
Under review as a conference paper at ICLR 2019

SAMPLE-EFFICIENT POLICY LEARNING IN MULTI-
AGENT REINFORCEMENT LEARNING VIA META-
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

To gain high rewards in muti-agent scenes, it is sometimes necessary to understand
other agents and make corresponding optimal decisions. We can solve these tasks
by first building models for other agents and then finding the optimal policy with
these models. To get an accurate model, many observations are needed and this
can be sample-inefficient. What’s more, the learned model and policy can overfit
to current agents and cannot generalize if the other agents are replaced by new
agents. In many practical situations, each agent we face can be considered as a
sample from a population with a fixed but unknown distribution. Thus we can treat
the task against some specific agents as a task sampled from a task distribution.
We apply meta-learning method to build models and learn policies. Therefore
when new agents come, we can adapt to them efficiently. Experiments on grid
games show that our method can quickly get high rewards.

1 INTRODUCTION

Applying Reinforcement Learning (RL) to multi-agent scenes requires carefully consideration about
the influence of other agents. We cannot simply treat other agents as part of the environment and
apply independent RL methods (Lanctot et al., 2017) if the actions of them has impact on the payoff
of the agent to be trained. For example, consider the two-person ultimatum bargaining game, where
two players take part in. One player propose a deal to split a fixed amount of money for them two
and the other player decides to accept it or not. If the second player accepts the proposal, they split
the money, but if the proposal is refused, they both get zero. Experimental results (Güth et al., 1982)
show that in actual life, the second player makes the decision according to whether he or she judge
the final result fair, rather than makes the obvious rational decision. Thus, the first player needs to
predict how the second player will react so as to make the proposal acceptable.

In order to exploit the other agents and find the corresponding optimal policy, we need to understand
these agents. Here in this paper, we call all the other agents “opponents” to distinguish our agent
from them, even if they may have cooperative relationship with our agent. For simplicity, we only
consider tasks with only one opponent. Extension to tasks with more opponents is straightforward.
A general way to exploit an opponent is to build a model for it from observations. This model can
characterize any needed feature of the opponent, such as next action or the final goal. Such a model
can make predictions for the opponent and thus turns the two-agent task into a simple-agent decision
making problem. Then we can apply various RL methods to solve this problem.

It is necessary that we need to have an accurate model for the opponent to help make decision.
Previous works (He et al., 2016; Raileanu et al., 2018) propose some methods to model the opponent.
Generally, it requires many observations to get a precise model for the opponent. This may cost many
iterations to act with the opponent. What’s more, even if we can precisely model the opponent, there
exists a main drawback of above process that the performance of the learned policy has no guarantee
for any other opponent. Things are even worse if opponents have their private types which are
unknown for us. New opponents with different types can have different policies or even different
payoffs. Therefore, it seems that when a new opponent came, we have to learn a policy from the
beginning. In some practical situations, the whole opponents follow a distributions over all these
possible types. Let’s come back to the ultimatum bargaining game. Bahry & Wilson (2006) shows

1

Under review as a conference paper at ICLR 2019

that people with different ethnicity may have different standards for fairness. Thus if we assume the
type for player 2 to be its judgment for fairness, there can be a distribution for types dependent on
the ethnic distribution. Given that opponents follows a distribution, it is possible that we can employ
some given opponents to help us speed up the process of opponent modeling and policy improving
for the current opponent.

If we consider the policy learning against a specific opponent as a task, our goal can be considered as
training a policy on various tasks so that it can efficiently adapt to a good policy on a new task with
few training samples. This is exactly a meta-learning problem. We employ Model-Agnostic Meta-
Learning (MAML)(Finn et al., 2017) to conduct meta-learning. Rabinowitz et al. (2018) applied
meta-learning to understand opponents, but this work doesn’t address the policy improvement for
the agent to be trained. We apply meta-learning to opponent modeling and policy learning separately
while training the two meta-learners jointly. Then we use the meta-learners to initialize the model
and policy for the new opponent. Experimental results show that the agent can adapt to the new
opponent with a small number of interactions with the opponent.

2 PRELIMINARY

In this section, we introduce some preliminaries of our work. We formalize our task based on
stochastic games(Littman, 1994), which is a general framework for multi-agent problems, and
Bayesian games(Harsanyi, 1967), which formalize the incomplete information of players. Next
we introduce Model-Agnostic Meta-Learning (MAML), a meta-learning algorithm that is applica-
ble to various gradient-based methods. Our approach employs MAML as the meta-learning method
to train across tasks.

2.1 FORMALIZATION

We first introduce stochastic games. Formally, a stochastic game, with N players, is defined as
〈N,S, {A1, ..., AN}, T, {R1, ..., RN}〉, where S is the set of states, Ai is the action set for player i,
Ri : S×A1×...×AN → ∆([0, 1]) is the reward function for player i (∆(C) denotes the probability
distributions over a set C), and T : S × A1 × ... × AN → ∆(S) is the transition function. The
goal for player i is to maximize its own cumulative reward E[

∑T
t=0 γ

tri,t], where ri,t is the reward
player i gets at time step t and γ is the discounting factor. πi : S → ∆(Ai) denotes the policy for
player i, which maps each state to a distribution over actions.

Our agent takes the role of one player. With out loss of generality, we assume that our agent is player
1. In this paper we only consider two-player stochastic games.

Bayesian games further introduce types for players. Since our agent takes the role of player 1, the
different types of player 1 can be considered as different states. We only consider that player 2 has a
set of types Θ. A specific opponent playing player 2 has its own θ ∈ Θ which is unknown to player
1. There exists a prior distribution p(θ) over the population of opponents. Under this setting, each
θ ∈ Θ has its corresponding reward function Ri(s, a1, a2, θ) for each i ∈ {1, 2}, s ∈ S, a1 ∈ A1

and a2 ∈ A2.

Therefore combining the above concepts we formalize our tasks as Bayesian stochastic games
〈N,S, {A1, ..., AN}, T, {R1, ..., RN},Θ, p〉, where R1, ..., RN are the modified reward functions
dependent on θ ∈ Θ and p is the prior distribution over Θ for types of player 2.

2.2 MODEL-AGNOSTIC META-LEARNING

Meta-learning considers the goal that aims to quickly train a model for a new task with the help of
data on many similar tasks. Formally, we denote {T }N1

i=1 the given N1 tasks used for training. Then
N2 more new tasks {T }N1+N2

i=N1+1 are used for testing. In the meta-learning setting, we assume that
the tasks are sampled from a distribution p(T) over all possible tasks. For each task Ti, we want to
identify a mapping fi, that maps each input x to its corresponding output y.

Model-Agnostic Meta-Learning (MAML) is one of the best meta-learning algorithms that can be
applied to models that are trained with gradient descent. Denote the parameter for each fi as ψ′

i.

2

Under review as a conference paper at ICLR 2019

The loss for fψ′
i

on task Ti is denoted as LTi
(fψ′

i
). A meta-learner with parameter ψ is used as the

initialization for all ψ′
is and the update for each specific task is:

ψ′
i = ψ − α∇ψLTi

(fψ),

where α is the learning rate. The update for ψ is:

ψ = ψ − β∇ψ
N1∑
i=1

LTi
(fψ′

i
),

where β is the learning rate for ψ.

3 OUR APPROACH

Before we dive into the Bayesian stochastic games, we first consider the stochastic game that we
have a specific opponent with type θ ∈ Θ. We aim to explicitly model the opponent so that we can
get predictions about it. The predicted value should be some character of the opponent that can help
our agent improve policy. For example, in games where our reward is related to the final goal of
the opponent, we can directly predict its goal. Formally, at some state st ∈ S, our agent predicting
some estimated value ṽ(·|st, θ), where ṽ is the estimation of value v. v represent a character of the
opponent such as goals, next actions or next positions. For convenience, we use vθ to denote v(·|θ).
Then our agent can choose an action according to π1(·|st, ṽθ(st)), while an agent unaware of its
opponent can only take action according to π1(·|st). Thus, the task has been divided into two sub-
tasks: modeling ṽθ of the opponent and learning a policy π1(·|ṽθ). The latter task can be considered
as a general RL problem and we can apply various RL methods to solve it.

Now assume that opponents have a prior distribution for their types. That is, an opponent with
type θ ∈ Θ can be treated as a sample following θ ∼ p(θ). If we can collect data from some
opponents sampled from p, it is possible we can generalize the model and policy to the game with
a new opponent. Thus we can consider the opponent modeling and policy learning as two meta-
learning tasks. The former can be considered as an imitation learning or supervised learning task
while the second is a RL task. Both can apply MAML for meta learning. Since the learned policy
needs the model to make prediction, we cannot train the two meta-tasks independently. We jointly
training the model and policy with some given opponents. We call our method as Meta-Opponent-
Agent learning (MOA) to indicate that the model and policy are jointly trained via meta-learning.
Finally when a new opponent comes, we initialize our model and policy with the meta-model and
meta-policy. The training procedure is shown in the figure 1.

Figure 1: Training Procedure: Network fψ for opponent modeling takes state s as input and outputs
the prediction value ṽθ(s), where θ is the private type for current opponent. Network gφ for policy
learning takes state s and ṽθ(s) as input and out put the policy. Both networks are train via MAML.

3.1 OPPONENT MODELING

The opponent in our game is considered as some player that won’t adapt its policy to our agent.
This assumption can be true in many practical situations. For example, the consumers of a business

3

Under review as a conference paper at ICLR 2019

man usually have stable preferences. Then we further assume that there exist a distribution over
the policies of the opponents. This assumption can also be considered true for the business man
situation, where a specific consumer is just a sample from the whole population. Our goal here is to
model the current opponent with the help of data that are collected by playing with other opponents.

Formally, we now aim to model the value function v for the opponent from the observations. As
mentioned above, v here can represent many forms of characters of the opponent, such as the final
goal, next action, next position or any other character we wish to predict. For each type θ ∼ p,
the value function is specified as vθ. Now we have M opponents sampled from the population.
Opponent i has a type θi ∼ p(θ). For any given state s as an input for the opponent i, the model
outputs ṽθi(s). The task of minimizing ṽθi and vθi are treated as task T oi = {(s, vθi(s)} with
loss function LT o

i
= dist(vθi , ṽθi), where dist(·, ·) is the distance metric for two v functions. The

distance function can vary for different problems. Following the framework of MAML, we use a
network called opponent network (OPNet) f with parameter ψ to learn the function ṽ. Then for
each opponent, we collect data Si = {(s, vθi(s)} and then use this dataset to update ψ to get the
adapted parameter ψ′

i. New dataset S′
i = {(s, vθi(s)} is collected with fψ′

i
. {S′

i}Mi=1 are together
used to update ψ. Finally we use the learned ψ to initialize the parameter for the current opponent
as fψ . The updating process for parameters follows the framework of MAML.

Following Grant et al. (2018), we are learning an empirical Bayesian model over the opponent
population after training with the M opponents. When data for the new opponent are observed, it is
easier to adapt to the new opponent with such a prior model.

3.2 POLICY LEARNING FOR THE AGENT

With a model of the opponent, our agent can give a better policy than the policy unaware of the
opponent. The policy learning for our agent is also trained by a meta-learning process, similar to
the above opponent modeling process. To distinguish the notation for opponent modeling, we use φ
to represent the parameter of agent’s policy. The agent can employ various RL methods to learn the
policy. We use the Dueling DQN (Wang et al., 2016) as our learning method. We use gφ to denote the
Dueling DQN mapping with parameter φ. The M opponents bring M meta-training tasks {T ai }Mi=1.
For opponent i, at state st, OPNet predict a value fψ(st). The policy πai of our agent is defined
on the new state (st, fψ(st)) and the action at the agent chooses is sampled from πai (st, fψ(st)).
Then the agent gets a immediate reward rt. We collect a dataset Di = {(st, fψ(st), at, rt)} for the
task T ai . Similar to the above part, we update φ with Di to get adapted parameter φ′i. Next, we
use fψ′

i
and γφ′

i
to get dataset D′

i = {(st, fψ′
i
(st), at, rt). Parameter φ is in return updated with

{D′
i}Mi=1. When finally the agent meet the new opponent, it uses gθ as the initialization for its policy

and improve its policy.

From the Bayesian point of view, we can consider the learned gφ is the approximated Bayesian
Optimal Policy against the opponent distribution. When we meet a new opponent, we initialize the
policy with gφ to accelerate the learning by guiding the agent to explore the potential direction.

3.3 ALGORITHM

We train fψ and gφ jointly, since the prediction of the opponent is considered as part of the input
for the agent. More concretely, for each iteration, our agent play with each opponent i ∈ [M]. Our
agent use the OPNet to predict the opponent, and the Dueling DQN use the prediction as part of its
input to give a policy. Then both OPNet and Dueling DQN are updated. The algorithm is shown in
Algorithm 1.

4 RELATED WORK

Many works concentrate on multi-agent Reinforcement learning tasks. Works like Lanctot et al.
(2017) connect these tasks with game theory to modify general RL methods to multi-agent scenes.
Some works aims to solve equilibriums for specific games. For example, Silver et al. (2017) pro-
poses a self-play deep RL method for two-player zero-sum perfect-information games and their
work on Go outperforms human beings. Some other researches aims to learn policies for agents via

4

Under review as a conference paper at ICLR 2019

Algorithm 1 Meta-Opponent-Agent Learning

Require: p(θ) over types of opponents
Initialization: Get M opponent samples T oi , each with type θi ∼ p(θ). Initialize fψ , gφ.
repeat

for all T oi do
Agent use fψ and gφ to play with opponent i. Collect data Si = {(st, vθi(st))} and Di =
{(st, fψ(st), at, rt)}.
Evaluate∇ψLT o

i
(fψ) and ∇φLT a

i
(gφ) using Si.

Compute parameters ψ′
i = ψ−α∇ψLT o

i
(fψ) with Si and φ′i = φ−α∇φLT a

i
(gφ) with Di.

Agent use fψ′
i

and gφ′
i

to play with opponent i. Collect data S′
i = {(s,t , vθi(st))} and

Di = {(st, fψ′
i
(st), at, rt)}.

end for
Update ψ = ψ − β∇ψ

∑
T o
i
LT o

i
(fψ′

i
) with S′

i and φ = φ− β∇φ
∑

T a
i
LT a

i
(fφ′

i
) with D′

i

until Done

imitation learning (Oh et al., 2014; Thurau et al., 2004). These works just wish to identify good
polices and don’t aim to exploit specific opponents.

There are also some works address opponent modeling. Raileanu et al. (2018) proposes a method
to automatically infer the goal of others by using agent itself. However, this work is not suitable
for games that are not goal-directed. What’s more, concentrating on specific opponents can lead to
a weak policy against other opponents. Works like Johanson et al. (2008); Ganzfried & Sandholm
(2015) attempt to model specific opponents while learning a robust policy. These works address the
problem from the game-theoretical point of view. They don’t have assumptions on opponents.

If we consider the opponent population and assume that there are some prior distribution over the
policies of opponents, we are in fact easy to infer information for the current opponent with the help
of other opponents. Rabinowitz et al. (2018) connects opponent modeling with theory of mind, a
concept from psychology. This work use meta-learning to build flexible and sample efficient models
for opponents. However, it ignores the the process for policy learning. Our work attempts to gain
information for both opponent modeling and policy improving from the given opponents.

5 EXPERIMENTS

In this section, we test our method on three different kinds of two-player games, each with some
specific uncertainty:

• Chasing game: a game where the opponent has a private type set with finite elements;

• Blocking game: a game where the opponent has a private type set with infinite elements;

• Recommending game: a game where the opponent has private type set with infinite ele-
ments and the agent has random reward functions.

All these games are grid games where both player 1 and 2 choose a one-step direction as its action.
In the grid world, each action can only move to the grid next to it or stay at its current position for one
step. Since all these games are based on grid worlds, we choose the value function for the opponent
as the goals or the next position of the opponent. Thus, we choose cross entropy as dist(vθ, ṽθ) in
section 3.1. For each game, we test our method MOA and three other baseline methods. We first
introduce these baselines and show the experimental results for each game. Further, in the design of
games, we don’t set the rewards bounded by [0, 1]. We make rewards larger to make it easy to train.

5.1 BASELINE METHODS

Meta-Opponent (MO): For this method, we only train the model for opponents when playing with
the training opponents. Then we use this model to initialize our model for the new opponent and
our agent directly learn from the beginning. More concretely, we only train the parameter ψ and

5

Under review as a conference paper at ICLR 2019

then train ψ′
M+1 and φ′M+1 for the new opponent M + 1. This method is used to show that whether

training the agent via MAML can help the agent more efficiently adapt to a new opponent.

Meta-agent without model (MA): We don’t model the opponents in this method. Dueling DQN
is used to directly learn πa(·|s) for s ∈ S via MAML. This method is used to show the effect of
models.

No Meta-Learning (NM): To demonstrate that meta-learning can do take advantage of the informa-
tion from other opponents and learn a good policy with fewer samples, we directly train the model
and the agent for the new coming opponent.

5.2 CHASING GAME

In the chasing game, a grid board of size 8×8 is given. as shown in figure 2a. Player 1 is represented
as the red grid and player 2 is the green one. Player 2 has a private goal, which can be considered as
its specific type and is unknown to player 1. The goal is one specific gird on the map. Each player
2 has a specific goal, while the player 2 population have a distribution over the 64 grids. That is,
the set of types is a finite set. In this chasing game, the grids that are close to the top left corner are
preferred. The probability of the goal’s location over the map is visualize in figure 2b. The rule for
the game is as follows. Both players takes actions simultaneously. One game lasts for at least 15
steps. When a game begin, player 2 will go directly to its goal and stops there. The only way for
player 1 to get rewards is to chase player 2 to its goal before the game ends. If player 1 finds player
2, it gets a reward of 10 and the game ends. If it is at one of the 8 neighborhood grids of player 2 at
the end of the game, it gets a reward 5. Otherwise, it has reward 0.

We test the four methods, MOA, MA, MO and NM. For MOA, MA and MO, they all require
the meta-training process. 20 opponents are sampled as the meta tasks. Each method trains 800
iterations to get the meta learners and use them to initialize their networks. Then 10 new opponents
are sampled as testing tasks. Four methods all train 4000 games for each testing task. We compare
their performance along the testing process by averaging the rewards on the 10 testing tasks. In this
game, the type for player 2 is its goal and we directly model the goal for player 2.

Figure 2c gives the results of four methods during the testing process. We plot the average rewards
over 10 opponents. It is easy to see that MOA outperforms the other methods. Notice that the reward
trend for MOA first drops and then raises as the testing process goes on. This shows the process
that the meta-learner adapt to the current task. Intuitively, the meta-model would first update itself
to the current opponent. Then the meta-policy would improve itself to fit the model. NM learns the
testing task without meta-training for neither the model nor the policy. It can still improve its policy
but cost many more games than MOA. The comparison of MOA and NM shows that we can gain
benefits by training across opponents via meta-learning. MO method just train the meta-model. The
result shows that MO just performs similar to NM. This result show that simply training the model
of opponent cannot help improve efficiency. MA performs the worst among all these methods, even
though it has a meta-training process. This is because it doesn’t build a model for the opponent.
Ignoring the existence of the opponent just results in the failure to improve policy.

5.3 BLOCKING GAME

In blocking games, as shown in figure 3a, has a 9*7 size map. In the initial state, player 1 is the red
grid and player 1 is the green one. The goal for player 2 is to pass one of the five ways to reach
the top two rows, while the goal of the player 1 is to block player 2 to reach the goal area. There
are 5 paths that player 2 can pass to get the goal area and the type for player 2 is the probability of
choosing each path. Thus the type set for player 2 is a simplex, which has infinite elements. Each
path has only one exit. If player 1 can block player 2 at the exit, player 1 gets a reward 10. Otherwise
player 2 will pass the exit and reward 1 will get -10.

The training setting for blocking games is a bit different from chasing games. Only 15 opponents
are sampled as the meta tasks. Each opponent has a distribution over 5 path and it samples one path
for one game. The prior distribution for opponent’s type is the Dirichlet distribution with five 0.5 as
parameters. Each method trains 800 iterations to get the meta-parameters. Then 10 new opponents
are sampled as testing tasks. Four methods all train 4000 games. In this game, it is hard to directly
model the types of opponents as the value thus we simply choose its next position as the value.

6

Under review as a conference paper at ICLR 2019

(a) Chasing Game (b) Goal distribution (c) Meta-testing process

Figure 2: The results for chasing games. (a) is the initialization state for chasing games. Player 1 is
the red grid and player 2 is the green one. Each player 2 has a private goal which is unseen on the
map. (b) shows the probability that player chooses its goal. (c) shows the average rewards player 1
gets during meta-testing process. MO, MA and MOA initialize their parameters with results from
meta-training process. New opponents are used for testing.

Figure 3b shows the performance of MA and MOA along the meta training process. After 50
iterations, we collect the rewards of our agent gets with the 15 training opponents. Since our agent
plays a random policy, we average the rewards against each opponent of 100 games. Notice that
MO only has its model trained in the training process, we don’t test it. The result shows that MOA
can improve itself quickly while MA can hardly improve. This again demonstrate the importance of
opponent modeling.

Figure 3c gives the rewards along testing process. It is easy to see that MOA can use less than 500
games to adapt to the new opponents while MO and NM improves slowly. Again MO and NM
performs similarly. The results are similar to that of chasing games.

(a) Blocking Game (b) Meta-training Process (c) Meta-testing Process

Figure 3: The results for blocking games. (a) is the initialization state. Player 1 is the red one and
player 2 is the green one. Each player 2 choose one path to get to the top space and player 1 tries
to block it. (b) shows the average rewards player 1 gets during the meta-training process. (c) shows
the average rewards player 1 gets during meta-testing process. MO, MA and MOA initialize their
parameters with results from meta-training process. New opponents are used for testing.

5.4 RECOMMENDING GAME

A recommending game, as shown in figure 4a, has a 7*7 size map. Player 1 is red and player 2 is
green. There are 4 blue grids on the left of the map, which are goals for player 2. There are also
4 purple girds on the right of the map, which are objects for player 1. This game is similar to the
process that a business man recommends goods for his current consumer. In this game, player 2
also has a private distribution over the 4 goals. The distribution is considered as the type and the
prior distribution is a Dirichlet distribution with four 0.5 as parameters. Player 2 samples a goal
from its type distribution and goes to its goal directly. Player 1 needs to recommend one of the

7

Under review as a conference paper at ICLR 2019

Table 1: Rewards for policies after meta-training (MOA, MO and MA) against 100 new opponents

Methods Chasing game Blocking game Recommending game

MOA 8.70 6.00 9.25
MO 0.00 -9.6 0.00
MA 4.70 -10.00 -0.08
NM 0.90 -9.00 2.72

4 purple objects to player 2. When player 1 reaches one of the objects or the game is played 16
steps, the game ends. Player 1 only gets rewards when it reaches an object. Assume that the vertical
coordinate for the goal of player 2 is y2 and that of the recommended object is y1. Then the reward
for player 1 is a sample from Gaussian distribution N (µ, 1), where µ = 10− 3/2 ∗ |y1 − y2|.
Details of experiments is almost the same as blocking games, except that we choose player 2’s goal
as its predicting value. Figure 4b demonstrate again that MOA performs well during meta-training.
Figure 4c shows that MOA outperforms the other three methods during the testing process. MOA
is indeed sample-efficient. The results for recommending games is similar to chasing games and
blocking games. The random rewards just bring more variance to the training and testing process.

(a) Recommending Game (b) Averaged rewards for new oppo-
nents during training process

(c) Averaged rewards for new oppo-
nents during testing process

Figure 4: The results for recommending games. (a) is the initialization state. Player 1 is the red
grid and player 2 is the green one. Blue grids are goals for player 2 and purple grids are objects for
player 1. Each player 2 choose one of goals and player 1 tries to recommend a corresponding object.
(b) shows the average rewards player 1 gets during the meta-training process. (c) shows the average
rewards player 1 gets during meta-testing process. MO, MA and MOA initialize their parameters
with results from meta-training process. New opponents are used for testing.

Finally we test all the four methods on 100 opponents sampled from the opponent distribution. For
each opponent, we just play one game with it. That is, we don’t conduct any learning process for
new opponents. The results for all three games are given in the table 1. As the table shows, MOA
can reaches relatively high rewards while other methods performs bad. The results demonstrate that
MOA can gain prior information from meta-learning process.

6 CONCLUSION

In the face of other agents, it is beneficial to build models for opponents and find a corresponding
good policy. This method can be sample-inefficient since it costs many observations to build mod-
els and learn a policy then. We propose a method that can employ the information learned from
experiences with other opponents to speed up the learning process for the current opponents. This
method is suitable for many practical situations where the opponent population has a relative stable
distribution over their policies. We apply meta-learning to jointly train the opponent modeling and
policy improving process. Experimental results show that our method can be sample-efficient.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Donna L Bahry and Rick K Wilson. Confusion or fairness in the field? rejections in the ultimatum
game under the strategy method. Journal of Economic Behavior & Organization, 60(1):37–54,
2006.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. international conference on machine learning, pp. 1126–1135, 2017.

Sam Ganzfried and Tuomas Sandholm. Safe opponent exploitation. ACM Transactions on Eco-
nomics and Computation (TEAC), 3(2):8, 2015.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

Werner Güth, Rolf Schmittberger, and Bernd Schwarze. An experimental analysis of ultimatum
bargaining. Journal of economic behavior & organization, 3(4):367–388, 1982.

John C Harsanyi. Games with incomplete information played by bayesian players, i–iii part i. the
basic model. Management science, 14(3):159–182, 1967.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In International Conference on Machine Learning, pp. 1804–1813, 2016.

Michael Johanson, Martin Zinkevich, and Michael Bowling. Computing robust counter-strategies.
In Advances in neural information processing systems, pp. 721–728, 2008.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Julien Perolat, David
Silver, Thore Graepel, et al. A unified game-theoretic approach to multiagent reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 4190–4203, 2017.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings 1994, pp. 157–163. Elsevier, 1994.

In-Seok Oh, Ho-Chul Cho, and Kyung-Joong Kim. Imitation learning for combat system in rts
games with application to starcraft. In Computational Intelligence and Games (CIG), 2014 IEEE
Conference on, pp. 1–2. IEEE, 2014.

Neil C Rabinowitz, Frank Perbet, H Francis Song, Chiyuan Zhang, S M Ali Eslami, and Matthew M
Botvinick. Machine theory of mind. international conference on machine learning, 2018.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Facebook Rob Fergus. Modeling others using
oneself in multi-agent reinforcement learning. international conference on machine learning,
2018.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354–359, 2017.

Christian Thurau, Christian Bauckhage, and Gerhard Sagerer. Imitation learning at all levels of
game-ai. In Proceedings of the international conference on computer games, artificial intelli-
gence, design and education, volume 5, 2004.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International Conference on Machine
Learning, pp. 1995–2003, 2016.

9

	Introduction
	Preliminary
	Formalization
	Model-Agnostic Meta-Learning

	Our approach
	Opponent Modeling
	Policy learning for the agent
	Algorithm

	Related Work
	Experiments
	Baseline Methods
	Chasing Game
	Blocking Game
	Recommending Game

	Conclusion

