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ABSTRACT

Recent studies have highlighted adversarial examples as a ubiquitous threat to dif-
ferent neural network models and many downstream applications. Nonetheless,
as unique data properties have inspired distinct and powerful learning principles,
this paper aims to explore their potentials towards mitigating adversarial inputs.
In particular, our results reveal the importance of using the temporal dependency
in audio data to gain discriminate power against adversarial examples. Tested on
the automatic speech recognition (ASR) tasks and three recent audio adversarial
attacks, we find that (i) input transformation developed from image adversarial de-
fense provides limited robustness improvement and is subtle to advanced attacks;
(ii) temporal dependency can be exploited to gain discriminative power against
audio adversarial examples and is resistant to adaptive attacks considered in our
experiments. Our results not only show promising means of improving the robust-
ness of ASR systems but also offer novel insights in exploiting domain-specific
data properties to mitigate negative effects of adversarial examples.

1 INTRODUCTION

Deep Neural Networks (DNNs) have been widely adopted in a variety of machine learning applica-
tions (Krizhevsky et al., 2012; Hinton et al., 2012; Levine et al., 2016). However, recent work has
demonstrated that DNNs are vulnerable to adversarial perturbations (Szegedy et al., 2014; Goodfel-
low et al., 2015). An adversary can add negligible perturbations to inputs and generate adversarial
examples to mislead DNNs, first found in image-based machine learning tasks (Goodfellow et al.,
2015; Carlini & Wagner, 2017a; Liu et al., 2017; Chen et al., 2017b;a; Su et al., 2018).

Beyond images, given the wide application of DNN-based audio recognition systems, such as
Google Home and Amazon Alexa, audio adversarial examples have also been studied recently (Car-
lini & Wagner, 2018; Alzantot et al., 2018; Cisse et al., 2017; Kreuk et al., 2018). Comparing
between image and audio learning tasks, although their state-of-the-art DNN architectures are quite
different (i.e., convolutional v.s. recurrent neural networks), the attacking methodology towards gen-
erating adversarial examples is fundamentally unanimous - finding adversarial perturbations through
the lens of maximizing the training loss or optimizing some designed attack objectives. For exam-
ple, the same attack loss function proposed in (Cisse et al., 2017) is used to generate adversarial
examples in both visual and speech recognition models. Nonetheless, different types of data usu-
ally possess unique or domain-specific properties that can potentially be used to gain discriminative
power against adversarial inputs. In particular, the temporal dependency in audio data is an innate
characteristic that has already been widely adopted in the machine learning models. However, in
addition to improving learning performance on natural audio examples, it is still an open question
on whether or not the temporal dependency can be exploited to help mitigate negative effects of
adversarial examples.

The focus of this paper has two folds. First, we investigate the robustness of automatic speech
recognition (ASR) models under input transformation, a commonly used technique in the image
domain to mitigate adversarial inputs. Our experimental results show that four implemented trans-
formation techniques on audio inputs, including waveform quantization, temporal smoothing, down-
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sampling and autoencoder reformation, provide limited robustness improvement against the recent
attack method proposed in (Athalye et al., 2018), which aims to circumvent the gradient obfuscation
issue incurred by input transformations. Second, we demonstrate that temporal dependency can be
used to gain discriminative power against adversarial examples in ASR. We perform the proposed
temporal dependency method on both the LIBRIS (Graetz et al., 1986) and Mozilla Common Voice
datasets against three state-of-the-art attack methods (Carlini & Wagner, 2018; Alzantot et al., 2018;
Yuan et al., 2018) considered in our experiments and show that such an approach achieves promis-
ing identification of non-adaptive and adaptive attacks. Moreover, we also verify that the proposed
method can resist strong proposed adaptive attacks in which the defense implementations are known
to an attacker. Finally, we note that although this paper focuses on the case of audio adversarial
examples, the methodology of leveraging unique data properties to improve model robustness could
be naturally extended to different domains. The promising results also shed new lights in designing
adversarial defenses against attacks on various types of data.

Related work An adversarial example for a neural network is an input xadv that is similar to a
natural input x but will yield different output after passing through the neural network. Currently,
there are two different types of attacks for generating audio adversarial examples: the Speech-to-
Label attack and the Speech-to-Text attack. The Speech-to-Label attack aims to find an adversarial
example xadv close to the original audio x but yields a different (wrong) label. To do so, Alzantot
et al. proposed a genetic algorithm (Alzantot et al., 2018), and Cisse et al. proposed a probabilistic
loss function (Cisse et al., 2017). The Speech-to-Text attack requires the transcribed output of the
adversarial audio to be the same as the desired output, which has been made possible by Carlini and
Wagner (Carlini & Wagner, 2018) using optimization-based techniques operated on the raw wave-
forms. Iter et al. leveraged extracted audio features called Mel Frequency Cepstral Coefficients
(MFCCs) (Iter et al., 2017). Yuan et al. demonstrated the practical “wav-to-API” audio adversarial
attacks (Yuan et al., 2018). Another line of research focuses on adversarial training or data augmen-
tation to improve model robustness (Serdyuk et al., 2016; Michelsanti & Tan, 2017; Sriram et al.,
2017; Sun et al., 2018), which is beyond our scope. Our proposed approach focuses on gaining the
discriminative power against adversarial examples through embedded temporal dependency, which
is compatible with any ASR model and does not require adversarial training or data augmentation.

2 DO LESSONS FROM IMAGE ADVERSARIAL EXAMPLES TRANSFER TO
AUDIO DOMAIN?

Although in recent years both image and audio learning tasks have witnessed significant break-
throughs accomplished by advanced neural networks, these two types of data have unique properties
that lead to distinct learning principles. In images, the pixels entail spatial correlations corresponding
to hierarchical object associations and color descriptions, which are leveraged by the convolutional
neural networks (CNN) for feature extraction. In audios, the waveforms possess apparent temporal
dependency, which is widely adopted by the recurrent neural networks (RNNs). For the segmenta-
tion task in the image domain, spatial consistency has played an important role in improving model
robustness (Lowe, 1999). However, it remains unknown whether temporal dependency can have a
similar effect of improving model robustness against audio adversarial examples. In this paper, we
aim to address the following fundamental questions: (a) do lessons learned from image adversarial
examples transfer to the audio domain?; and (b) can temporal dependency be used to discriminate
audio adversarial examples? Moreover, studying the discriminative power of temporal dependency
in audios not only highlights the importance of using unique data properties towards building robust
machine learning models but also aids in devising principles for investigating more complex data
such as videos (spatial + temporal properties) or multimodal cases (e.g., images + texts).

Here we summarize two primary findings concluded from our experimental results in Section 4.

Audio input transformation is not effective against adversarial attacks Input transformation is a
widely adopted defense technique in the image domain, owing to its low operating cost and easy in-
tegration with the existing network architecture (Luo et al., 2015; Wang et al., 2016; Dziugaite et al.,
2016). Generally speaking, input transformation aims to perform certain feature transformation on
the raw image in order to disrupt the adversarial perturbations before passing it to a neural network.
Popular approaches include bit quantization, image filtering, image reprocessing, and autoencoder
reformation (Xu et al., 2017; Guo et al., 2017; Meng & Chen, 2017). However, many existing
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methods are shown to be bypassed by subsequent or adaptive adversarial attacks (Carlini & Wagner,
2017b; He et al., 2017; Carlini & Wagner, 2017c; Lu et al., 2018). Moreover, Athalye et al. (Athalye
et al., 2018) has pointed out that input transformation may cause obfuscated gradients when gener-
ating adversarial examples and thus gives a false sense of robustness. They also demonstrated that in
many cases this gradient obfuscation issue can be circumvented, making input transformation still
vulnerable to adversarial examples. Similarly, in our experiments we find that audio input transfor-
mations based on waveform quantization, temporal filtering, signal downsampling or autoencoder
reformation suffers from similar weakness: the tested model with input transformation becomes
fragile to adversarial examples when one adopts the attack considering gradient obfuscation as in
(Athalye et al., 2018).

Temporal dependency possesses strong discriminative power against adversarial examples in
automatic speech recognition Instead of input transformation, in this paper, we propose to exploit
the inherent temporal dependency in audio data to discriminate adversarial examples. Tested on the
automatic speech recognition (ASR) tasks, we find that the proposed methodology can effectively
detect audio adversarial examples while minimally affecting the recognition performance on nor-
mal examples. In addition, experimental results show that a considered adaptive adversarial attack,
even when knowing every detail of the deployed temporal dependency method, cannot generate
adversarial examples that bypass the proposed temporal dependency-based approach.

Combining these two primary findings, we conclude that the weakness of defense techniques iden-
tified in the image case is very likely to be transferred to the audio domain. On the other hand,
exploiting unique data properties to develop defense methods, such as using temporal dependency
in ASR, can lead to promising defense approaches that can resist adaptive adversarial attacks.

3 INPUT TRANSFORMATION AND TEMPORAL DEPENDENCY IN AUDIO DATA

In this section, we will introduce the effect of basic input transformations on audio adversarial
examples, and analyze temporal dependency in audio data. We will also show that such temporal
dependency can be potentially leveraged to discriminate audio adversarial examples.

3.1 AUDIO ADVERSARIAL EXAMPLES UNDER SIMPLE INPUT TRANSFORMATIONS

Inspired by image input transformation methods and as a first attempt, we applied some primitive
signal processing transformations to audio inputs. These transformations are useful, easy to imple-
ment, fast to operate and have delivered several interesting findings.

Quantization: By rounding the amplitude of audio sampled data into the nearest integer multiple
of q, the adversarial perturbation could be disrupted since its amplitude is usually small in the input
space. We choose q = 128, 256, 512, 1024 as our parameters.

Local smoothing: We use a sliding window of a fixed length for local smoothing to reduce the
adversarial perturbation. For an audio sample xi, we consider the K − 1 samples before and after
it, denoted by [xi−K+1, . . . , xi, . . . , xi+K−1], as a local reference sequence and replace xi by the
smoothed value (average, median, etc) of its reference sequence.

Downsampling: Based on sampling theory, it is possible to down-sample a band-limited audio file
without sacrificing the quality of the recovered signal while mitigating the adversarial perturbations
in the reconstruction phase. In our experiments, we down-sample the original 16kHz audio data to
8kHz and then perform signal recovery.

Autoencoder: In adversarial image defending field, the MagNet defensive method (Meng & Chen,
2017) is an effective way to remove adversarial noises: Implement an autoencoder to project the
adversarial input distribution space into the benign distribution. In our experiments, we implement
a sequence-to-sequence autoencoder and the whole audio will be cut into frame-level pieces passing
through the autoencoder and concatenate them in the final stage, while using the whole audio passing
the autoencoder directly is proved to be ineffective and hard to utilize the underlying information.
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Figure 1: Pipeline and example of the proposed temporal dependency (TD) based method for dis-
criminating audio adversarial examples.

3.2 TEMPORAL DEPENDENCY BASED METHOD (TD)

Due to the fact that audio sequence has an explicit temporal dependency (e.g., correlations in con-
secutive waveform segments), here we aim to explore if such temporal dependency will be affected
by adversarial perturbations. The pipeline of the temporal dependency based method is shown in
Figure 1. Given an audio sequence, we propose to select the first k portion of it (i.e., the prefix of
length k) as input for ASR to obtain transcribed results as Sk. We will also insert the whole sequence
into ASR and select the prefix of length k of the transcribed result as S{whole,k}, which has the same
length as Sk. We will then compare the consistency between Skand S{whole,k}in terms of temporal
dependency distance. Here we adopt the word error rate (WER) as the distance metric (Levenshtein,
1966). For normal/benign audio instance, Sk and S{whole,k} should be similar since the ASR model
is consistent for different sections of a given sequence due to its temporal dependency. However,
for audio adversarial examples, since the added perturbation aims to alter the ASR output toward
the targeted transcription, it may fail to preserve the temporal information of the original sequence.
Therefore, due to the loss of temporal dependency, Sk and S{whole,k} , in this case, will not be able
to produce consistent results. Based on such hypothesis, we leverage the prefix of length k of the
transcribed results and the transcribed k portion to potentially recognize adversarial inputs.

4 EXPERIMENTAL RESULTS

The presentation flows of the experimental results are summarized as follows. We will first in-
troduce the datasets, target learning models, attack methods, and evaluation metrics for different
defense/detection methods that we focus on. We then discuss the defense/detection effectiveness
for different methods against each attack respectively. Finally, we evaluate strong adaptive attacks
against these defense/detection methods. We show that due to different data properties, the autoen-
coder based defense cannot effectively recover the ground truth for adversarial audios and may also
have negative effects on benign instances as well. Input transformation is less effective in defending
adversarial audio than images. In addition, even when some input transformation is effective for
recovering some adversarial audio data, we find that it is easy to perform adaptive attacks against
them. The proposed TD method can effectively detect adversarial audios generated by different at-
tacks targeting on various learning tasks (classification and speech-to-text translation). In particular,
we propose different types of strong adaptive attacks against the TD detection method. We show
that these strong adaptive attacks are not able to generate effective adversarial audio against TD and
we provide some case studies to further understand the performance of TD.

4.1 EXPERIMENTAL SETUP

In our experiments, we measure the effectiveness on several adversarial audio generation methods.
For audio classification attack, we used Speech Commands dataset. For the speech-to-text attack,
we benchmark each method on both LibriSpeech and Mozilla Common Voice dataset. In particular,
for the Commander Song attack (Yuan et al., 2018), we measure the generated adversarial audios
given by the authors.
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Dataset LibriSpeech dataset: LibriSpeech (Panayotov et al., 2015) is a corpus of approximately
1000 hours of 16Khz English speech derived from audiobooks from the LibriVox project. We used
samples from its test-clean dataset in their website and the average duration is 4.294s. We generated
adversarial examples using the attack method in (Carlini & Wagner, 2018).

Mozilla Common Voice dataset: Common Voice is a large audio dataset provided by Mozilla. This
dataset is public and contains samples from human speaking audio files. We used the 16Khz-
sampled data released in (Carlini & Wagner, 2018), whose average duration is 3.998s. The first
100 samples from its test dataset are used to mount attacks, which is the same attack experimental
setup as in (Carlini & Wagner, 2018).

Speech Commands dataset: Speech Commands dataset (Warden, 2018) is an audio dataset contains
65000 audio files. Each audio is just a single command lasting for one second. Commands are
”yes”, ”no”, ”up”, ”down”, ”left”, ”right”, ”on”, ”off”, ”stop”, and ”go”.

Model and learning tasks For the speech-to-text task, we use DeepSpeech speech-to-text transcrip-
tion network, which is a biRNN based model with beam search to decode text. For audio classifi-
cation task, we use a convolutional speech commands classification model. For the Command Song
attack, we evaluate the performance on Kaldi speech recognition platform.

Attack Methods

Genetic algorithm based attack against audio classification (GA): For the audio classification task,
we consider the state-of-the-art attack proposed in (Alzantot et al., 2018). Here an audio classifica-
tion model is attacked and the audio classes include “yes, no, up, down, etc.”. They aimed to attack
such a network to misclassify an adversarial instance based on either targeted or untargeted attack.

Commander Song attack against speech-to-text translation (Commander): Commander Song (Yuan
et al., 2018) is a speech-to-text targeted attack which can attack audio extracted from popular songs.
The adversarial audio can even be played over the air with its adversarial characteristics. Since the
Commander Song codes are not available, we measure the effectiveness of the generated adversarial
audios given by the authors.

Optimization based attack against speech-to-text translation (Opt): We consider the targeted speech-
to-text attack proposed by (Carlini & Wagner, 2018), which uses CTC-loss in a speech recognition
system as an objective function and solves the task of adversarial attack as an optimization problem.

Evaluation Metrics For defense method such as input transformation, since it aims to recover the
ground truth (original instances) from adversarial instances, we use the word error rate (WER) and
character error rate (CER) (Levenshtein, 1966) as evaluation metrics to measure the recovery effi-
ciency. WER and CER are commonly used metrics to measure the error between recovered text and
the ground truth in word level or character level. Generally speaking, the error rate (ER) is defined
by ER = S+D+I

N , where S,D, I is the number of substitutions, deletions and insertions calculated
by dynamic string alignment, and N is the total number of word/character in the ground truth text.

To fairly evaluate the effectiveness of these transformations against speech-to-text attack, we also
report the ratio of translation distance between instance and corresponding ground truth before and
after transformation. For instance, as a controlled experiment, given an audio instance x (adversar-
ial instance is denoted as xadv), its corresponding ground truth y, and the ASR function g(·), we
calculate the effectiveness ratio for benign instances as Rbenign = D(g(T (x)),y)

D(g(x),y) , where T (·) denotes
the result of transformation and D(·, ·) characterizes the distance function (WER and CER in our
case). For adversarial audio, we calculate the similar efficiency ratio as Radv =

D(g(T (xadv)),y)
D(g(xadv),y)

.

For the detection method, the standard evaluation metric is the area under curve (AUC) score, aiming
to evaluate the detection efficiency. The proposed TD method is the first data-specific metric to de-
tect adversarial audio, which focuses on how many adversarial instances are captured (true positive)
without affecting benign instances (false positive). Therefore, we follow the standard criteria and
report AUC for TD. For the proposed TD method, we compare the temporal dependency based on
WER, CER, as well as the longest common prefix (LCP). LCP is a commonly used metric to evalu-
ate the similarity between two strings. Given strings b1 and b2, the corresponding LCP is defined as
maxb1[:k]=b2[:k] k, where [: k] represents the prefix of length k of a translated sentence.
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Table 1: List of adversarial audio based attacks and corresponding evaluation results for defense and
detection methods

Learning tasks Classification Speech-to-Text
Attack methods Genetic Algorithm (GA) CommanderSong (Commander) Opt. attack (Opt)

Datasets SpeechCommand Some popular songs LibriSpeech CommonVoice

Evaluation metrics of defense Average attack
success rate

Target command
recognition rate

Efficiency ratio
Rbenign/Radv

Defense
Method

Without defense 84% 100% 1.0 / 1.0 1.0 / 1.0

Input
trans.

Down Samp. 3.2% 8% 3.87 / 0.40 1.13 / 0.73
Quan-256 2.1% 4% 1.13 / 0.28 1.56 / 0.74
Median-4 2.7% 4% 1.18 / 0.34 0.98 / 0.77

Autoencoder 8.2% - 9.84 / 0.97 2.09 / 0.80
Evaluation metrics for detection - Detection rate AUC score
Detection results of TD Method - 1.00 0.930 0.936

4.2 EVALUATION OF DEFENSE METHODS AGAINST ADVERSARIAL AUDIO

In this section, we measured our defense method of autoencoder based defense and input transfor-
mation defense for classification attack (GA) and speech-to-text attack (Commander and Opt). We
summarize our work in Table 1 and list some basic results. For Commander, due to unreleased train-
ing data, we are not able to train an autoencoder. For GA and Opt we have sufficient data to train
autoencoder.

Input Transformation as Defense

Here we perform the primitive input transformation for audio classification targeted attacks and
evaluate the corresponding effects. Due to the space limitation, we defer the results of untargeted
attacks to the supplemental materials.

GA We first evaluate our input transformation against the audio classification attack (GA) in (Alzan-
tot et al., 2018). We implemented their attack with 500 iterations and limit the magnitude of adver-
sarial perturbation within 5 (smaller than the quantization we used in transformation) and generated
50 adversarial examples per attack task (more targets are shown in the supplementary material).
The attack success rate is 84% on average. For the ease of illustration, we use Quantization-256
as our input transformation. As observed in Figures 2 and 3, the attack success rates decreased to
only 2.1%, and 63.8% of the adversarial instances have been converted back to their original (true)
label. We also measure the possible effects on original audio due to our transformation methods:
the original audio classification accuracy without our transformation is 89.2%, and the rate slightly
decreased to 89.0% after our transformation, which means the effects of input transformation on
benign instances are negligible. In addition, it also shows that for classification tasks, such input
transformation is more effective in mitigating the negative effects of adversarial perturbation. This
potential reason could be that classification tasks do not rely on audio temporal dependency but fo-
cus on local features, while speech-to-text task will be harder to defend based on the tested input
transformations.

Figure 2: Attack success rates (%) Figure 3: Attack success (%) after transformation

Commander We also evaluate our input transformation method against the Commander Song at-
tack (Yuan et al., 2018), which implemented an Air-to-API adversarial attack. In the paper, the
authors reported 91% attack detection rate using their defense method. We measured our Quan-256
input transformation on 25 adversarial examples obtained via personal communications. Based on
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the same detection evaluation metric in (Yuan et al., 2018)1, Quan-256 attains 100% detection rate
for characterizing all the adversarial examples.

Opt Here we consider the state-of-the-art audio attack proposed in (Carlini & Wagner, 2018). We
separately choose 50 audio files from two audio datasets (Common Voice, LIBRIS) and generate
attacks based on the CTC-loss. We evaluate several primitive signal processing methods as input
transformation under WER and CER metrics in Table A1 and A2. We then also evaluate the WER
and CER based effectiveness ratio we mentioned before to Quantify the effectiveness of transforma-
tion. Rbenign are shown in the brackets for the first two columns in Table A1 and A2, while Radv is
shown in the brackets of last two columns within those tables. We compute our results using both
ground truth and adversarial target “This is an adversarial example” as references.

Here small Rbenign which is close to 1 indicates that transformation has little effect on benign
instances, small Radv represents transformation is effective recovering adversarial audio back to
benign. From Tables A1 and A2 we showed that most of the input transformations (e.g., Median-4,
Downsampling and Quan-256) effectively reduce the adversarial perturbation without affecting the
original audio too much.

Although these input transformations show certain effectiveness in defending against adversarial au-
dios, we find that it is still possible to generate adversarial audios by adaptive attacks in Section 4.4.

Autoencoder as Defense

Towards defending against (non-adaptive) adversarial images, MagNet (Meng & Chen, 2017) has
achieved promising performance by using an autoencoder to mitigate adversarial perturbation. In-
spired by it, here we apply a similar autoencoder structure for audio and test if such input transfor-
mation can be applied to defending against adversarial audio. We apply a MagNet-like method for
feature-extracted audio spectrum map: we build an encoder to compress the information of origin
audio features into latent vector z, then use z for reconstruction by passing through another decoder
network under frame level and combine them to obtain the transformed audio (Hsu et al., 2017).
Here we analyzed the performance of Autoencoder transformation in both GA and Opt attack. We
find that MagNet which gained great effectiveness on defending adversarial images in the oblivious
attack setting (Carlini & Wagner, 2017c; Lu et al., 2018), has limited effect on the audio defense.

GA We presented our results in Table 1 that against classification attack, Autoencoder did not per-
form well by only reducing attack success rate to 8.2% defeat by other input transformation meth-
ods. Since you can reduce the attack success rate to 10% by just destroying the origin audio data
and altering to random guess, it’s hard to say that Autoencoder method has good performance.

Opt We report that the autoencoder works not very well for transforming benign instances (57.6
WER in Common Voice compared to 27.5 WER without transformation, 30.0 WER in LIBRIS
compared to 12.4 WER without transformation), also fails to recover adversarial audio (76.5 WER
in Common Voice and 99.4 WER in LIBRIS). This shows that the non-adaptive additive adversarial
perturbation can bypass the MagNet-like autoencoder on audio, which implies different robustness
implications of image and audio data.

4.3 EVALUATION OF TD DETECTION METHOD AGAINST ADVERSARIAL AUDIO

In this section, we will evaluate the proposed TD detection method on different attacks. We will
first report the AUC for detecting different attacks with TD to demonstrate the effectiveness, and we
will provide some additional analysis and examples to help better understand TD. We only evaluate
our TD method on speech-to-text attacks (Commander and Opt) because of the audio in the Speech
Commands dataset for classification attack is just a single command lasting for one second and thus
its temporal dependency is not obvious.

Commander In Commander Song attack, we directly examine whether the generated adversarial
audio is consistent with its prefix of length k or not. We report that by using TD method with k = 1

2 ,
all the generated adversarial samples showed inconsistency and thus were successfully detected.

Opt Here we show the empirical performance of distinguishing adversarial audios by leveraging
the temporal dependency of audio data. In the experiments, we use these three metrics, WER,

1The authors set the detection threshold to be 0 and we used the same setting here.
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CER and LCP, to measure the inconsistency between Sk and S{whole,k}. As a baseline, we also
directly train a one layer LSTM with 64 hidden feature dimensions based on the collected adversarial
and benign audio instances for classification. Some examples of translated results for benign and
adversarial audios are shown in Table 2. Here we consider three types of adversarial targets: short
– hey google; medium – this is an adversarial example; and long – hey google please cancel my
medical appointment. We report the AUC score for these detection results for k = 1/2 in Table 3.

Table 2: Examples of the temporal dependency based detection method

Type Transcribed results
Original then good bye said the rats and they went home
the first half of Original then good bye said the raps

Adversarial (short) hey google
First half of Adversarial he is
Adversarial (medium) this is an adversarial example
First half of Adversarial thes on adequate
Adversarial (long) hey google please cancel my medical appointment
First half of Adversarial he goes cancer

We can see that by using WER as the detection metric, the temporal dependency based method can
achieve AUC as high as 0.936 on Common Voice and 0.93 on LIBRIS. We also explore different val-
ues of k and we observe that the results do not vary too much (detailed results can be found in Table
A6 in Appendix). When k = 4/5, the AUC score based on CER can reach 0.969, which shows that
such temporal dependency based method is indeed promising in terms of distinguishing adversarial
instances. Interestingly, these results suggest that the temporal dependency based method would
suggest an easy-implemented but effective method for characterizing adversarial audio attacks.

4.4 ADAPTIVE ATTACKS AGAINST DEFENSE AND DETECTION METHODS

In this section, we measured some adaptive attack against the defense and detection methods. Since
the autoencoder based defense almost fails to defend against different attacks, here we will focus on
the input transformation based defense and TD detection. Given that Opt is the strongest attack here,
we will mainly apply Opt to perform adaptive attack against the speech-to-text translation task. We
list our experiments’ structure in Table 4. For full results please refer to the Appendix.

Adaptive Attacks Against Input Transformations Here we apply adaptive attacks against the pre-
ceding input transformations and therefore evaluate the robustness of the input transformation as
defenses. We implemented our adaptive attack based on three input transformation methods: Quan-
tization, Local smoothing, and Downsampling. For these transformations, we leverage a gradient-
masking aware approach to generate adaptive attacks.

In the optimization based attack (Carlini & Wagner, 2018), the attack achieved by solving the opti-
mization problem: minδ ‖δ‖22 + c · l(x+ δ, t), where δ is referred to the perturbation, x the benign
audio, t the target phrase, and l(·) the CTC-loss. Parameter c is iterated to trade off the importance
of being adversarial and remaining close to the original instance.

For quantization transformation, we assume the adversary knows the quantization parameter q. We
then change our attack targeted optimization function to minδ ‖qδ‖22 + c · l(x+ qδ, t). After that, all
the adversarial audios can be resistant against quantization transformations and it only increased a
small magnitude of adversarial perturbation, which can be ignored by human ears. When q is large
enough, the distortion would increase but the transformation process is also ineffective due to too
much information loss.

For downsampling transformation, the adaptive attack is conducted by performing the attack on the
sampled elements of origin audio sequence. Since the whole process is differentiable, we can do
adaptive attack through gradient directly and all the adversarial audios are able to attack.

For local smoothing transformation, it is also differentiable in case of average smoothing transfor-
mation, so we can pass the gradient effectively. To attack against median smoothing transformation,
we can just convert the gradient back to the median and update its value, which is similar to the max-
pooling layer’s backpropagation process. By implementing the adaptive attack, all the smoothing
transformation is shown to be ineffective.

8



Published as a conference paper at ICLR 2019

Table 3: AUC results of the proposed temporal dependency method

Dataset LSTM TD (WER) TD (CER) TD (LCP ratio)
Common Voice 0.712 0.936 0.916 0.859

LIBRIS 0.645 0.930 0.933 0.806

Table 4: Evaluation of adaptive attacks
Attack methods Optimization based attack (Opt)

Datasets LibriSpeech CommonVoice
Evaluation metrics of adaptive attack Attack success rate

Defense
Method

Input
trans.

Down Samp. 92% 90%
Quan-256 98% 100%
Median-4 98% 96%

Evaluation metrics for detection AUC score
Detection results of TD Method 0.930 0.936

Segment attack 2% success rate 2% success rate
Concatenation attack Failed. Failed.

Combination attack under both random kA and kD 0.873 0.877

We chose our samples randomly from LIBRIS and Common Voice audio dataset with 50 audio
samples each. We implemented our adaptive attack on the samples and passed them through the
corresponding input transformation. We use down-sampling from 16kHZ to 8kHZ, median / av-
erage smoothing with one-sided sequence length K = 4, quantization method with q = 256 as
our input transformation methods. In (Carlini & Wagner, 2018), Decibels (a logarithmic scale that
measures the relative loudness of an audio sample) is applied as the measurement of the magnitude
of perturbation: dB(x) = maxi 20 · log10(xi), which x referred as adversarial audio sampled se-
quence. The relative perturbation is calculated as dBx(δ) = dB(δ)− dB(x), where δ is the crafted
adversarial noise.

We measured our adaptive attack based on the same criterion. We show that all the adaptive attacks
become effective with reasonable perturbation, as shown in Table 6. As suggested in (Carlini &
Wagner, 2018), almost all the adversarial audios have distortion dBx(δ) from -15dB to -45dB which
is tolerable to human ears. From Table 6, the added perturbation are mostly within this range.

Adaptive Attacks Against Temporal Dependency Based Method To thoroughly evaluate the ro-
bustness of temporal dependency based method, we also perform some strong adaptive attack against
it. Notably, even if the adversary knows k, the adaptive attack is hard to conduct due to the fact that
this process is non-differentiable. Therefore, we propose three types of strong adaptive attacks here
aiming to explore the robustness of the temporal consistency based method.

Segment attack: Given the knowledge of k, we first split the audio into two parts: the prefix of
length k of the audio Sk and the rest Sk− . We then apply a similar attack to add perturbation to only
Sk. We hope this audio can be attacked successfully without changing Sk−since the second part
would not receive gradient updates. Therefore, when performing the temporal-based consistency
check, T (Sk) would be translated consistently with T (S{whole,k}).

Concatenation attack: To maximally leverage the information of k, here we propose two ways to
attack both Sk and Sk− individually, and then concatenate them together.

1. the target of Sk is the first k−portion of the adversarial target, and Sk− is attacked to the rest.

2. the target of Sk is the whole adversarial target, while we attack Sk− to be silence, which means
Sk− transcribing nothing. This is different from the segment attack where Sk− is not modified at
all.

Combination attack: To balance the attack success rate for both sections and the whole sentence
against TD, we apply the attack objective function as minδ ‖δ‖22 + c · (l(x+ δ, t) + l((x+ δ)k, tk),
where x refers to the whole sentence.

For segment attack, we found that in most cases the attack cannot succeed, that the attack success
rate remains at 2% for 50 samples in both LIBRIS and Common Voice datasets, and some of the
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Table 5: AUC of detecting Combination Attack based on TD method
Combination Detection TD metrics

Attack Parameter kD WER CER LCP

kA = { 1
2
}

1/2 0.607 0.518 0.643
2/3 0.957 0.965 0.881

Rand(0.2, 0.8) 0.889 0.882 0.776

kA = { 1
2
, 2
3
, 3
4
}

1/2 0.665 0.682 0.604
2/3 0.653 0.664 0.564
3/4 0.633 0.653 0.601

Rand(0.2, 0.8) 0.785 0.832 0.642

Table 6: The dBx(δ) evaluation of adaptive attack

Dataset Non-adaptive Downsample Quantization-256 Median-4 Average-4
LIBRIS -36.06 -21.42 -11.02 -23.58 -25.64

CommmonVoice -35.65 -20.91 -9.48 -23.42 -25.12

examples are shown in Appendix. We conjecture the reasons as: 1. Sk alone is not enough to be
attacked to the adversarial target due to the temporal dependency; 2. the speech recognition results
on Sk− cannot be applied to the whole recognition process and therefore break the recognition
process for Sk.

For concatenation attack, we also found that the attack itself fails. That is, the transcribed result
of adv(Sk)+adv(Sk− ) differs from the translation result of Sk+Sk− . Some examples are shown in
Appendix. The failure of the concatenation adaptive attack more explicitly shows that the temporal
dependency plays an important role in audio. Even if the separate parts are successfully attacked into
the target, the concatenated instance will again totally break the perturbation and therefore render
the adaptive attack inefficient. On the contrary, such concatenation will have negligible effects on
benign audio instances, which provides a promising direction to detect adversarial audio.

For combination attack, we vary the section portion kD used by TD and evaluate the cases where the
adaptive attacker uses the same/different section kA. We define Rand(a,b) as uniformly sampling
from [a,b]. We consider a stronger attacker, for whom the kA can be a set containing random
sections. The detection results for different settings are shown in Table 5. From the results, we can
see that when |kA| = 1, if the attacker uses the same kA as kD to perform the adaptive attack, the
attack can achieve relatively good performance and if the attacker uses different kA, the attack will
fail with AUC above 85%. We also evaluate the case that defender randomly sample kD during the
detection and find that it’s very hard for the adaptive attacker to perform attacks, which can improve
model robustness in practice. For |kA| > 1, the attacker can achieve some attack success when the
set contains kD. But when |kA| increases, the attacker’s performance becomes worse. The complete
results are given in the Appendix. Notably, the random sample based TD appears to be robust in all
cases.

5 CONCLUSION

This paper proposes to exploit the temporal dependency property in audio data to characterize audio
adversarial examples. Our experimental results show that while four primitive input transformations
on audio fail to withstand adaptive adversarial attacks, temporal dependency is shown to be resistant
to these attacks. We also demonstrate the power of temporal dependency for characterizing adver-
sarial examples generated by three state-of-the-art audio adversarial attacks. The proposed method
is easy to operate and does not require model retraining. We believe our results shed new lights in
exploiting unique data properties toward adversarial robustness.
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APPENDIX

5.1 RESULTS ON “AUTOENCODER TRANSFORMATION METHOD FOR SPEECH-TO-TEXT
ATTACK” AND “PRIMITIVE TRANSFORMATION FOR SPEECH-TO-TEXT ATTACK”

Table A1: Evaluation on Common Voice with language model

Transformation Methods OriginWER(%) OriginCER(%) AdvWER(%) AdvCER(%)
Without transformations 27.5 14.3 95.9 80.1

Autoencoder 57.6 (2.09) 34.1 (2.38) 76.5 (0.80) 49.8 (0.62)
Median-4 27.0 (0.98) 14.6 (1.02) 73.6 (0.77) 42.4 (0.53)

Downsample 31.2 (1.13) 17.6 (1.23) 69.6 (0.73) 41.2 (0.51)
Quan-128 34.4 (1.25) 21.3 (1.49) 75.9 (0.79) 45.3 (0.57)
Quan-256 42.9 (1.56) 26.7 (1.87) 70.7 (0.74) 41.8 (0.52)
Quan-512 52.4 (1.90) 37.1 (2.59) 68.5 (0.71) 45.0 (0.56)

Quan-1024 62.4 (2.27) 47.2 (3.3) 70 (0.73) 51.2 (0.64)

Table A2: Evaluation on LIBRIS with language model

Transformation Methods OriginWER(%) OriginCER(%) AdvWER(%) AdvCER(%)
Without transformations 3.05 1.46 102.8 86.5

Autoencoder 30.0 (9.84) 15.1 (10.34) 99.4 (0.97) 58.1 (0.67)
Median-4 3.6 (1.18) 1.7 (1.16) 35.1 (0.34) 19.0 (0.22)

Downsample 11.8 (3.87) 5.7 (3.90) 41.2 (0.40) 21.8 (0.25)
Quan-128 3.2 (1.04) 1.5 (1.03) 49.7 (0.48) 28.2 (0.33)
Quan-256 3.5 (1.13) 1.7 (1.16) 29.1 (0.28) 15.4 (0.18)
Quan-512 12.0 (3.93) 6.6 (4.52) 25.1 (0.24) 13.3 (0.15)

Quan-1024 30.7 (10.06) 20.3 (13.90) 36.6 (0.36) 24.1 (0.28)

Table A3: Evaluation on Common Voice without passing through language model

Transformation Methods OriginWER(%) OriginCER(%) AdvWER(%) AdvCER(%)
Without transformations 37.7 18.5 95.8 83.0

Median-4 43.4 (1.15) 20.4 (1.10) 83.0 (0.87) 46.5 (0.56)
Down sampling 47.2 (1.25) 23.3 (1.26) 77.6 (0.81) 43.9 (0.53)

Quantization-128 47.3 (1.25) 25.7 (1.39) 80.7 (0.84) 49.0 (0.59)
Quantization-256 52.5 (1.39) 29.2 (1.58) 73.4 (0.77) 43.6 (0.53)
Quantization-512 64.1 (1.70) 37.5 (2.03) 73.7 (0.77) 44.2 (0.53)

Quantization-1024 72.1 (1.91) 50.4 (2.72) 76.9 (0.80) 53.0 (0.64)

Table A4: Evaluation on LIBRIS without passing through language model

Transformation Methods OriginWER(%) OriginCER(%) AdvWER(%) AdvCER(%)
Without transformations 12.4 7.05 105.3 91.7

Median-4 16.4 (1.32) 8.0 (1.13) 57.9 (0.55) 27.5 (0.30)
Downsample 24.2 (1.95) 13.0 (1.84) 60.9 (0.58) 31.2 (0.34)

Quantization-128 13.4 (1.08) 7.6 (1.08) 66.1 (0.63) 37.1 (0.40)
Quantization-256 16.3 (1.31) 8.9 (1.26) 48.6 (0.46) 24.0 (0.26)
Quantization-512 27.5 (2.21) 13.8 (1.96) 47.0 (0.45) 23.0 (0.25)

Quantization-1024 46.8 (3.77) 25.4 (3.60) 52.3 (0.50) 30.0 (0.33)
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5.2 MORE RESULTS ON PRIMITIVE TRANSFORMATION METHOD FOR AUDIO CLASSIFICATION
ATTACK

Figure A1: Successful attack rates Figure A2: Unchanged label rates

Figure A3: Successful attack rates after transformation Figure A4: Unchanged label rates after transformation

5.3 MORE RESULTS ON ADAPTIVE ATTACKS AGAINST TEMPORAL DEPENDENCY BASED
METHOD
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Table A5: Examples of Segment Attack and Concatenation attack

Type Transcribed results
Original and he leaned against the wa lost in reveriey
the first half of Original and he leaned against the wa

Adaptive attack target this is an adversarial example
Adaptive attack result this is an adversarial losin ver
the first half of Adv. this is a agamsa

Adaptive attack target okay google please cancel my medical appointment
Adaptive attack result okay google please cancel my medcalosinver
the first half of Adv. okay go please
Original why one morning there came a quantity of people and set to work in the loft
Attack target this is an adversarial example

Sk this is an
Sk− adversarial example
Sk+Sk− this is a quantity of people and set to work in a lift

Sk this is an adversarial example
Sk− sil
Sk+Sk− this is an adernari eanquatete of pepl and sat to work in the loft

Table A6: AUC scores of different k
k WER CER LCP
1/2 0.930 0.933 0.806
2/3 0.930 0.948 0.826
3/4 0.933 0.938 0.839
4/5 0.955 0.969 0.880
5/6 0.941 0.962 0.858

Table A7: AUC of detecting Combination Attack based on TD method
Combination Detection TD metrics

Attack Parameter kD WER CER LCP

kA = { 12}
1/2 0.607 0.518 0.643
2/3 0.957 0.965 0.881
3/4 0.943 0.951 0.875

Rand(0.2, 0.8) 0.889 0.882 0.776

kA = { 23}
1/2 0.932 0.912 0.860
2/3 0.611 0.543 0.604
3/4 0.956 0.944 0.872

Rand(0.2, 0.8) 0.879 0.890 0.762

kA = { 12 ,
2
3}

1/2 0.633 0.690 0.552
2/3 0.536 0.615 0.524
3/4 0.942 0.974 0.934

Rand(0.2, 0.8) 0.801 0.880 0.664

kA = { 12 ,
2
3 ,

3
4}

1/2 0.665 0.682 0.604
2/3 0.653 0.664 0.564
3/4 0.633 0.653 0.601

Rand(0.2, 0.8) 0.785 0.832 0.642

kA = { 12 ,
2
3 ,

3
4 ,

4
5}

1/2 0.701 0.712 0.615
2/3 0.684 0.701 0.583
3/4 0.681 0.693 0.613

Rand(0.2, 0.8) 0.742 0.811 0.623

kA = { 12 ,
2
3 ,

3
4 ,

4
5 ,

5
6}

1/2 0.736 0.784 0.601
2/3 0.723 0.763 0.612
3/4 0.715 0.755 0.584

Rand(0.2, 0.8) 0.734 0.801 0.620

kA = Rand(0.2, 0.8)

1/2 0.880 0.881 0.824
2/3 0.922 0.972 0.831
3/4 0.952 0.968 0.894

Rand(0.2, 0.8) 0.873 0.875 0.799
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