the policy
is performing from the inspection of the program.

3. Experiments
We evaluate our framework on the CartPole-v0 problem in
the OpenAI Gym environment for discrete control (Brock-
man et al., 2016). We present a first simple instantiation
of the framework to showcase its usefulness compared to
direct reinforcement learning. In our preliminary evaluation,
we evaluate the following research questions:

• Does program repair lead to faster convergence?

• Does programmatic representation help humans pro-
vide better repair insights?

To this effect, we train an initial policy π0 (Worst) that
performs poorly, and then extract the corresponding sym-
bolic representation P0. For the symbolic representation, we
chose VIPER’s (Bastani et al., 2018) decision tree represen-
tation of the policy. We then modify the symbolic program
to get a new program P ′0, which performs better than the
original program by repairing certain values in the decision
tree. This is followed by behavioural cloning to obtain π′0



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Towards Mixed Optimization for Reinforcement Learning with Program Synthesis

Figure 4. Debugging Worst (red) to Intermediate (green).
In one step of debugging the policy, we fix the policy to make the
cart shift in the same direction as the pole.

(corresponding to P ′0), which is optimized to obtain π1.

To simulate the iterative optimization of the framework,
we perform two different modifications of the program
repair step to obtain P 1

0 (Intermediate) and P 2
0

(Near-optimal) that have different characteristics in
terms of repair improvements. For example, the modifi-
cation to obtain program P 1

0 from P0 is shown in Fig 4,
where we manually provide the insight of making the cart
shift in the same direction as the pole.

In our experiments, we first find the average perfor-
mance of each of the levels of policies across 25 runs.
The Worst policy gets an average reward of 9.28, the
Intermediate policy gets an average reward of 104.0,
and the Near-optimal policy gets an average reward of
200.0. When we attempt to distill the programs to continu-
ous policies π, we find that each of the resulting levels of
policies get 10.64, 66, and 185, respectively, as shown in
Figure 3 after 15000 epochs. Lastly, when we take the result-
ing distilled policies and then finetune these with TRPO, we
find that the resulting average rewards are 38.65, 79.03, and
and 176.8 after 25 episodes of training with 10 trajectories
of length 200. In Figure 2, we run TRPO for a total of 250
episodes to see the limiting behavior.

From our results, we validate our hypothesis that under bad
initialization (Worst), TRPO takes an order of magnitude
longer to converge to near-optimal policy, when compared
to policies initialized after program repair. We believe that
providing high-level insights programmatically can help
policies discover better or safer behaviors.

4. Related Work
Our framework is inspired from the recent works of
PIRL (Verma et al., 2018) and VIPER (Bastani et al., 2018)
in using program synthesis techniques to learn symbolic
interpretable representations of the learnt policies, and then
using program verification techniques to verify certain prop-

erties of the program.

PIRL first trains a DRL policy for a domain and then uses
an imitation learning like approach to generate specifica-
tions (input-output behaviors) for the synthesis problem. It
then uses a Bayesian optimization technique to search for
programs in a DSL that conforms to the specification. It
iteratively builds up new behaviors by executing the initial
policy as an oracle to obtain outputs for inputs that were not
originally sampled but are observed in executing the learnt
programs. It maintains a family of programs consistent with
the specification and chooses the one as output that achieves
the maximum reward on the task.

VIPER uses a modified form of the DAGGER initiation learn-
ing algorithm to extract a decision tree corresponding to the
learnt policy. It then uses program verification techniques
to validate correctness, stability, and robustness properties
of the extracted programs (represented as decision trees).

While previous approaches stop at learning a verifiable sym-
bolic representation of policies, our framework aims at it-
erative improvement of the policies. In particular, if the
extracted symbolic program does not satisfy certain desir-
able verification constraints, unlike previous approaches,
our framework allows for repairing the programs in the sym-
bolic space and then distilling the programs to policies for
further optimization.

5. Discussion and Future Work
We presented a preliminary instantiation of the MORL frame-
work showing the benefits of learning a symbolic represen-
tation of the policy. Namely, that by optimizing the policy
by iterating between two representations, we were able to
converge faster to near-optimal performance starting with a
poor initialization.

There are a number of assumptions we make in this paper
in order to instantiate our framework. While the MORL
framework is general enough to encapsulate many differ-
ent approaches of synthesis, repair, and imitation, we only
consider the simplest forms of these. For instance, we hand-
design the candidate repaired programs, and use a simple
supervised approach for imitation learning. Each of these
aspects could be significantly scaled up to be used for larger
programs and for more complicated tasks. While CartPole
was a simple sandbox for which we could test symbolic
programs, for more complicated tasks, automated program
repair and verification techniques would be more efficient.

Reward design and safety (Hadfield-Menell et al., 2017) is
another exciting research direction. Note that we can instead
use the reward function R as the program representation
for MORL; this would instead provide a procedure for more
interpretable or verifiable inverse reinforcement learning.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Towards Mixed Optimization for Reinforcement Learning with Program Synthesis

References
Abbeel, Pieter and Ng, Andrew Y. Apprenticeship learn-

ing via inverse reinforcement learning. In Proceedings
of the twenty-first international conference on Machine
learning, pp. 1. ACM, 2004.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuron-
like adaptive elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-13(5):834–846, Sept 1983. ISSN
0018-9472.

Bastani, Osbert, Pu, Yewen, and Solar-Lezama, Armando.
Verifiable reinforcement learning via policy extraction.
arXiv preprint arXiv:1805.08328, 2018.

Bratko, Ivan, Urbančič, Tanja, and Sammut, Claude. Be-
havioural cloning: phenomena, results and problems.
IFAC Proceedings Volumes, 28(21):143–149, 1995.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig,
Schneider, Jonas, Schulman, John, Tang, Jie, and
Zaremba, Wojciech. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Hadfield-Menell, Dylan, Milli, Smitha, Abbeel, Pieter, Rus-
sell, Stuart J, and Dragan, Anca. Inverse reward design.
In Advances in Neural Information Processing Systems,
pp. 6768–6777, 2017.

Ho, Jonathan and Ermon, Stefano. Generative adversarial
imitation learning. In Advances in Neural Information
Processing Systems, pp. 4565–4573, 2016.

Jobstmann, Barbara, Griesmayer, Andreas, and Bloem, Rod-
erick. Program repair as a game. In CAV, pp. 226–
238, Berlin, Heidelberg, 2005. Springer-Verlag. doi:
10.1007/11513988 23. URL http://dx.doi.org/
10.1007/11513988_23.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A., Veness, Joel, Bellemare, Marc G.,
Graves, Alex, Riedmiller, Martin A., Fidjeland, Andreas,
Ostrovski, Georg, Petersen, Stig, Beattie, Charles, Sadik,
Amir, Antonoglou, Ioannis, King, Helen, Kumaran, Dhar-
shan, Wierstra, Daan, Legg, Shane, and Hassabis, Demis.
Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529–533, 2015.

Ross, Stéphane, Gordon, Geoffrey, and Bagnell, Drew. A
reduction of imitation learning and structured prediction
to no-regret online learning. In AISTATS, pp. 627–635,
2011.

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan,
Michael, and Moritz, Philipp. Trust region policy opti-
mization. In International Conference on Machine Learn-
ing, pp. 1889–1897, 2015.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford,
Alec, and Klimov, Oleg. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Silver, David, Huang, Aja, Maddison, Chris J., Guez,
Arthur, Sifre, Laurent, van den Driessche, George, Schrit-
twieser, Julian, Antonoglou, Ioannis, Panneershelvam,
Vedavyas, Lanctot, Marc, Dieleman, Sander, Grewe, Do-
minik, Nham, John, Kalchbrenner, Nal, Sutskever, Ilya,
Lillicrap, Timothy P., Leach, Madeleine, Kavukcuoglu,
Koray, Graepel, Thore, and Hassabis, Demis. Mastering
the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Silver, David, Hubert, Thomas, Schrittwieser, Julian,
Antonoglou, Ioannis, Lai, Matthew, Guez, Arthur, Lanc-
tot, Marc, Sifre, Laurent, Kumaran, Dharshan, Graepel,
Thore, Lillicrap, Timothy P., Simonyan, Karen, and Has-
sabis, Demis. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. CoRR,
abs/1712.01815, 2017.

Singh, Rishabh, Gulwani, Sumit, and Solar-Lezama, Ar-
mando. Automated feedback generation for introductory
programming assignments. In PLDI, pp. 15–26, 2013.

Verma, Abhinav, Murali, Vijayaraghavan, Singh, Rishabh,
Kohli, Pushmeet, and Chaudhuri, Swarat. Programmati-
cally interpretable reinforcement learning. arXiv preprint
arXiv:1804.02477, 2018.

Weimer, Westley, Nguyen, ThanhVu, Le Goues, Claire,
and Forrest, Stephanie. Automatically finding patches
using genetic programming. In ICSE, pp. 364–374. IEEE
Computer Society, 2009.

http://dx.doi.org/10.1007/11513988_23
http://dx.doi.org/10.1007/11513988_23

