
Under review as a conference paper at ICLR 2019

A GRADIENT-BASED ARCHITECTURE HYPERPARAM-
ETER OPTIMIZATION APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Network hyperparameters, such as network depth, layer-wise channel numbers,
and input image resolution, are crucial for designing high-performance neural
network architectures under resource limited scenarios. Previous solutions either
optimize these hyperparameters with customized algorithms, or enumerate the
hyperparameters with confined choices. Those methods are laborious and cum-
bersome to obtain a good solution. In this work, we propose a gradient-based
approach to optimize these parameters in an efficient and unified manner, based
on the observation that these parameters are consecutive and network performance
changes continuously with them. Specifically, natural evolutionary strategy (NES)
is used to approximate the gradient of the non-differentiable architecture hyper-
parameters and we incorporate it into the gradient descent framework for joint
optimizing the weights and architecture hyperparameters. Compared to the state-
of-the-art method, ChamNet, our method achieves higher accuracy with much
fewer optimization time cost. Our method easily surpasses state-of-the-art meth-
ods and achieves up to 9.1%/6.1% accuracy enhancement than compact models
MobileNet v1/v2.

1 INTRODUCTION

Neural Architecture Search (NAS) aims at automatically designing effective network architectures.
Most NAS algorithms focus at searching the optimal operators in a network layer/block (Cai et al.,
2018; Wu et al., 2018) or their connection patterns (Liu et al., 2018a). Note that these design choices
are categorical and unordered.

There are other important design choices in the neutral network, such as the layer-wise channel
numbers, the input image resolution and the network depth, called architecture hyperparameters.
Note that these design choices are fundamentally different because they are integers and are ordered.

These architecture hyperparameters are not independent. Intuitively, when image resolution is high,
the network should be deep such that the receptive field is large enough. Also the network should
have more channels to model the fine-grained image details (Tan & Le, 2019). However, optimizing
these hyperparameters jointly is challenging for existing approaches. There is not yet an effective
yet efficient solution. The challenges are three folds:

(1) Many existing algorithms are designed for optimizing a specific dimension of the architecture
hyperparameter based on its unique property. Such algorithms cannot be generalized for other di-
mensions. For example, to decide optimal channel numbers, it is common to use the L1-norm as the
importance indicator so that less important channels are pruned. This approach is not applicable for
image spatial resolution.

(2) The search space is combinatorially large. For example, in a typical case, MobileNet v2 has
19 blocks. Channel number in each block is chosen from 32 to 128. The input image resolution is
chosen from 96 to 224. The depth is chosen from 10 to 19. This search space has 9619×128×10 ≈
640 architectures. It is 1022 times larger than a search space for the categorized and unordered
objectives, for example, 618 choices in (Wu et al., 2018)). This renders the existing NAS approach
infeasible for hyper parameter search.

(3) Existing algorithms for architecture hyperparameter optimization are very inefficient. The state-
of-the-art algorithm, ChamNet (Dai et al., 2018), models the architecture hyperparameter optimiza-

1

Under review as a conference paper at ICLR 2019

tion as a black-box regression task of predicting the hyperparameter-accuracy curve. For regression
training, hundreds of architectures are trained from scratch. This is very slow. EfficientNet (Tan &
Le, 2019) use grid search to find the optimal ratio of depth/width/resolution, which also requires to
sample a great number of networks and train them separately.

This work proposes a simple and efficient method. We observe that architecture hyperparameters
are ordered integers. Our target loss function typically changes continuously with such hyperpa-
rameters. This naturally motivates a gradient descent based paradigm. As the loss function is non-
differentiable with respect to the architecture hyperparameters, we use natural evolutionary strategy
(NES) to approximate the gradient of the architecture hyperparameters. We note that gradient-based
methods are used in previous NAS approaches (Liu et al., 2018a; Wu et al., 2018; Xie et al., 2018).
These methods are for categorical and unordered designed choices. They relax the bi-level mask to
continuous changes in [0,1]. They are not applicable to the architecture hyperparameter optimization
problem.

To verify the effectiveness of our proposed method, we apply it on MobileNets (Howard et al., 2017;
Sandler et al., 2018) and ResNet (He et al., 2016). We achieve up to 9.1%/6.3% higher accuracy
than MobileNet V1/V2 and up to 1.3% accuracy enhancement than ResNet. More accuracy gain can
be obtained when optimizing the architecture hyperparameters targeting at the latency constraint, for
which the proposed method can discover and utilize the hardware characteristic. At the same latency,
our accuracy is 3.9%-16.2% higher than MobileNet V1, and 1.0%-13.1% higher than MobileNet V2.
Compared with state-of-the-art hyperparameter learning algorithm (Dai et al., 2018), our method
achieved higher or comparable results and is much more efficient.

Our contributions are three-folds: 1) We propose a novel gradient based approach to jointly opti-
mize the architecture hyperparameters in a unified manner. 2) We adopt natural evolution strategy
to approximate the gradient of the non-differentiable architecture hyperparameters. 3) We verify
the effectiveness and efficiency of proposed method with state-of-the-art results in various network
structures.

2 RELATED WORKS

Neural Architecture Search Neural architecture search (NAS) algorithms achieve state-of-the-art
results (Zoph et al., 2018; Tan et al., 2018; Wu et al., 2018; Cai et al., 2018). But the search spaces of
these algorithms are mainly limited to the discrete choices such as the operations in each layer (Wu
et al., 2018; Stamoulis et al., 2019; Guo et al., 2019; Cai et al., 2018), or the connection patterns (Liu
et al., 2018a; Xie et al., 2019), which are categorized unordered choices. The algorithm designed
for these search space can hardly applied to the architecture hyperparameter optimization.

Pruning and AutoML Pruning could be viewed as architecture hyperparameter optimization, with
respect to the layer-wise channel numbers (Liu et al., 2018b). Traditional pruning methods (Hu
et al., 2016; Ding et al., 2019b;a; 2018; Li et al., 2016; Mariet & Sra, 2016; Yu et al., 2018; Yu &
Huang, 2019; Huang & Wang, 2018) and AutoML-based pruning (He et al., 2018b; Yang et al., 2018;
Liu et al., 2019) are all very effective for optimizing network accuracy under resource constraints.
But solely dealing with the channel dimension limits the compression ratio as well as the accuracy
upper-bound of the compressed network.

Hyperparameter Optimization General Hyperparameter Optimization is developed for tens of
years (Bergstra et al., 2011). The optimization methods includes sequential model-based global
optimization (SMBO) (Hutter et al., 2011), grid search, random search (Bergstra & Bengio, 2012),
Bayesian optimization (Snoek et al., 2012) and reinforcement learning (Li, 2017).

Architecture hyperparameter optimization is a sub-class of the hyperparameter optimization. Cham-
Net and EfficientNet (Dai et al., 2018; Tan & Le, 2019) are two famous state-of-the-art papers.
Despite their high accuracy, ChamNet is costly in obtaining the evaluation accuracy while the Effi-
cientNet uses a grid search and has a confined search space.

Gradient Estimation and Evolutionary Strategy Gradient estimation is a widely-used tech-
nique (Koutnik et al., 2010; Fu, 2015; Li & Turner, 2017; Glasserman & Ho, 1991; Shi et al.,
2018; Buesing et al., 2016; Maclaurin et al., 2015). A review of gradient estimation can be found
in (Fu, 2006). Several works apply gradient approximation to the neural networks (Andrychowicz

2

Under review as a conference paper at ICLR 2019

et al., 2016; Schulman et al., 2015). But they are targeting at the ordinary weight parameters instead
of architecture hyperparameters, which is different from our task.

Evolutionary strategy (ES) is a class of black box optimization algorithms (Rechenberg, 1994),
which includes evolution algorithm(EA) (Qin et al., 2008; Qin & Suganthan, 2005; Liu &
Lampinen, 2005; Farhi et al., 2001; Mallipeddi et al., 2011), covariance matrix adaptation evolu-
tion strategy(CMA-ES) (Hansen, 2016), etc. A comprehensive introduction of evolutionary strategy
can be found in (Beyer & Schwefel, 2002). In this work, the evolutionary strategy we used belongs
to the natural evolution strategies(NES) (Wierstra et al., 2008; 2014; Sun et al., 2009; Glasmachers
et al., 2010; Schaul et al., 2011; Sehnke et al., 2010), which iteratively update the continuous pa-
rameters of a search distribution by following the natural gradient towards higher expected fitness.
Our method is mostly related to (Salimans et al., 2017).

3 METHODOLOGY

We formulate the architecture hyperparameter optimization problem as

min
H

min
W
L(H;W), (1)

where we jointly optimize the hyperparameters H of the channel, spatial and depth dimension for a
backbone architecture with the goal of minimizing the loss L when the weightsW corresponding to
H are trained. In this task, the loss is defined as,

L = Lc + ρ||R −Rt||2, (2)

where Lc denotes the classification loss on the evaluation data split, ρ denotes the regularization
factor, the R and Rt denote the resource consumption of current model and the target resource
constraint, respectively.

In this optimization problem, there are two challenges that make the previous solutions unsuitable or
less efficient for this task: (1) combinatorially large search space; (2) resource intensity in obtaining
the evaluation accuracy for various architectures. We explain these challenges and proposed our
solution in Section 3.1 and 3.2 respectively, in Section 3.3 we explain the pipeline of joint optimizing
the architecture hyperparameters and the weight parameters in the neural network.

3.1 GRADIENT-BASED METHOD FOR ARCHITECTURE HYPERPARAMETER OPTIMIZATION IN
LARGE SEARCH SPACE

The search space for jointly optimizing the architecture hyperparameter in three dimensions is com-
binatorially large, which makes the algorithms designed for the categorized and unordered objec-
tives ineffective. To tackle with that, we proposed a gradient-based method customized for the
ordered architecture hyperparameters. Different from the existing gradient-based methods that re-
lax the bi-level choice of different operations, proposed gradient-based method is built on top of
an observation that the architecture hyperparameters are ordered integers and the loss of the neural
network changes continuously with respect to the architecture hyperparameters. Since the algorithm
is non-differentiable with respect to the architecture hyperparameters, we adopt natural evolutionary
strategy (NES) for gradient approximation.

3.1.1 A REVIEW OF NATURAL EVOLUTIONARY STRATEGY

Natural Evolutionary strategy (NES) is a recent family of black-box optimization algorithms that use
the natural gradient to update a parameterized search distribution in the direction of higher expected
fitness (Wierstra et al., 2008; 2014).

In NES, to measure the gradient of the continuous vector input x, random gaussian noises n with
the deviation of σ are added to the vector:

x′ = x+ n, n ∼ N(0, σ), (3)

Each noise n will result in a change in the output:

∆F = F(x′)−F(x), (4)

3

Under review as a conference paper at ICLR 2019

where F is the objective function. By weighting the noise directions with the change in output
function and taking an average, the gradient G that minimizes the loss function can be approximated:

G ≈ 1

σM

M∑
i=0

∆Fni, (5)

whereM denotes the number of noises added to the input vector.

In previous works, the NES is applied to solving various black-box optimization problems (Wierstra
et al., 2008; 2014; Sun et al., 2009; Glasmachers et al., 2010; Schaul et al., 2011; Sehnke et al., 2010)
or used as an alternative to the reinforcement learning in playing video games (Salimans et al., 2017).
To the best of our knowledge, we are the first to apply NES in neural architecture hyperparameter
optimization and prove it to be effective.

3.1.2 NES FOR ARCHITECTURE HYPERPARAMETER OPTIMIZATION

Different from the unordered operation search, where the operation choice 1 and choice 2 can ar-
bitrarily change their index, the architecture hyperparameters are ordered continuous integers in
all the three dimensions. This ordered property implies a learnable direction information between
choices, which inspires us to use a local gradient to find the direction for optimizing the architecture
hyperparameters.

In this work, we apply the natural evolutionary strategy for approximating the architecture hyperpa-
rameters, in which, the change in the output loss L can be obtained by varying the hyperparameters
H randomly in different directions ni,

∆Li = L(bH+ nic,W)− L(H,W), ni ∼ N(0, σ). (6)

Note that if H + ni are not integers, we simply round them down to integers, with bc. Then by
weighting different variation directions with the changing in loss, we can approximate the gradient
of architecture hyperparameters towards the loss descending direction,

G ≈ 1

σM

M∑
i=0

∆Lini. (7)

Natural evolutionary strategy (NES) is chosen for architecture hyperparameter optimization because
it can utilize the continuity information and use a gaussian kernel to increase the stability in the
gradient approximation. We know that the gradient information in a tiny local region in the neural
network can be highly unstable. In NES, the gaussian distributed noise has a large probability in the
near local as well as a small probability in the further area. Thus, by adding the Gaussian noise to
the architecture hyperparameters for gradient estimation, the estimation process can combine both
adjacent information as well as the information in further areas. This property helps to overcome
the instability of local gradient estimation in the neural network.

3.2 WEIGHT SHARING FOR OVERCOMING THE RESOURCE INTENSITY IN OBTAINING THE
EVALUATION LOSS

In order to make the gradient-based method with respect to the architecture hyperparameters func-
tion well, we need to obtain the evaluation loss of the network corresponding to each architecture
hyperparameters on the validation dataset, which is splitted from the training dataset. Since the
evaluation loss is a function of weights and architecture hyperparameters, to get the reliable loss
prediction of different architecture hyperparameters, the weights of the corresponding architectures
need to be trained. Using random untrained weights will result in arbitrary network loss which can
hardly provide any useful information in hyperparameter updating. However, training the weights
for each hyperparameter-defined architecture separately could be too resource-consuming.

Inspired by one-shot architecture search (Guo et al., 2019; Liu et al., 2019; Bender et al., 2018), we
proposed to use the weight sharing mechanism in training weights for different architectures. Differ-
ent from the layer-wise weight-sharing mechanism designed for operations, in which each operation
has its own weights and different networks shares the weights when they choose the same operation

4

Under review as a conference paper at ICLR 2019

Figure 1: The designed weight sharing mechanism for each dimension.

in a layer, our weight sharing method is designed for continuous integer architecture hyperparame-
ters. Here, we explain the weight sharing method in spatial, channel and depth dimension.

For architectures with different input image resolutions, we share the weights in the entire network
and just rescale the input image (Figure 1 (a)), since different input image size only affect the feature
map size and do not require any change in the weight kernel size. In the channel dimension, a weight
matrix of the maximum number of channels is stored. Given the hyperparameter specifying the
number of channels in the particular layer, we crop the weights for first k channels and remaining
weights are untouched (Figure 1 (b)). For the depth dimension, we can drop the block to decrease the
depth and use the shortcut to propagate the identity mapping only (Figure 1 (c)). Combining these
weight sharing technique together, we can construct the network for weight training in architecture
hyperparameter optimization (Figure 1 (d)). The weight sharing technique enables us to reuse the
weights among different architectures, which largely saves the computational resources.

3.3 ALTERNATIVE OPTIMIZATION OF WEIGHTS AND ARCHITECTURE HYPERPARAMETERS

Combining the NES for gradient approximation and weight-sharing in weight training, we proposed
to alternatively optimize the weights and the architecture hyperparameters.

In weight training, we start from an initial architecture and add random gaussian variations to the
architecture hyperparameter:

min
W
L(bH+ nc,W), n ∼ N(0, σ). (8)

In this way, the weights are trained with respect to various different architectures with a small vari-
ance in the architecture hyperparameter. When the architecture hyperparameters varies in a small
range, the shared weights in the network can provide reliable loss.

Then we follow the NES for gradient optimization to update the architecture hyperparameters, mo-
tivated by the stochastic gradient descent (SGD),

Ht+1 = Ht − αG, (9)

where α is the update ratio.

Starting with the updated architecture hyperparameters, the weights can be further trained to adjust
new architectures. Alternatively optimize the architecture hyperparameters and the weights until
architecture hyperparameters converge. The Algorithm can be found in the Appendix Algorithm 1.

4 EXPERIMENTS

In this section we verify the effectiveness of our proposed method by comparing our result with
state-of-the-art architecture hyperparameter optimization methods.

4.1 DATASET

The proposed method is highly efficient, so it is feasible to carry out all experiments on the ImageNet
2012 classification dataset (Russakovsky et al., 2015).

5

Under review as a conference paper at ICLR 2019

Table 1: Architecture Hyperparameter Optimization on MobileNet V1

Under FLOPs constraints
330M 150M 45M

Acc FLOPs Acc FLOPs Acc FLOPs

Uniform Rescale
Baseline

Channel 68.4% 325M 63.7% 149M 50.6% 41M
Input image 70.6% 343M 65.7% 149M 54.0% 42.5M
Channel + Input image 70.8% 325M 67.1% 143M 58.8% 45.7M

State-of-the-arts
Netadapt 69.1% 284M – – – –
AMC 70.5% 281M – – – –
MetaPruning 70.9% 324M 66.4% 149M 57.2% 41.1M

Proposed Method Channel 71.0% 310M 66.5% 145M 58.6% 47.5M
Channel + Input image 71.2% 309M 67.6% 139M 59.7% 42.5M

Under GPU latency constraints
0.75× 0.5× 0.25×

Acc Latency Acc Latency Acc Latency
Baseline 68.4% 5.620ms 63.7% 3.998ms 50.6% 2.266ms
Proposed Method 72.3% 5.617ms 70.6% 3.972ms 66.8% 2.231ms

Table 2: Architecture Hyperparameter Optimization on MobileNet V2

Under FLOPs constraints
200M 150M 45M

Acc FLOPs Acc FLOPs Acc FLOPs

Uniform Rescale
Baseline

Channel 70.0% 203M 67.2% 140M 54.6% 43M
Input image 70.8% 220M 68.3% 138M 59.1% 42M

Channel + Input image 70.6% 212M 68.5% 142M 59.3% 47M

State-of-the-arts AMC 70.8% 220M – – – –
MetaPruning 71.2% 217M 68.2% 140M 58.3% 43M

Proposed
Method

Channel 70.7% 205M 68.4% 141M 58.1% 46M
Channel + Input image 71.4% 206M 68.8% 139M 60.7% 42M

Channel + Input image + Depth 70.7% 206M 69.1% 145M 60.9% 51M

Under GPU latency constraints
0.8× 0.65× 0.35×

Acc Latency Acc Latency Acc Latency
Uniform Rescale Baseline 70.0% 7.36ms 67.2% 5.97ms 54.6% 4.22ms

Proposed
Method

Channel + Input image 72.3% 7.34ms 71.2% 5.93ms 67.7% 4.10ms
Channel + Input image + Depth 72.4% 7.17ms 71.7% 5.90ms 68.7% 3.98ms

Under CPU latency constraints
0.75× 0.5× 0.35× Total Optimization

Time CostAcc Latency Acc Latency Acc Latency
ChamNet 71.9% 15.0ms 69.0% 10.0ms 64.1% 6.1ms 5760 GPU days

Proposed Method 71.8% 14.8ms 69.0% 9.9ms 66.4% 6.0ms 3 × 40 GPU days

6

Under review as a conference paper at ICLR 2019

Table 3: Architecture Hyperparameter Optimization on ResNet50
3G 2G 1G

Acc FLOPs Acc FLOPs Acc FLOPs
Uniform Baseline 76.0% 3.2G 74.8% 2.3G 72.0% 1.1G

Traditional
Purning

AutoPruner (Luo & Wu, 2018) – – 74.8% 2.3G 72.0% 1.1G
ThiNet (Luo et al., 2017) 75.8% 2.9G 74.7% 2.1G 72.1% 1.2G

CP (He et al., 2017) – – 73.3% 2.0G – –
SFP (He et al., 2018a) 75.1% 2.9G – – – –

AutoML-based MetaPruning (Liu et al., 2019) 76.2% 3.0G 75.4% 2.0G 73.4% 1.0G

Our method 76.2% 3.0G 75.6% 2.0G 73.4% 1.0G

ImageNet is a large-scale dataset with 1.2 million training images and 50K validation images of
1000 classes. In our experiments, we split the original training images into sub-evaluation dataset,
which contains 50000 images randomly selected from the training images with 50 images in each
1000-class, and sub-training dataset with the rest of images. We optimize the architecture hyper-
parameters on the sub-evaluation dataset and train the weights on the sub-training dataset. Opti-
mizing the architecture hyperparameters with weight training in the weight-sharing network takes
one-fourth the epochs as training the corresponding backbone network from scratch. After the ar-
chitecture hyperparameters are optimized, we train the corresponding architecture from scratch on
the original training dataset and evaluate it on the test dataset. The training details can be found in
the Appendix B.

We carry out the optimization on MobileNet v1/v2 (Howard et al., 2017; Sandler et al., 2018) and
ResNet (He et al., 2016) backbone. The detailed hyperparameter optimization space can be found
in the Appendix C.

4.2 CONSTRAINTS

We apply the hyperparameter optimization under both the latency and the flops constraint. For the
latency constraint, we follow the practice in ChamNet (Dai et al., 2018) and FB-Net (Wu et al.,
2018) to build a latency look-up-table for a layer with different hyperparameter choices and obtain
the total latency of the network by summing up the latency of all layers in the network. In our
experiment we estimate GPU latency on the GTX 1080Ti with batch size of 256. For fair comparison
with ChamNet (Dai et al., 2018), we use the look-up-table released by (Dai et al., 2018) as the CPU
latency. As the ChamNet has a very sparse look-up-table, we use the gaussian process to predict the
missing values as (Dai et al., 2018) did for energy estimation.

4.3 RESULTS ANALYSIS

MobileNet v1 is a network without shortcut and most of convolution layers in MobileNet v1 do not
have the same number of output channels, layer dropping will result in a channel number dis-match.
With the network structure restriction, we only optimize the channel and spatial dimension for the
MobileNet v1. As shown in Table 1, proposed method can learn to allocate the resource properly
for achieving higher accuracy. Analyzing the experiment results, there are several interesting obser-
vations:

(1) When the optimization goal is only the layer-wise channel numbers, proposed method (10th
row) achieves much higher accuracy than uniform channel rescaling baselines (4th row) as well as
the state-of-the-art channel pruning algorithms (Yang et al., 2018; He et al., 2018b; Liu et al., 2019)
(7th-9th rows).

(2) When we further extend the optimization goal to both channel and spatial dimension, the pro-
posed method generates even better results and surpass all the baselines (4th-6th rows), which sug-
gests the necessity in optimizing different dimensions in a unified way and that our method is capable
in handling multiple dimensions.

7

Under review as a conference paper at ICLR 2019

(3) Moreover, our method can directly optimize with respect to the hardware execution latency,
without knowing the implementation details inside the hardware. In optimizing with respect to the
GPU latency, we discover that, our algorithm can learn to adapt network with more channels and
smaller spatial resolution to take advantage of the highly parallel characteristic of the GPU. In this
way we achieved up to 16.2% accuracy enhancement compared to the MobileNet V1 baseline (the
last two rows).

MobileNet v2 is a network with shortcut, to handle the channels in the shortcut, we confine the
number of output channels to be the same for a sequence of blocks connected with a shortcut. The
intermediate channel inside each block can be optimized separately. Our method can easily deal
with the channels in the shortcut and produce good results on the MobileNet v2 backbone. Some
findings are obtained in the results analysis:

(1) Proposed method (9th-10th row) consistently achieves much higher accuracy than the corre-
sponding baselines (4th-6th row), which reveals the effectiveness of the proposed optimization
method.

(2) When dealing with the channel, spatial and depth dimension together (11th row and 17th row),
the proposed method can achieve higher accuracy than with optimization goal being solely channel
(9th row) or channel plus spatial (10th row and 16th row), which proves the effectiveness of our
method in dealing with channel, spatial and depth dimension together and the necessity in jointly
optimizing these three dimensions.

(3) Compared with optimization under the flops constraints, latency-oriented optimization can cap-
ture the underlying hardware characteristics more easily and customize the network for specific
hardware to yield more significant accuracy enhancement. For example, when targeting at the CPU
latency, our method learns to generate network with thinner and deeper structure while it chooses
wide and shallow structure for a GPU device. This is interpretable, because the GPU is highly par-
alleled and can execute condensed operations faster than computing fragmented pieces. Thus the
accuracy gain is significant when we optimize with all three dimensions (channel + spatial + depth)
(17th row) than we only optimize two dimensions (channel + spatial) (16th row) for a network to be
deployed on the GPU device, as shown in Table 2, GPU latency constraint part.

(4) In comparison with the state-of-the-art method, proposed optimization method surpasses the
state-of-the-art ChamNet on compact models as 0.35 × MobileNet v2 and achieved comparable
results in larger models with the same look-up table for the CPU latency. Considering ChamNet
uses around 5760 GPUs days to train 240 networks for building up the hyperparameter-accuracy
curve for each architecture backbone, while our method needs no more time than training a network
twice for obtaining one desired optimized network architecture. When targeting at searching one
network under specific constraint, proposed method saves the optimization time cost by up to 144
times compared to the state-of-the-art ChamNet.

ResNet is a heavy network with shortcut, we adopt the same channel number constraints as Mo-
bileNet v2, the detailed search space can be found in Appendix C. For fair comparison with other
methods on the channel pruning, we confine our search space to the channel dimension. The re-
sults in Table 3 show that our method outperforms all the traditional channel pruning methods as
well as the uniform baseline. Compared to the state-of-the-art AutoML-based algorithm (Liu et al.,
2019) specialized in the channel dimension, we can still achieved comparable or higher accuracy.
This results show that although our method is proposed for jointly optimizing three dimensions of
the architecture hyperparameters, it still achieve no inferior results than other specialized-purpose
algorithms when only targeting at one dimension.

5 CONCLUSION

In this paper, we proposed a unified gradient-based method for architecture hyperparameter opti-
mization which contains following advantages: (1) it optimizes the architecture hyperparameters in
channel, spatial and depth dimensions in a unified way; (2) it can be easily incorporated into the
stochastic gradient descent framework; (3) constraints such as hardware latency can be effortlessly
handled; (4) it achieves state-of-the-art results and is highly efficient.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in neural information processing systems, pp. 3981–3989, 2016.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. In International Conference on Machine Learn-
ing, pp. 549–558, 2018.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305, 2012.

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In Advances in neural information processing systems, pp. 2546–2554, 2011.

Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies–a comprehensive introduction.
Natural computing, 1(1):3–52, 2002.

Lars Buesing, Theophane Weber, and Shakir Mohamed. Stochastic gradient estimation with finite
differences. 2016.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang, Marat Dukhan,
Yunqing Hu, Yiming Wu, Yangqing Jia, et al. Chamnet: Towards efficient network design through
platform-aware model adaptation. arXiv preprint arXiv:1812.08934, 2018.

Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang. Auto-balanced filter pruning for effi-
cient convolutional neural networks. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very
deep convolutional networks with complicated structure. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4943–4953, 2019a.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, and Chenggang Yan. Approximated
oracle filter pruning for destructive cnn width optimization. arXiv preprint arXiv:1905.04748,
2019b.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel
Preda. A quantum adiabatic evolution algorithm applied to random instances of an np-complete
problem. Science, 292(5516):472–475, 2001.

Michael C Fu. Gradient estimation. Handbooks in operations research and management science,
13:575–616, 2006.

Michael C Fu. Stochastic gradient estimation. In Handbook of simulation optimization, pp. 105–147.
Springer, 2015.

Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, and Jürgen Schmidhuber. Exponential
natural evolution strategies. In Proceedings of the 12th annual conference on Genetic and evolu-
tionary computation, pp. 393–400. ACM, 2010.

Paul Glasserman and Yu-Chi Ho. Gradient estimation via perturbation analysis, volume 116.
Springer Science & Business Media, 1991.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian
Sun. Single path one-shot neural architecture search with uniform sampling. arXiv preprint
arXiv:1904.00420, 2019.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

9

Under review as a conference paper at ICLR 2019

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018a.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397,
2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 784–800, 2018b.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 304–320, 2018.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In International conference on learning and intelligent optimiza-
tion, pp. 507–523. Springer, 2011.

Jan Koutnik, Faustino Gomez, and Jürgen Schmidhuber. Evolving neural networks in compressed
weight space. In Proceedings of the 12th annual conference on Genetic and evolutionary compu-
tation, pp. 619–626. ACM, 2010.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Yingzhen Li and Richard E Turner. Gradient estimators for implicit models. arXiv preprint
arXiv:1705.07107, 2017.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018a.

Junhong Liu and Jouni Lampinen. A fuzzy adaptive differential evolution algorithm. Soft Comput-
ing, 9(6):448–462, 2005.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Tim Kwang-Ting Cheng, and
Jian Sun. Metapruning: Meta learning for automatic neural network channel pruning. arXiv
preprint arXiv:1903.10258, 2019.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018b.

Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end trainable filter pruning method for
efficient deep model inference. arXiv preprint arXiv:1805.08941, 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International Conference on Machine Learning, pp. 2113–
2122, 2015.

10

Under review as a conference paper at ICLR 2019

Rammohan Mallipeddi, Ponnuthurai N Suganthan, Quan-Ke Pan, and Mehmet Fatih Tasgetiren.
Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied
soft computing, 11(2):1679–1696, 2011.

Zelda Mariet and Suvrit Sra. Diversity networks. Proceedings of ICLR, 2016.

A Kai Qin and Ponnuthurai N Suganthan. Self-adaptive differential evolution algorithm for numeri-
cal optimization. In 2005 IEEE congress on evolutionary computation, volume 2, pp. 1785–1791.
IEEE, 2005.

A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE transactions on Evolutionary
Computation, 13(2):398–417, 2008.

Ingo Rechenberg. Evolutionsstrategie’94. frommann-holzboog, 1994.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

Tom Schaul, Tobias Glasmachers, and Jürgen Schmidhuber. High dimensions and heavy tails for
natural evolution strategies. In Proceedings of the 13th annual conference on Genetic and evolu-
tionary computation, pp. 845–852. ACM, 2011.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. In Advances in Neural Information Processing Systems, pp. 3528–
3536, 2015.

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen
Schmidhuber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–559, 2010.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. A spectral approach to gradient estimation for implicit
distributions. arXiv preprint arXiv:1806.02925, 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pp. 2951–2959, 2012.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,
and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets in less than 4
hours. arXiv preprint arXiv:1904.02877, 2019.

Yi Sun, Daan Wierstra, Tom Schaul, and Juergen Schmidhuber. Efficient natural evolution strategies.
In Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 539–
546. ACM, 2009.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-
aware neural architecture search for mobile. arXiv preprint arXiv:1807.11626, 2018.

Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural evolution strategies.
In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational
Intelligence), pp. 3381–3387. IEEE, 2008.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

11

Under review as a conference paper at ICLR 2019

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. arXiv preprint arXiv:1812.03443, 2018.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. arXiv preprint arXiv:1904.01569, 2019.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 285–300, 2018.

Jiahui Yu and Thomas Huang. Universally slimmable networks and improved training techniques.
arXiv preprint arXiv:1903.05134, 2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

12

Under review as a conference paper at ICLR 2019

A OPTIMIZATION ALGORITHM

The proposed architecture hyperparameter optimization algorithm is as follows:

Algorithm 1 Unified Gradient-based Architecture Hyperparameter Optimization Algorithm
Notation: Loss: L.
Parameters: Weight: W , Architecture hyperparameter: H .
Training Parameters: Number of total iterations: K, Number of weight training iterations: N ,
Number of architecture hyperparameter training iterations:M
Input: Backbone architecture: A
Output: Optimized architecture hyperparameterH∗ .

1: A0 = A(H0) # Initial architecture defined with hyperparameter.
2: for t = 0 : K do
3: # Train the weights for different architecture hyperparameters
4: for i = 0 : N do
5: minW L(W, int(H+ n)), n ∼ N(0, σ)
6: end for
7: # Optimizing the architecture hyperparameter with Natural Evolutionary Strategy
8: for j = 0 :M do
9: ∆Lj = L(W, int(Ht + nj))− L(W,Ht), nj ∼ N(0, σ)

10: Ht+1←−Ht - α 1
σM

∑M
j=0 ∆Ljnj

11: end for
12: end for

B TRAINING DETAILS

For alternative optimizing the architecture hyperparameters and weights, in each inner loop, we train
the weights for 2000 iterations for MobileNet v1/v2 and 1000 iterations for ResNet with a batchsize
of 256. Then we update the architecture hyperparameters for 20 iterations with the gradient approx-
imated by the natural evolutionary strategy (NES). In NES, the total number M of the attempted
architecture variation is 100 for each iteration, the deviation σ of the guassian kernel for the vari-
ance adding to the architecture hyperparameters is initialized with 1.25 and linearly decay to 0. The
learning rate α for architecture hyperparameter update is initialized with 5 and linearly decay to 0.
We alternative train the weights and update the architecture hyperparameters with an outer loop of
75 iterations. The weight training takes up about 64 epochs for MobileNet v1/v2 and 32 epochs for
ResNet50.

C HYPERPARAMETER OPTIMIZATION SPACE

The hyperparameter optimization space for MobileNet V1/V2 and ResNet is summarized in Table 4.
For the depth dimension, we drop the last repeated block in the network to decrease the depth.

13

Under review as a conference paper at ICLR 2019

Table 4: Hyperparameter (HP) optimization space.
Number of HPs Range Step

MobileNet V1 Channel 13 0.1×Cbase −→ 1.6×Cbase 0.03 ×Cbase
Spatial 1 96 pixels −→ 224 pixels 1

MobileNet V2

Channel in shortcut 8 0.2×Cbase −→ 1.5×Cbase 0.05 ×Cbase
Middle channel in block 17 0.2×Cbase −→ 1.5×Cbase 0.05 ×Cbase

Spatial 1 96 pixels −→ 224 pixels 1
Depth 1 9 blocks −→ 19 blocks 1

ResNet Channel in shortcut 4 0.1×Cbase −→ 1.6×Cbase 0.03 ×Cbase
Middle channel in block 16 0.1×Cbase −→ 1.6×Cbase 0.03 ×Cbase

*Cbase: the base channel in each layer of the 1x backbone network.

14

	Introduction
	Related Works
	Methodology
	Gradient-based Method for Architecture Hyperparameter Optimization in Large Search Space
	A Review of Natural Evolutionary Strategy
	NES for Architecture Hyperparameter Optimization

	Weight Sharing for Overcoming the Resource Intensity in Obtaining the Evaluation Loss
	Alternative Optimization of Weights and Architecture Hyperparameters

	Experiments
	Dataset
	Constraints
	Results Analysis

	Conclusion
	Optimization Algorithm
	Training Details
	Hyperparameter Optimization Space

