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Abstract 

Vessel stenosis is a major risk factor in cardiovascular diseases (CVD). To analyze the degree of vessel 

stenosis for supporting the treatment management, extraction of coronary artery area from Computed Tomographic 

Angiography (CTA) is regarded as a key procedure. However, manual segmentation by cardiologists may be a time-

consuming task, and present a significant inter-observer variation. Although various computer-aided approaches 

have been developed to support segmentation of coronary arteries in CTA, the results remain unreliable due to 

complex attenuation appearance of plaques, which are the cause of the stenosis. To overcome the difficulties caused 

by attenuation ambiguity, in this paper, a 3D multi-channel U-Net architecture is proposed for fully automatic 3D 

coronary artery reconstruction from CTA. Other than using the original CTA image, the main idea of the proposed 

approach is to incorporate the vesselness map into the input of the U-Net, which serves as the reinforcing information 

to highlight the tubular structure of coronary arteries. The experimental results show that the proposed approach 

could achieve a Dice Similarity Coefficient (DSC) of 0.8 in comparison to around 0.6 attained by previous CNN 

approaches. 
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1. Introduction 

 Cardiovascular disease accounts for 45% of non-communicable diseases in 2015 [1]. Vessel stenosis in 

coronary artery is considered to be the major risk in CVD. Narrowing of the lumen limits the blood flow and affects 

the oxygen supply to cardiomyocytes, leading to myocardial infarction.  

Computed Tomography angiography (CTA) images is one of the widely used noninvasive imaging modalities 

in coronary artery diagnosis due to its superior image resolution. CTA images with contrast agents can make coronary 

arteries more visible. To analyze the degree of vessel stenosis for supporting the treatment management, extraction 

of coronary arteries from Computed Tomographic Angiography (CTA) is regarded as a key procedure. However, 

manual delineation of coronary arteries is a time-consuming task, and presents a significant inter-observer variation. 

Clinically, high-quality extraction of coronary arteries is essential for stenosis quantification. 

Various conventional image segmentation algorithms have been proposed previously to reconstruct 3D 

cardiovascular structures, such as region-based methods [2], edge-based methods [3][4], tracking-base methods [5], 



learning-based methods [6][7], and so on. Since 2016, the applications of deep learning in medical images have 

grown considerably [8]. Several deep learning approaches based on CNN have been proposed to reconstruct 

coronary arteries in CTA. Nevertheless, these deep learning approaches show relatively limited performance, e.g., 

0.5975 and 0.66 in terms of Dice Similarity Coefficient (DSC) [10] [11]. One possible reason is the size of the 

coronary artery is relatively small in comparison with the surrounding tissues. Another possible reason is it is 

challenging to distinguish the coronary arteries from other tubular structures, e.g., the coronary veins [12]. 

Although great efforts have been made for automatic reconstruction of coronary arteries in CTA, the results 

remain far from satisfactory due to the potential intensity ambiguity between coronary arteries and surrounding 

tissues or plaques. To overcome the difficulties caused by intensity ambiguity, in this paper, a 3D multi-channel U-

Net [13] architecture is proposed to automatically reconstruct the coronary arteries in CTA. 

 

2. Methods 

 In addition to the original CTA image, the main idea of the proposed approach is to incorporate the vesselness 

map into the input of the U-Net, which serves as the reinforcing information to highlight the tubular structure of 

coronary arteries. Figure 1 shows the proposed network architecture. In the proposed architecture, the input is 

composed of two channels of the same volume of interest (VOI) (32*32*32), one from the original CTA image and 

the other from the vesselness map derived by applying Frangi filtering [15] to the original CTA image. The 

segmentation result is given in the output (32*32*32) of the U-net. Rectified Linear Unit (ReLU) is used as the 

activation function during convolution and deconvolution, and max pooling is used for downsampling. The network 

loss function is based on the concept of the similarity between the output image and the ground-truth image. Thus, 

Dice Similarity Coefficient is chosen as loss function for the network. 

 The data used in this study include 33472 training samples (11 cases), 5683 and 12223 validation samples(2 

cases), 6841 and 7028 testing samples(2 cases). Each case is subject to a vascular enhancement filter, to obtain 

candidate regions. Irrelevant tissues in the thoracic images, for example, bone tissue and lung tissue, are removed 

by using bounding box, thresholding, and morphological processing. The vessel region of the training set is 

established by skeletonizing the image of the candidate region, and the skeletonized points are used as the center for 

the VOIs to generate the VOIs of the vessel region. In addition, data augmentation is realized by flipping and rotating 

the VOIs of the vessel region. On the other hand, since the background area is large, data augmentation is adopted 

for the background region, and VOIs are randomly selected from the background region such that the number of 

samples of vessel region and background region is 1:1. The testing set VOI is generated from the entire cardiac 

region. 

 



Figure 1. Deep learning network, the numbers above are feature map size in the format (#𝑠𝑖𝑧𝑒3x #channel)  

  

Table 1. performance of each postprocessing in Validation cases and Test cases 

3. Results 

 The output result of the network VOI can be reconstructed accordingly by corresponding the original 

coordinates of the VOI centers, and overlapping the reconstruction processed by taking the maximum value or the 

mean value of each overlapping pixel. We then take the largest connected component(LCC) twice to exclude the 

fragmented non-coronary artery artifacts and keep the left and right coronary artery. The maximum processing is 

used in the reconstruction stage to find the coronary artery structure as much as possible to retain the entire coronary 

artery and remove non-coronary artery regions. The reconstruction result is shown in Figure 2. 

 From Table 1, although the performance of taking the maximum value is lower than taking the mean value, it 

can be improved by applying the largest connected component achieving 0.8 Dice Similarity Coefficient 

performance. 

 

Figure 2. the reconstruction result of each kind of postprocessing, part (A) is processed by taking mean, part(B) is 

processing by taking maximum, part (C) is processing by taking maximum and largest connected component, part 

(D) is manually annotation result by commercial software. 

 

4. Discussion and Conclusion 

 Other approaches in deep learning for coronary artery segmentation show relatively limited performance[10] 

[11]. In comparison, the proposed approach achieves 0.8 DSC performance. The reason might be due to U-net having 

the same output size as the input image, therefore it is much more suitable than normal CNN in segmentation task. 

Secondly, the multi-channel concept, allowed the model to have tubular structural information during training, aiding 

the network to learn more effectively. In Kirişli et al. [14], ground-truth is the average region of the three observers, 

so there would be three performances for each observer. It is worth noting that the best observer has only 0.79 



performance in DSC, thus the algorithm has shown to outperform the observer's performance. 
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