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ABSTRACT

Massively multi-label prediction/classification problems arise in environments
like health-care or biology where it is useful to make very precise predictions.
One challenge with massively multi-label problems is that there is often a long-
tailed frequency distribution for the labels, resulting in few positive examples for
the rare labels. We propose a solution to this problem by modifying the output
layer of a neural network to create a Bayesian network of sigmoids which takes
advantage of ontology relationships between the labels to help share information
between the rare and the more common labels. We apply this method to the two
massively multi-label tasks of disease prediction (ICD-9 codes) and protein func-
tion prediction (Gene Ontology terms) and obtain significant improvements in
per-label AUROC and average precision.

1 INTRODUCTION

In this paper, we study general techniques for improving predictive performance in massively multi-
label classification/prediction problems in which there is an ontology providing relationships be-
tween the labels. Such problems have practical applications in biology, precision health, and com-
puter vision where there is a need for very precise categorization. For example, in health care we
have an increasing number of treatments that are only useful for small subsets of the patient popu-
lation. This forces us to create large and precise labeling schemes when we want to find patients for
these personalized treatments.

One large issue with massively multi-label prediction is that there is often a long-tailed frequency
distribution for the labels with a large fraction of the labels having very few positive examples in the
training data. The corresponding low amount of training data for rare labels makes it difficult to train
individual classifiers. Current multi-task learning approaches enable us to somewhat circumvent
this bottleneck through sharing information between the rare and cofmmon labels in a manner that
enables us to train classifiers even for the data poor rare labels (Caruanal [1997).

In this paper, we introduce a new method for massively multi-label prediction, a Bayesian network
of sigmoids, that helps achieve better performance on rare classes by using ontological information
to better share information between the rare and common labels. This method is based on similar
ideas found in Bayesian networks and hierarchical softmax (Morin & Bengiol |2005). The main
distinction between this paper and prior work is that we focus on improving multi-label prediction
performance with more complicated directed acyclic graph (DAG) structures between the labels
while previous hierarchical softmax work focuses on improving runtime performance on multi-class
problems (where labels are mutually exclusive) with simpler tree structures between the labels.

In order to demonstrate the empirical predictive performance of our method, we test it on two very
different massively multi-label tasks. The first is a disease prediction task where we predict ICD-9
(diagnoses) codes from medical record data using the ICD-9 hierarchy to tie the labels together. The
second task is a protein function prediction task where we predict Gene Ontology terms (Ashburner
et al., 2000} |Carbon et al.| [2017) from sequence information using the Gene Ontology DAG to
combine the labels. Our experiments indicate that our new method obtains better average predictive
performance on rare labels while maintaining similar performance on common labels.
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2 METHODS

2.1 PROBLEM SETUP

The goal of multi-label prediction is to learn the distribution P(L|X) which gives the probability of
an instance X having a label L from a dictionary of N labels. We are particularly interested in the
case where there is an ontology providing superclass relationships between the labels. This ontology
consists of a DAG where every label L is a node and every directed edge from L; to L; indicates
that the label L; is a superclass of the label L;. Figure E] gives corresponding example simplified
subgraphs from both the ICD-9 hierarchy and the Gene Ontology DAG. We define parents(L) to
be the direct parents of L. We define ancestors(L) to be all of the nodes that have a directed path
to L.

ICD-9 Hierarchy Gene Ontology

Cancer Biological Process
(ICD-9 140-239) (GO:0008150)
Skin Cancer Lung Cancer Response to Stimulus Immune System Process
(ICD-9 172) (ICD-9 152) (GO:0050896) (GO:0002376)
Immune Response
(GO:0006955)

Figure 1: Example simplified graphs showing superclass relationships from the ICD-9 hierarchy and
the Gene Ontology DAG.

The classical approach for solving this problem is to learn separate functions for each label. This
transforms the problem into IV binary prediction problems which can each be solved with standard
techniques. The main issue with this approach is that it is less sample efficient in that it does not
share information between the labels. A more sophisticated approach is to use multi-task learning
techniques to share information between the individual label-specific binary classifiers. One ap-
proach for doing this with neural networks is to introduce shared layers between the different binary
classifiers. The resulting output layer is a flat structure of sigmoid outputs, with each sigmoid output
representing one P(L|X). This reduces the number of parameters needed for every label and allows
information to be shared among the labels (Caruanal |1997). However, even with this weight sharing,
the final output layer still needs to be learned independently for each label.

2.2 BAYESIAN NETWORK FACTORIZATION

We propose a modification of the output layer by constructing a Bayesian network of sigmoids in
order to use the ontology to share additional information between labels in a more guided way. The
general idea is that we assume that the probability of our labels follows a Bayesian network (Pearl,
1988)) with each edge in the ontology representing an edge within the Bayesian network. This, along
with the fact that the edges denote superclasses, enables us to factor the probability of a label into
several conditional probabilities.

P(L|X) = P(L,ancestors(L)|X) As the edges denote superclasses,
having a child label implies having
every ancestor

= H P4 X, parents(f))  From Baysian network assumption
te{L}Uancestors(L) on the subgraph consisting of L and
ancestors(L) (Pearl, [1988))

We are now able to learn the conditional probability distributions P(L|X, parents(L)) for ev-
ery label in the ontology and use the above formula to reconstruct the final target probabilities
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P(L|X). Consider the example simplified ICD-9 graph in Figure For this graph, we would learn
P(Cancer|X), P(LungCancer|Cancer, X), and P(SkinCancer|Cancer, X). We would then
be able to compute P(LungCancer|X) = P(Cancer|X) x P(LungCancer|Cancer, X).

The intuition of why this factoring might be useful is that it enables the transferring of knowledge
from more common higher-level labels to more rare lower-level labels. Consider the case where
L is very rare. In that case it is difficult to learn P(L|X) directly due to the small amount of
training data. However, the decomposed version [ [yc (11 ancestors(r) (41X, parents(£)) includes
classifiers from the ancestors of L that have more training data and might be easier to learn. This
factoring allows additional signal from the better trained higher-level labels to feed directly into the
probability computation for the rare leaf L. If we can rule out one of the higher-level labels, we can
also rule out a lower-level label. For example, consider the ICD-9 graph illustrated in Figure [T} We
might not have enough patients with lung cancer to directly learn an optimal P(LungCancer|X).
However, we can pool all of our cancer patients to learn a hopefully more optimal P(Cancer|X).
We can then use our Bayesian network factoring to incorporate the better trained P(Cancer|X)
classifier in our calculation for P(LungCancer|X). In our experiments we show that this intuition
plays out in practice through improved performance on rare labels.

The Bayesian network assumption plays an important role in allowing us to factor the probabilities
in this manner. In order to perform our factoring, we must assume that every subgraph of the on-
tology consisting of the nodes { L} U ancestors(L) correctly represents a Bayesian network for the
label probability distribution. These subgraphs are only correct Bayesian networks if the probability
of every label L is conditionally independent of the probabilities of non-descendent labels given the
parent labels and X (Russell & Norvig, 2009). This might seem somewhat limiting, but there are
two reasons why this assumption is weaker than it might appear. First, we only require a Bayesian
network to be correct for the subgraphs of the form {L} U ancestors(L). This is true because we
only consider the nodes {L} U ancestors(L) when we do our factoring. This is a significantly
weaker assumption than requiring the entire graph to follow a Bayesian network. One direct appli-
cation of this is that every tree ontology can meet this assumption. The proof for this is that every
{L} U ancestors(L) subgraph of a tree is a simple chain. A simple chain is not able to violate the
conditional independence assumption behind Bayesian networks because it has no non-descendent
nodes that are not already ancestors. Ancestor nodes are always conditionally independent with the
label given the parents because the edges represent superclasses and thus either the ancestors are
always present if the parent i present or the label is always not present if the parent is not present.
The second reason why this assumption is weaker than it might appear is that we only require con-
ditional independence given a particular instance X. As an illustrative example, consider the two
ICD-9 labels of male breast cancer (ICD-9 175) and female breast cancer (ICD-9 174). Male breast
cancer and female breast cancer are trivially not conditionally independent due to the gender quali-
fier making them mutually exclusive. However, male breast cancer and female breast cancer become
conditionally independent once you condition on the gender of the patient. Thus conditioning on
the exact instance X enables more conditional independence than would otherwise be available.
Nevertheless, even with these caveats, there will be some circumstances in which this conditional
independence assumption is violated. In these situations, our factoring is not valid and our computed
product [ Tpe ( 1y0ancestors(z) (41X, parents(£)) might diverge from the actual P(L|X). Yet, even
in these situations, the resulting scores can still be empirically useful. We demonstrate that this is
the case in our experiments by showing performance improvements in a protein function prediction
task that almost assuredly violates this conditional independence assumption.

2.3 MODELING THE PROBABILITIES WITH SIGMOID

There are many potential ways in which the conditional probabilities P(L|X, parents(L)) could be
modeled. We exclusively focus on modeling these probabilities using a sigmoid function computed
on logits from neural networks. We define an encoder neural network for every task that takes in
the input X and returns a fixed-length representation of the input. We also define a fixed-length
embedding for every label L by constructing an output embedding matrix such that e, is the em-
bedding for L. This encoder and label embedding then allow us to model P(L|X, parents(L)) as
o(encoder(X)-ey,), where o indicates the sigmoid function and - indicates a dot product. Note that
parents(L) is not used in this formula. This is because there is a unique set of parents for every
label L, so there is no need to have distinct e, vectors for different sets of parents. We can then train
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P(L|X,parents(L)) by using cross entropy loss on patients who have all the labels in parents(L).
Note that we explicitly do not train each of the conditional probabilities on every patient. We can
only train the conditional probabilities on patients who satisfy the conditional requirement of having
the parent labels. This does not change the number of positive examples for each classifier, but it
does significantly reduce the number of negative examples for the lower level classifiers.

For example, consider the ICD-9 subgraph shown in Figure[I] In this situation, we have three labels
and thus need to learn three conditional probabilities: P(Cancer|X), P(LungCancer|Cancer, X)
and P(BreastCancer|Cancer, X). We have three labels, so our label embedding matrix con-
sists of ecancers €LungCancer ANd €BreastCancer- We can now compute P(LungCancer|X) and
P(BreastCancer|X) as follows:

P(LungCancer|X) = P(LungCancer|Cancer, X) x P(Cancer|X)

= o(encoder(X) - €LungCancer) X o(encoder(x) - ecancer)

P(BreastCancer|X) = P(BreastCancer|Cancer, X) x P(Cancer|X)
= o(encoder(X) - epreastCancer) X o(encoder(X) - ecancer)

As a baseline, we also train models with a normal flat sigmoid output layer. In these models
we directly learn P(L|X) for each label. Similar to the conditional probabilities, we can define
these probabilities as a sigmoid of the output from a neural network. We define P(L|X) to be
o(encoder(X) - er,). We can then train P(L|X ) using cross entropy loss on all patients.

3 EXPERIMENTAL SETUP

We evaluated the predictive performance of our method on two very different massively multi-label
problems. We consider the task of predicting future diseases for patients given medical history in
the form of ICD-9 codes and the task of predicting protein function from sequence data in the form
of Gene Ontology terms. In this section, we introduce the datasets, encoders and baselines used for
each problem.

3.1 DISEASE PREDICTION

3.1.1 PROBLEM

One of our experiments consists of predicting diseases in the form of ICD-9 codes from electronic
medical record (EMR) data. We have two years and nine months of data covering 2013, 2014,
and the first nine months of 2015. We use two years of history to predict which ICD-9 codes will
appear in the following nine months. The problem setup for this experiment closely matches the
setup in [Miotto et al.| (2016). We use a large insurance claims dataset from [redacted to preserve
anonymity] for modeling. Our claims data consists of diagnoses (ICD-9), medications (NDC), pro-
cedures (CPT), and some metadata such as age, gender, location, general occupation, and employ-
ment status. We restrict our analysis to patients who were enrolled during 2013, 2014 and January
2015.

We have 15.7 million patients, of which a random 5% are used for validation and 5% are used for
testing. This dataset is quite large, much larger than what is usually available in a hospital. Thus we
consider two cases of this problem. The “high data case” is where we use all remaining 14.1 million
patients for training. The “ low data case” consists of training with a 2% random sample of 281,874
patients and is much closer in size to normal hospital datasets (Choi et al., 2017} |Avati et al.,[2017).

Our target label dictionary for this task consists of all leaf ICD-9 billing codes that appear at least 5
times in the training data. We only predict leaf codes as those are the only codes allowed for billing
and thus the only ICD-9 codes that records are annotated with. This results in a dictionary of 6,902
codes for the small disease prediction task and 12,533 codes for the large disease prediction task.
We use the ICD-9 hierarchy included in the 2018 AA UMLS release (Bodenreider, [2004) in order to
construct relationships between the labels for our method. We additionally use the CPT and ATC
ontologies included in the 2018 AA for our encoder.
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Figure 2: The partitioning of the patient timelines into input history and output prediction labels
as well as the subpartioning of the input history into time-bins. Each tick on the x-axis represents
one month. The first two years of information is used as input and the final nine months is used to
generate output prediction labels. These first two years are subdivided into six bins of the following
lengths for featurization: one year, six months, three months, one month, one month, and one month.

3.1.2 ENCODER DESCRIPTION

For our encoder, we use a feed-forward architecture inspired by |Avati et al.| (2017). As in their
model, we split our two years of data into time-sliced bins. For each time slice, we find all the
ICD-9, NDC and CPT codes that the patient experienced during the time slice. Figure 2] details the
exact layout of each time bin. We also add a feature for every higher-level code in the ICD-9, ATC
and CPT ontologies that indicates whether the patient had any of the descendants of that particular
code within the time slice. This expanded rollup scheme is structurally very similar to the subword
method introduced in Bojanowski et al.| (2017). The weights for these input embeddings are tied
to the output embedding matrix used in our output layers. We summarize the set of embeddings
for each time bin using mean pooling. We also construct mean embedding for the metadata by
feeding the metadata entries through an embedding matrix followed by mean pooling. Finally, we
concatenate the means from each timeslice with the mean embeddings from the metadata and feed
the resulting vector into a feedforward neural network to compute a final patient embedding.

These neural network models are trained with the Adam optimizer. The hyperparameters such as the
learning rate, layer size, non-linearity, and number of layers are optimized using a grid search on the
validation set. Appendix [A.T|has details on the space searched as well as the best hyper-parameters
for both the normal sigmoid and Bayesian network sigmoid models.

Finally, as a further baseline, we also train logistic regression models individually for several rare
ICD-9 codes. These models are trained on a binary matrix where each row represents a patient and
each column represents an ICD-9 code, NDC code, CPT code, or metadata element. A particular row
and column element is set to 1 whenever a patient has that particular item in the metadata or during
the two years of provided medical history. These logistic regression models are regularized with
L2 with a lambda optimized using cross-validation. One particular issue with training individual
models on rare codes is that the dataset is distinctly unbalanced with vastly more negative examples
than positive examples. We deal with this issue by subsampling negative examples so that the ratio
of positive and negative samples is 1:10.

3.2 PROTEIN FUNCTION PREDICTION
3.2.1 PROBLEM

For our other experiment, we predict protein functions in the form of Gene Ontology (GO) terms
from sequence data. We focus only on human proteins that have at least one Gene Ontology anno-
tation. Our features consist of amino acid sequences downloaded from Uniprot on July 27, 2018
(Consortium, [2017)). For our labels, we use the human GO labels which were generated on June
18, 2018. After joining the labels with the sequence data, we have a total of 15,497 annotated hu-
man protein sequences. A random 80% of the sequences are used for training, 10% are using for
validation, and a final 10% are used for final testing.

In this task we predict all leaf and higher level GO terms that appear at least 5 times in the training
data. This results in a target dictionary of 7,751 terms. We construct relationships between these
labels using the July 24, 2018 release of the GO basic ontology.
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3.2.2 ENCODER DESCRIPTION

We use Kim|(2014)’s 1-D CNN based encoder to encode our protein sequence information. We treat
every letter in the alphabet as a word and encode each of those letters with an embedding size of
size 26. We then apply a 1-D convolution with a window size of 8 over the embedded sequence.
A fixed-length representation of the protein is then obtained by doing max-over-time pooling. This
representation is finally fed through a ReLU and one fully connected layer. The resulting fixed
dimension vector is the encoded protein. For regularization, we add dropout before the convolution
and fully connected layer.

Following previous work, we also consider generating features using sequence alignment (Kul-
manov et al., 2018). We use version 2.7.1 of the BLAST tool to find the most similar training set
protein for every protein in our dataset (Wheeler et al.,[2007). We then use this most similar protein
to augment our protein encoder by adding a binary feature which signifies if the most similar protein
has the particular term we are predicting.

These CNN models are trained with Adam. Hyperparameters such as learning rate, number of filters,
dropout, and the size of the final layer are optimized using a grid search on the validation set. See
Appendix [A.T] for a full listing of the space searched as well as the best hyperparameters for both
the flat sigmoid and Bayesian network of sigmoids models.

As a further baseline, we also consider using the BLAST features alone for predicting protein func-
tion. This model simply consists of a 1 if the most similar protein has the target term or a 0 otherwise.

For these protein models, we also consider one final baseline where we take our flat sigmoid model
and weight labels according to the inverse square root of their frequency. This weighting scheme
is based off the subsampling scheme from Mikolov et al.| (2013). Unfortunately, this baseline did
not seem to perform well on rare words so we did not consider it for the disease case and our more
general analysis. The results for this baseline can be found in Appendix[A.3]

4 RESULTS

Figure[3|shows frequency binned per-label area under the receiver operating characteristic (AUROC)
and average precision (AP) for less frequent labels that have at most 1,000 positive examples. See
Appendix [A.2] for the exact numerical results which include 95 % bootstrap confidence intervals
generated through 500 bootstrap samples of the test set. As shown in Figure |4} these less frequent
labels cover a majority of the labels within each dataset. Our results indicate that the Bayesian net-
work of sigmoid output layer has better AUROC and average precision for rare labels in all three
tasks, with the effect diminishing with increasing numbers of positive labels. This effect is espe-
cially strong in the average precision space. For example, the Bayesian network of sigmoid models
obtain 187%, 28.5% and 17.9% improvements in average precision for the rarest code bin (5-10
positive examples) over the baseline models for the small disease, large disease and protein function
tasks, respectively. This improvement persists for the next rarest bin (11-25 positive examples), but
decreases to 89.2%, 10.7% and 11.1%. This matches our previous intuition as there is no need to
transfer information from more general labels if there is enough data to model P(L|X) directly.

Table [T| compares micro-AUROC and micro-AP on all labels for all three tasks. The benefits of the
Bayesian sigmoid output layer seem much more limited and task specific in this setting. We do not
expect significantly better results in the micro averaged performance case because the micro results
are more dominated by more frequent codes and the Bayesian network of sigmoids is only expected
to help when P(L|X) does not have enough data to be modeled directly. The Bayesian network of
sigmoids output layer provides better AUROC and AP for the disease prediction task, but suffers
from worse performance in the protein function task. One possible explanation for this discrepancy
is that our Bayesian network assumption is guaranteed to be correct in the disease prediction task
due to the tree structure of the ontology, but might not be correct in the protein function task with
its more complicated DAG ontological structue. It is possible that minor violations of the Bayesian
network assumption in the protein function prediction task cause the overall performance to be worse
on the more common code compared to the flat sigmoid decoder.
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Figure 3: Frequency binned per-label AUROC and average precision (AP) for less frequent labels
with at most 1,000 positive examples. AUROC and AP are calculated independently for each indi-
vidual label. Labels are then grouped into bins determined by the number of positive samples per
label and average statistics are computed for each bin. The x-axis is in log-scale and represents the
number of possible examples for the center of each bin. Each line represents the type of model, with
the baseline model differing between the disease prediction and protein function prediction tasks.
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Figure 4: The cumulative frequency distribution for the target labels in the various tasks. The x-axis
is in log scale.

5 RELATED WORK

There is related work on improved softmax variants, predicting ICD-9 codes, predicting Gene On-
tology terms and combining ontologies with Bayesian networks.
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Table 1: Micro-AUROC and micro-average precision (AP) results on the various tasks.

Model Small Disease Large Disease Protein Function

AUROC AP AUROC AP AUROC AP
Flat Sigmoid 0.951 0.209 0982  0.262 0945  0.436
Bayesian Network of  0.960  0.220 0982  0.269 0.935 0.430
Sigmoids

Improved softmax variants. There has been a wide variety of work focusing on trying to come
up with improved softmax variants for use in massively multi-class problems such as language
modeling. This prior work primarily differs from this work in that it focuses exclusively on the
multi-class case with a tree structure connecting the labels. Multi-class is distinct from multi-label
in that multi-class requires each item to only have one label while multi-label allows multiple labels
per item. Most of this work focuses around trying to improve the training time for the expensive
softmax operation found in multi-class problems such as large-vocabulary language modeling. The
most related of these variants fall under the hierarchical softmax family. Hierarchical softmax from
Morin & Bengio| (2005) (and related versions such as class based softmax from |Goodman/ (2001}
and adaptive softmax from |Grave et al.| (2016)) focuses on speeding up softmax by using a tree
structure to decompose the probability distribution.

Disease prediction. Previous work has also explored the task of disease prediction through predict-
ing ICD-9 codes from medical record data (Miotto et al.l 2016; |Choi et al., 2017; 2015). GRAM
from Choi et al.| (2017) is a particularly relevant instance which uses the CCS hierarchy to improve
the encoder, resulting in better predictions for rare codes. Our work differs from GRAM in that we
improve the output layer while GRAM improves the encoder.

Protein function prediction. Protein function prediction in the form of Gene Ontology term pre-
diction has been considered by previous work (Kulmanov et al., [2018}; [Lan et al., 2013} |Cao et al.,
2017). DeepGO from |Kulmanov et al.| (2018)) is the most similar to the approach taken by this paper
in that it uses a CNN on the sequence data to predict Gene Ontology terms. It also uses the ontology
in that it creates a multi-task neural network in the shape of the ontology. Our work differs from
DeepGO in that we focus on the rarer terms and we only modify the output layer.

Combining ontologies with Bayesian networks. Phrank from [Jagadeesh et al.| (2018)) is an al-
gorithm for computing similarity scores between sets of phenotypes for use in diagnosing genetic
disorders. Like this paper, Phrank constructs a Bayesian network based on an ontology. This work
differs from Phrank in that we focus on the supervised prediction task of modeling the probability
of a label given an instance while Phrank focuses on the simpler task of modeling the unconditional
probability of a label (or set of labels).

6 CONCLUSION

This paper introduces a new method for improving the performance of rare labels in massively
multi-label problems with ontologically structured labels. Our new method uses the ontological
relationships to construct a Bayesian network of sigmoid outputs which enables us to express the
probability of rare labels as a product of conditional probabilities of more common higher-level
labels. This enables us to share information between the labels and achieve empirically better per-
formance in both AUROC and average precision for rare labels than flat sigmoid baselines in three
separate experiments covering the two very different domains of protein function prediction and dis-
ease prediction. This improvement in performance for rare labels enables us to make more precise
predictions for smaller label categories and should be applicable to a variety of tasks that contain an
ontology that defines relationships between labels.
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A APPENDIX

A.1 HYPERPARAMETER GRID AND BEST HYPERPARAMETERS

Table 2: Hyperparameter space explored for small disease prediction

Hyperparameter Name Values Explored
Learning Rate [1072,1073,107%, 1075, 1079]
Embedding Size [64, 128, 256, 512]
Number Of Additional Layers [0,1,2]
Additional Layer Size [128, 256, 512]
Activation function [identity, ReLU]
Shared Weights [False, True]

Table 3: Best hyperparameters for small disease prediction

Hyperparameter Name Flat Sigmoid  Bayesian Network of Sigmoids
Learning Rate 1075 1074
Embedding Size 512 256
Number Of Additional Layers 0 0
Layer Size N/A N/A
Activation function identity identity
Shared Weights True True

Table 4: Hyperparameter space explored for large disease prediction

Hyperparameter Name Values Explored
Learning Rate [1073,107%, 1075]
Embedding Size [256, 512]
Number Of Additional Layers [0, 1,2]
Additional Layer Size [128, 256, 512]
Activation function [identity, ReLU]
Shared Weights [False, True]

Table 5: Best hyperparameters for large disease prediction

Hyperparameter Name Flat Sigmoid Bayesian Network of Sigmoids
Learning Rate 10~* 10~*
Embedding Size 512 512
Number Of Additional Layers 0 0
Layer Size N/A N/A
Activation function ReLU identity
Shared Weights True True
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Table 6: Hyperparameter space explored for protein function prediction

[1071,1072,1073, 1074, 107°]
Values Explored

Learning Rate
Hyperparameter Name

Embedding Size [64, 128, 256]
Middle Layer Size [128, 256, 512]
Keep Probability [0.5,0.7,0.8,0.9, 1.0]

Table 7: Best hyperparameters for protein function prediction

Hyperparameter Name Flat Sigmoid Bayesian Network of Sigmoids

Learning Rate 1073 1073
Embedding Size 64 128
Middle Layer Size 512 512
Keep Probability 0.7 0.7

A.2 BINNED PER-LABEL PERFORMANCE NUMBERS FOR LESS FREQUENT LABELS

Table 8: AUROC results for binned per-label performance on labels with at most 1,000 positive
examples for the small disease prediction task.

Number of Positive Model

Examples

Simple Baseline

Flat Sigmoid

Bayesian Network of Sigmoids

5-10 0.66 (0.65-0.66)  0.68 (0.68-0.68) 0.77 (0.77-0.77)
5-10 0.66 (0.65-0.66)  0.68 (0.68-0.68) 0.77 (0.77-0.77)
11-25 0.74 (0.74-0.74)  0.70 (0.70-0.70) 0.79 (0.79-0.80)
26-50 0.78 (0.78-0.79)  0.72 (0.72-0.72) 0.81 (0.80-0.81)
51-100 0.80 (0.79-0.80)  0.74 (0.74-0.74) 0.81 (0.80-0.81)
101-250 0.81 (0.81-0.81)  0.76 (0.76-0.76) 0.81 (0.81-0.81)
251-500 0.82 (0.82-0.82)  0.77 (0.77-0.77) 0.81 (0.80-0.81)
501-1000 0.83 (0.83-0.83)  0.80 (0.79-0.80) 0.82 (0.82-0.82)
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Table 9: Average precision results for binned per-label performance on labels with at most 1,000

positive examples for the small disease prediction task.

Number of Positive

Examples

Simple Baseline

Model

Flat Sigmoid

Bayesian Network of Sigmoids

5-10
11-25
26-50

51-100
101-250
251-500

501-1000

0.09 (0.08-0.09)
0.11 (0.10-0.11)
0.10 (0.10-0.11)
0.08 (0.08-0.09)
0.08 (0.08-0.08)
0.08 (0.08-0.08)
0.10 (0.10-0.10)

0.06 (0.06-0.07)
0.04 (0.04-0.04)
0.04 (0.04-0.04)
0.04 (0.04-0.04)
0.05 (0.04-0.05)
0.06 (0.06-0.06)
0.09 (0.09-0.09)

0.23 (0.22-0.23)
0.19 (0.19-0.19)
0.15 (0.15-0.15)
0.12 (0.11-0.12)
0.10 (0.09-0.10)
0.09 (0.09-0.09)
0.11 (0.11-0.11)

Table 10: AUROC results for binned per-label performance on labels with at most 1,000 positive
examples for the large disease prediction task.

Number of Positive Model

Examples Simple Baseline Flat Sigmoid Bayesian Network of Sigmoids

5-10 0.45 (0.42-0.48)  0.69 (0.66-0.72) 0.71 (0.68-0.73)

11-25 0.50 (0.48-0.51)  0.75 (0.74-0.77) 0.76 (0.74-0.78)

26-50 0.67 (0.65-0.68)  0.79 (0.77-0.80) 0.79 (0.77-0.80)

51-100 0.76 (0.76-0.77)  0.80 (0.80-0.81) 0.81 (0.80-0.82)

101-250 0.81(0.81-0.82)  0.82 (0.82-0.83) 0.82 (0.82-0.82)

251-500 0.83 (0.82-0.83)  0.83 (0.83-0.84) 0.84 (0.83-0.84)

501-1000 0.85 (0.85-0.85)  0.85 (0.85-0.85) 0.85 (0.85-0.85)

Table 11: Average precision results for binned per-label performance on labels with at most 1,000

positive examples for the large disease prediction task.

Number of Positive

Examples

Simple Baseline

Model

Flat Sigmoid

Bayesian Network of Sigmoids

5-10
11-25
26-50

51-100
101-250
251-500

501-1000

0.08 (0.05-0.11)
0.11 (0.10-0.13)
0.25 (0.23-0.27)
0.33 (0.32-0.35)
0.35 (0.34-0.36)
0.31 (0.30-0.32)
0.29 (0.29-0.30)

0.33 (0.28-0.37)
0.38 (0.36-0.41)
0.42 (0.39-0.44)
0.39 (0.37-0.40)
0.36 (0.35-0.37)
0.32 (0.31-0.33)
0.29 (0.28-0.29)
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0.38 (0.34-0.43)
0.43 (0.40-0.46)
0.45 (0.43-0.47)
0.43 (0.42-0.45)
0.39 (0.38-0.39)
0.35 (0.35-0.36)
0.32 (0.31-0.32)
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Table 12: AUROC results for binned per-label performance on labels with at most 1,000 positive

examples for the protein function prediction task.

Number of Positive

Examples

Simple Baseline

Model

Flat Sigmoid

Bayesian Network of Sigmoids

5-10
11-25
26-50

51-100
101-250
251-500

501-1000

Table 13: Average precision results for binned per-label performance on labels with at most 1,000

0.62 (0.60-0.63)
0.61 (0.60-0.62)
0.63 (0.61-0.64)
0.63 (0.62-0.65)
0.64 (0.63-0.65)
0.64 (0.63-0.65)
0.65 (0.64-0.66)

0.73 (0.71-0.75)
0.74 (0.72-0.76)
0.77 (0.75-0.79)
0.78 (0.76-0.79)
0.77 (0.75-0.78)
0.76 (0.75-0.78)
0.75 (0.74-0.77)

positive examples for the protein function prediction task.

0.80 (0.79-0.82)
0.80 (0.79-0.82)
0.80 (0.78-0.82)
0.81 (0.79-0.82)
0.79 (0.78-0.81)
0.78 (0.77-0.79)
0.77 (0.76-0.78)

Number of Positive

Examples

Simple Baseline

Model

Flat Sigmoid

Bayesian Network of Sigmoids

5-10
11-25
26-50

51-100
101-250
251-500

501-1000

0.19 (0.17-0.22)
0.15 (0.13-0.17)
0.13 (0.11-0.15)
0.12 (0.11-0.14)
0.12 (0.10-0.13)
0.12 (0.11-0.14)
0.16 (0.15-0.18)

0.16 (0.14-0.18)
0.18 (0.17-0.20)
0.21 (0.18-0.23)
0.21 (0.19-0.23)
0.21 (0.19-0.23)
0.22 (0.20-0.24)
0.27 (0.25-0.29)
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0.23 (0.21-0.26)
0.21 (0.19-0.23)
0.21 (0.19-0.23)
0.20 (0.18-0.22)
0.21 (0.20-0.23)
0.22 (0.20-0.23)
0.27 (0.25-0.29)
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A.3 PROTEIN REWEIGHTED FLAT SIGMOID BASELINE BINNED PER-LABEL PERFORMANCE
NUMBERS FOR LESS FREQUENT LABELS

Table 14: AUROC results for binned per-label performance on labels with at most 1,000 positive
examples for the protein function prediction task with the reweighted flat sigmoid baseline.

Number of Positive Examples Reweighted Flat Sigmoid

5-10 0.76 (0.74-0.77)

11-25 0.76 (0.74-0.78)
26-50 0.77 (0.76-0.79)
51-100 0.79 (0.77-0.80)
101-250 0.78 (0.76-0.79)
251-500 0.77 (0.76-0.79)

501-1000 0.77 (0.75-0.78)

Table 15: Average precision results for binned per-label performance on labels with at most 1,000
positive examples for the protein function prediction task with the reweighted flat sigmoid baseline.

Number of Positive Examples Reweighted Flat Sigmoid

5-10 0.14 (0.12-0.16)

11-25 0.16 (0.14-0.18)
26-50 0.17 (0.17-0.22)
51-100 0.22 (0.19-0.23)
101-250 0.22 (0.20-0.24)
251-500 0.22 (0.21-0.24

501-1000 0.27 (0.25-0.29)
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