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Abstract
This paper presents a comprehensive approach for computing nontrivial equilibria
of autonomous Long Short-Term Memory neural networks using a homotopy
formulation. Through simulations, it is shown that the eigenvalues of the linearized
models around these nontrivial equilibria tend to move closer to the unit circle
as the complexity of the training data increases. This provides insights into the
dynamical properties of the LSTM neural networks.

1 Introduction
Since Long-Short Term Memory networks (LSTMs) were initially introduced in [1], there has been a
wealth of successful examples employing these types of networks for audio, written text and video
recognition (see, for example, [2] and references reported therein). While much of the effort has
been centered around improving training algorithms for LSTMs, there has been relatively little
work in trying to understand their dynamical properties and behaviors. In particular, it has been
well recognized that it is not uncommon for the trained neural networks to operate at the edge of
chaos [3, 4]. Recently, it has been shown in [5] that the edge of chaos can be characterized by the
stability region for the linearized model of the autonomous LSTM model with an equilibrium at
zero. Motivated by this work, we use a linear path-following homotopy [6] to compute non-trivial
equilibria of the autonomous LSTM and the corresponding linearized models.

Through simulations, as reported for the zero equilibrium in [5] and as performed for non-trivial
equilibria in the same way (not provided in this paper due to the space limitation), we observed that
the edge of chaos for the nonlinear LSTMs is accurately characterized by the eigenvalues’ proximity
to the boundary of stability (that is, the unit circle). In order to provide this characterization, we
computed and analyzed the eigenvalues of the linearized model of a single layer LSTM neural
network, trained on three benchmark tasks: handwritten digit recognition, text generation, and
polyphonic music generation. For the image classification, we use the MNIST data set [7] which
has only ten classes. Then, the Penn Tree Bank (PTB) data set, which is more rich and has many
more classes, is used for the text generation task. The result is that, compared to the MNIST data set,
the eigenvalues are pushed even further toward the unit circle. Finally, we use the Nottingham data
set [8] for the music generation task, which also corroborates our claim that increasing the number
and the complexity of training signals, particularly from different classes, causes the eigenvalues to
approach the unit circle, effectively causing the trained network to operate at the edge of stability,
that is, chaos.

We hope that these initial results and observations make LSTMs more comprehensible and therefore
will open up new research avenues and the possibility for improved network design, training and
inference.

The paper is organized as follows. In Section 2, we provide the LSTM discrete-time dynamical model
and its basic properties. A homotopy formulation and how it is used to compute the LSTMs’ nonzero
equilibria, are provided in Section 3. Representative sets of simulations are presented in Section 4.
Finally, some concluding remarks are provided in Section 5.
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2 LSTM Model
In this paper, we are interested in studying the properties of the autonomous LSTM Neural Network
(NN), that is the standard LSTM model introduced by [1] without input vectors. Mathematically, the
model is written as the following vector difference equation:

c(k + 1) = σ (Wfh(k) + bf )� c(k) + σ (Wih(k) + bi)� tanh (Wgh(k) + bg) , (1)
h(k + 1) = σ (Woh(k) + bo)� tanh (c(k + 1)) ,

where h(·)T , c(·)T ∈ Rn are, respectively, the output and memory state vectors, � is the Hadamard
product, and σ(·) := 1

1+e−(·) is the standard logistic function. Wf,i,o,g ∈ Rn×n and bf,i,o,g ∈ Rn
are constant and represent the weights and biases of the neural network.
Studying the properties of autonomous LSTMs is of much interest because they are representative
of the intrinsic dynamical behavior of the general models with input and therefore exploring their
behavior may indicate why these systems perform well. In this paper, we study the behavior of
autonomous LSTMs with non-trivial equilibria. It is straightforward to see that for bg 6= 0 the
equilibria are not trivial and computing them is very hard given that the steady-state equations are
transcendental, yet the equilibria’s numerical values are needed to compute the linearized models.
Thus, in the following section, we introduce a path-following homotopy method to compute the
nonzero equilibria.
3 Homotopy Approach to Computing LSTM Nonzero Equilibria
The homotopy continuation method is a well-known technique to solve the problem of finding the
roots and fixed points of nonlinear functions. In topology, a homotopy between two continuous
functions F,G : Rn → Rm is defined as another continuous function H : [0, 1] × Rn → Rm
such that H(0, ·) ≡ G(·) and H(1, ·) ≡ F (·). Now, If x0 ∈ Rn is a known root of G, and H is
continuously differentiable then the homotopy method allows us to track the path x : [0, 1]→ Rn
that starts at x(0) = x0 and satisfies H(t, x(t)) ≡ 0 for all t ∈ [0, 1]. It is clear that, at t = 1,
H(1, x(1)) = F (x(1)) = 0, thus x(1) is a root of F . A more rigorous introduction can be found in
[6]. In this section, we explain, briefly, our procedure to find the equilibria of system (1). To this end,
we define a new linear homotopy map that allows us to compute the nontrivial equilibria for LSTMs
when bg 6= 0 by starting from the trivial solution when bg = 0. To start, consider the LSTM model
in equation (1) and let h(k) = q(k) + qc, where q(·) ∈ Rn is a new variable and qc ∈ Rn satisfies
Wgqc + bg = 0. The existence of such qc is guaranteed, if bg is in the span of columns of Wg , which
is a very mild requirement. Therefore, system (1) can be, equivalently, rewritten as:

x(k + 1) = F (x(k)) + xc, (2)
where x(k) := [c(k)T , q(k)T ]T and

F

([
c
q

])
=

(
F1(q, c)
F2(q, c)

)
=

(
σ(Wfq + b̄f )� c+ σ(Wiq + b̄i)� tanh(Wgq)

σ(Woq + b̄o)� tanh(F1(q, c))

)
such that, the new biases are defined as b̄j = bj +Wjqc, for j ∈ {f, i, o}. Note that the equilibria of
(2) are the roots of the map x→ x− F (x)− xc. Therefore, we define our homotopy map as:

H(t, x) := (1− t)(x− F (x)) + t(x− F (x)− xc)
= (x− F (x))− txc. (3)

such that the equilibria of (2) are the solutions, at t = 1, to H(t, x) = 0. Now, define

H−1ε := {(t, x) ∈ [0, 1]× Rn| H(t, x) = ε} (4)
as the set of all the solution curves to H(t, x) = ε, for some fixed ε ∈ Rn. Let these curves
be parameterized using a new independent variable θ ∈ R such that (t(θ), x(θ)) ∈ H−1ε for all
θ ∈ R. Since H ∈ C∞(Rn×n × [0, 1]), and moreover if we assume that the Jacobian matrix
H ′(t, x) := [∂H/∂x ∂H/∂t] is of full rank, that is rank(H ′(t, x)) ≥ n for all (t, x) ∈ H−1ε , then
the implicit function theorem ensures, thatH−1ε is composed solely of continuously differentiable
curves that are solutions to the following differential equation:

∂H(x(θ), t(θ))

∂x
.
dx(θ)

dθ
+
∂H(x(θ), t(θ))

∂t
.
dt(θ)

dθ
= 0 (5)

Therefore, the equilibrium point of system (2) is simply the solution, at t = 1 and for ε = 0, of the
differential equation (5) along with the initial condition (t(θ), x(θ)) = (0, 0). A singular case may
occur when the Jacobian matrix [∂H/∂x ∂H/∂t] is not of full rank yet Sard’s theorem ensures that
the set of singular values are of measure zero. Thus, there exists always an ε ∈ Rn, arbitrarily close
to the origin, such thatH−1ε is composed only by continuously differentiable curves that are solutions
to (5). Therefore, the homotopy method allows us to get arbitrarily close to any equilibria of (2).
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4 Simulations
In this section, we provide a number of simulations corresponding to nonzero equilibria analysis to
show how the behavior of the LSTMs are correlated with the location of the eigenvalues and how they
propagate during training depending on the number of training samples, classes, and tasks. The first
simulation is related to the training of the LSTM neural network to recognize handwritten digits from
MNIST database [7] and we observe that the eigenvalues, generally, move towards the unit circle
during training. However, they do not reach it, which we believe is a consequence of the training set
consisting of only 10 different labels/classes (that is, digits from 0 to 9). In the second experiment,
we use a more rich class of training signals; the Penn Tree Bank (PTB) data set [9] to train an LSTM
neural network, in the context of language modeling and word prediction. Results show that the
eigenvalues are pushed more closely toward the unit circle which confirms our proposition that the
more rich and complex the input data is, the more eigenvalues are pushed toward the unit circle. To
confirm this trend, we train an LSTM network, using the Nottingham data set [8], to predict melodies
and harmonics in the context of polyphonic music modeling.
Our general procedure is to train single-layer LSTMs on the data sets mentioned previously, where the
inputs are vectors of fixed size representing the pixel intensities for a given row in the context of image
recognition, words in the context of language modelling, and melodies/harmonics in the context
of music modeling. We perform a softmax operation on the output of the LSTM in order to get a
probability distribution. Then, the loss is defined to be the cross-entropy between the distribution and
the corresponding label/prediction in "one-hot" encoding format. Training is finally accomplished via
backpropagation through time (BPTT) with various batch sizes. Throughout the training, the weight
matrices and bias vectors are stored at constant intervals. Then, equilibria of the autonomous LSTMs,
constructed using each of these weights and biases, are computed using the homotopy method.

4.1 Equilibria of LSTM neural networks used for MNIST digit recognition
This first simulation set is used to demonstrate the dependence of the absolute value of eigenvalues
during training. A neural network configuration with the input layer consisting of 10 neurons, hidden
layer with 128 neurons and 10 output neurons has been chosen. The particular training task, as
mentioned earlier, is for the LSTM network to recognize handwritten digits from the MNIST data
set [7]. The inputs were vectors with fixed size representing the pixel intensities for a given row
in an image. To demonstrate how the eigenvalues propagate during training itself, we trained the
LSTM with a data set of 100 samples and stored the weights and biases every 200 gradient steps. The
corresponding eigenvalues are plotted in Fig. 1. The magnitude of the largest eigenvalues are shown
as a function of the training step in Fig. 1, where an increasing trend can be clearly observed. Fig. 1c
indicates that their maximum is ∼ 0.81, which can be explained by the small number of classes in
the data set. This result corresponds to the previous analysis.

(a) The eigenvalues at the equilib-
rium

(b) The value of the static h and c
of the equilibrium

(c) Dependence of the magnitude
of the maximum eigenvalue

Figure 1: Dependence of the (a) eigenvalues’ magnitudes, (b) equilibria and (c) maximum eigenvalues’
magnitude during the training with 100 handwritten images.

4.2 Equilibria of LSTM neural network used for language modeling
To show that the eigenvalues can be pushed further toward the unit circle, we use the Penn Tree Bank
(PTB) data set to train the LSTM to predict the next word given some previous words. This data set
has ∼ 10k words in its vocabulary, which is much larger than the number of classes in the previous
example. The configuration of the network and its training is done as explained above. The size of
the input, output, and cell vectors is 200. Fig. 2a shows how the largest eigenvalues propagate during
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(a) The 80 largest eigenvalues at equilibrium
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(b) The 7 largest eigenvalues at the equilibrium

Figure 2: Dependence of (a) the eigenvalues’ magnitude, (b) the maximum eigenvalues’ magnitude
during the training on PTB

training. It is clear that they are pushed toward the unit circle. Fig. 2b indicates, in fact, that two
eigenvalues have a magnitude of ∼ 0.99 (very close to the unit circle). Note that, because the real
part of these two eigenvalues was also ∼ 0.99, the convergence of the homotopy solver was very
slow. This is due to the fact that, in that case, ṫ(θ) in equation (5) was very close to zero which makes
t increase very slowly toward one.
4.3 Equilibria of LSTM neural network applied for polyphonic music generation
In this experiment, we use the Nottingham data set [8] to train a single layer LSTM neural network
in the same manner explained above. The input vectors are of dimension 68; the first half of the
input vector represents the basic musical notes (or the melodies) and the second part the chords (or
harmonics). The dimension of the output vector is 200. The results confirm that the eigenvalues
are pushed toward the unit circle during training. Fig 3a-b exhibits clearly this tendency. Fig 3c
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Figure 3: Dependence of (a) the eigenvalues’ magnitude, (b) the largest eigenvalues’ magnitude
during the training on Nottingham database (c) spectral radius vs maximum real part of eigenvalues
during the training

depicts that, although the spectral radius gets closer and crosses the unit circle, all real parts of the
corresponding eigenvalues are well smaller than 1, which implies that ṫ(θ) in equation (5) is non-zero,
and therefore, t can monotonically increase towards 1 without causing any numerical issues for the
homotopy. This has a consequence that the convergence of the homotopy solver was faster in this case
than in the previous simulation. Note that, it is the maximal eigenvalue magnitude that characterizes
the boundary of stability, which we stipulate does coincide with the edge of chaos, as shown for the
trivial equilibrium in [5].

5 Conclusion
A homotopy-based approach to compute equilibria of autonomous LSTM neural networks, is provided
in this paper. Through simulations, it has been shown how the locations of the eigenvalues of the
linearized models around the computed equilibria depend on the training sample sizes and tasks.
Some of our current research activities are focused on providing connections among the computation
of the weights and biases, complexity of the training data, and the location of the equilibria.
Acknowledgments
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