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Abstract

Many works have successfully co-opted word
clusters derived from distributional informa-
tion, such as Brown clusters, as features in lan-
guage processing tasks. We note that not only
do such clusters make poor proxies for part-
of-speech tags; these clusters are in fact quite
different from part-of-speech tags. This pa-
per investigates the gap between Brown clus-
ters, clusterings in word embedding space,
and part-of-speech tags, across a range of lan-
guages. We find that, while word types clus-
tered together may seem at a glance to be
cohesive, distributionally derived clusters in
fact strongly complement part-of-speech tags
across many languages, suggesting a surpris-
ing amount of difference between the informa-
tion contained in these representations.

1 Introduction

Despite common wisdom, there is an absence
of evidence that distributionally-generated word
clusters correspond to part-of-speech tags. In-
deed, Brown clusters (for example) often outper-
form other techniques in unsupervised part-of-
speech tagging, providing strong prototypes for
tag classes (Christodoulopoulos et al., 2010). The
research presented in this paper is an empirical
approach to demonstrating that such distributional
clusters have little to do with, and in fact comple-
ment, parts of speech.

Distributionally derived clusters do play an im-
portant role in contemporary NLP. Early work fo-
cused on class-based models for machine transla-
tions (Brown et al., 1992). Shortly after, such clus-
ter were found to be helpful in parsing (Mager-
man, 1995; Koo et al., 2008) and named entity
recognition (Miller et al., 2004; Turian et al.,
2010). More recently, Mayhew et al. (2017) found
that Brown cluster features remain an impor-
tant signal for cross-lingual named entity recog-

nition (NER), and Ling et al. (2016) find them
even stronger than continuous-bag-of-words vec-
tors for standard NER. Indeed, Brown clusters out-
perform word vectors and also structural corre-
spondence learning for historical English (Yang
and Eisenstein, 2016), and tend to learn more
helpful representations using the same amount of
data than embeddings (Qu et al., 2015). Finally,
while Blunsom and Cohn (2011)’s Pitman-Yor
uses distributionally-derived clusters for unsuper-
vised PoS induction and they help, the clusters do
not appear to behave as if they are strong predic-
tors of word class.

Our hypothesis is, then, that distributional clus-
ters complement part-of-speech. We test the hy-
pothesis by performing various word clusterings in
many languages and comparing them to automat-
ically induced word embeddings. We use a vari-
ety of metrics to compare clusters of word embed-
dings to clusters grouped by part of speech. Low
similarity scores between Brown clusters or clus-
ters of embeddings, compared to part-of-speech
labels, indicate a dissimilarity. Finding such a dis-
similarity tells us that distributional information
used in these ways is distinct from part-of-speech,
offering a useful complementarity.

2 Method

We select various, diverse languages from the UD
Treebank (Nivre et al., 2017), and use these cor-
pora for our experiments. These are sampled in
order to correct for cross-linguistic variation. Dis-
tributional representations are then derived from
these samples. We convert these representations
to clusters, the same number as there are part-of-
speech tags used – seventeen for UD – and then
compare how closely each distributionally-derived
clustering compares with part of speech tags.
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2.1 Data Sampling
Representation inductions have sometimes been
performed on larger corpora in the past. We re-
duce this in order to examine a broad range of
languages while also using a comparable amount
of data for each language. The languages we se-
lect are Danish, English, Finnish, French, Hebrew,
Portuguese, Russian, Urdu, and Chinese, to rep-
resent a somewhat diverse set of language fami-
lies. Choosing corpus size fairly across languages
is non-trivial. Each token represents a different
amount of information; agglutinative languages
may express in one word what others use a whole
sentence to achieve. For example, from Finnish:

Juoksentelisinkohan (1 token)
I wonder if I should run around aim-
lessly? 9 tokens

One principled way to correct for this is to use
multi-text, i.e. k-way translations of the same
content (Cotterell et al., 2018). This allows cal-
culation of BPEC (bits per English character)
which standardises across orthographic or phono-
logical variation. However if we are to examine
a broad range of languages, we are not immedi-
ately afforded this luxury of translated resources,
as one might be if studying European languages
alone (through EuroParl). As secondary measure,
then, we normalise corpus size by bits per char-
acter (BPC), defined as 1

|c|+1

∑|c|+1
i=1 log p(ci|c<i),

where single characters c are characters in an ob-
served corpus (Cotterell et al., 2018).

Values for BPC and the resulting corpus sizes
are shown in Table 1. Figures for Europarl lan-
guages are taken from (Cotterell et al., 2018).
These are then linked via entropy estimates, ,
to non-Europarl languages, using data from Kol-
mogorov (1965), Khan et al. (1984), Chang and
Lin (1994) and Levitin and Reingold (1994). As
Europarl is a single-genre dataset and so not ex-
traordinarily diverse, we calibrate these BPC fig-
ures using a general estimate for the entropy of En-
glish of 1.46 (Teahan and Cleary, 1996). This al-
lows selection of datasets having very close to the
exact same number of non-punctuation non-space
characters, giving cross-language data normalised
for information content.

2.2 Brown Clusters
Brown clustering (Brown et al., 1992) is a hierar-
chical hard clustering algorithm that uses decrease

Language EuroParl BPC General BPC Tokens
Danish 1.11 1.47* 80K
English 1.10 1.46 83K
Finnish 1.16 1.54* 65K
French 0.95 1.26* 95K
Hebrew 1.11* 1.47 70K
Portuguese 1.01 1.34* 91K
Russian 0.87* 1.15 67K
Urdu 1.38* 1.84 52K
Chinese 2.92* 3.88 31K

Table 1: Sizes of corpora normalised by bits per char-
acter. * = scaled figure.

in global aggregate mutual information (AMI) as
the loss metric. The two clusters that, when
merged, cause the least loss in global mutual in-
formation, are merged at each step. As the search
space here is large and needs to be partly recom-
puted each merge, it is typical to constrain it to a
set breadth, a; often 1000. Our aim is 17 clusters
(corresponding to the number of UD PoS tags).
Considering only the top 17 most-frequent terms
at each merge gives a narrow window and leads to
a high AMI loss and mostly sub-optimal merges.
Therefore, using the generalised formulation of
the Brown clustering algorithm, we consider 2500
clusters at each merge, and thereafter use roll-up
feature extraction (Derczynski and Chester, 2016)
to get the final 17; a comparison of this versus set-
ting a = 17 is also provided.

2.3 Embedding Clusters

Word embeddings are representations of words in
vector space. We run GloVe (Pennington et al.,
2014) over each of our scaled corpora to induce
these vector representations. Then, we cluster the
vector representations, creating the same number
of clusters (17) as there are part-of-speech tags.

We need to arrive at a number of contiguous
clusters from this representation that completely
cover all word types. As some clustering algo-
rithms ignore outlying points, leaving them with-
out a label, instead a partitioning algorithm is re-
quired, which will completely cover the data. We
use k-means (Lloyd, 1982) for this.

Typical partitioning algorithms, including k-
means, tend to underperform in very high-
dimensional space, because they rely on Euclidean
(L2) distance. L2 becomes meaningless in high
dimensions; due to small variations compounded
over multiple dimensions, every point tends to-
ward equidistant (Beyer et al., 1999). By ex-
tension, clustering methods that rely on L2 also
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become meaningless in higher dimensions. In
addition, embeddings in lower-dimensional space
should converge to a stable state faster, and we are
constrained to modest corpus sizes for the sake of
covering a broad range of languages (Section 2.1).
The only GloVe hyperparameter to adjust is the
number of dimensions output vectors should have,
and so when building our embeddings, we select
10 dimensions (a relatively low number in the con-
text of word vectors).

2.4 Metric Selection
We evaluate by comparing similarity of cluster-
ings. Many options are available, and so we
set specific desiderata. -measure (Rosenberg and
Hirschberg, 2007), the harmonic mean of clus-
ter homogeneity and cluster completeness, works
well; however, it is known to have a bias toward
giving higher scores with higher numbers of clus-
ters (Vinh et al., 2010). Rand Index (Rand, 1971)
is another option, though this does not correct for
the low baseline level of overlap in random clus-
tering (i.e. is does not exhibit the constant base-
line property). This can be corrected for by us-
ing the adjusted Rand Index, ARI (Steinley, 2004).
However, the distance in ARI is not a proper met-
ric, leaving it poor for comparisons in the space
of clusterings. For this work therefore we use ad-
justed mutual information as the cluster similarity
metric (Vinh et al., 2010).

Where U and V are two clusterings; H is the
entropy, and I is the information:

AdjMImax(U,V) =
I(U,V)− E{I(U,V)}

max{H(U), H(V)} − E{I(U,V)}

Following Hubert and Arabie (1985) in apply-
ing chance adjustment, this information-theoretic
metric gives the random baseline for free, while si-
multaneously addressing problems with other pop-
ular clustering similarity metrics. Its range is
[0..1], where 0 indicates a no-better-than-random
clustering similarity and 1 is a perfect overlap.

2.5 Polysemy
We should handle polysemy; in many languages,
many word types have more than one possible
PoS tag. To handle this, we build clusterings
over data where the surface form and instance
PoS tag are concatenated. E.g. for the Danish
word ham occurring as a pronoun, we use the to-
ken ham PRON; this produces a unit at slightly

Language Brown a=17 Brown a=2.5K GloVe
Danish 0.090 0.089 0.117
English 0.093 0.135 0.124
Finnish 0.030 0.022 0.043
French 0.142 0.092 0.171
Hebrew 0.166 0.204 0.085
Russian 0.054 0.067 0.083
Urdu 0.122 0.147 0.111
Chinese 0.081 0.084 0.098

Table 2: Part-of-speech complementarity: cluster sim-
ilarity between PoS tags and distributionally-derived
clusters, measured by adjusted mutual information.

coarser than lexeme level, distinguishing a subset
of senses for a given word type. Note that this di-
verges from many of the unsupervised PoS induc-
tion methods proposed, including Van Gael et al.
(2009).

3 Results and Analysis

Table 2 presents cluster similarity with part-of-
speech tags. It presents low figures for cluster
similarity, indicating that distributionally-derived
clusters, both Brown and k-means over word vec-
tors, complement part-of-speech tags. The values
for cluster overlap are very low, coming close to
random (0). This indicates that distributionally de-
rived word clusters group words very differently
from how part of speech tag does, supporting our
initial hypothesis.

3.1 Typological Comparison

The results vary between languages. Note that
Brown clusters are closer to parts of speech for
some languages (Hebrew) than others (Russian).
While, given Russian’s rich morphology and its
frequent expression of grammar through inflec-
tion instead of auxiliaries, one might suspect that
this language would not lend itself to ready analy-
sis through bigram-based distributional represen-
tations, it is a little surprising that Hebrew ap-
pears to do so considerably more. The two lan-
guages share some grammatical features, such as
no requirement for articles before nouns and flex-
ible word order. We see also that clustered GloVe
vectors connect well with French parts of speech;
French has a somewhat strict word order, which
is also used to mark case. Note that GloVe takes
bigrams from further than immediate neighbours
(i.e. skip-grams), allowing some capture of syntax
depending on the breadth of the window – unlike
Brown clustering.
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Language Adjusted MI
Danish 0.090
English 0.083
Finnish 0.037
French 0.093
Hebrew 0.053
Russian 0.100
Urdu 0.097
Chinese 0.081

Table 3: Comparison of Brown (a = 2500) with
GloVe/k-means clusters.

3.2 Brown Clusters vs. Embedding Clusters

We compare Brown clusters with those built from
the GloVe embeddings we derived. Results are
in Table 3. Here we can see that Brown clusters
and embedding-derived clusters are strongly dif-
ferent, coming close to random in their similarity.
The difference is particularly strong for Hebrew,
where there was also a relatively strong difference
in cluster similarity to part-of-speech tag. This of-
fers empirical evidence to support the folk knowl-
edge from extrinsic evaluation that Brown clusters
are an effect complement to embeddings; they of-
fer complementary information.

3.3 Tree Structure Analysis

The hierarchicality of Brown clustering provides
an extra level of detail, derived entirely from dis-
tributional information. Based on candid exami-
nations of Brown clusters, we might hypothesize
that words of the same PoS accumulate in indi-
vidual clusters or subtrees, as have others in the
past (Yang and Eisenstein, 2016). Indeed, distri-
butionally derived clusters can appear to contain
similar words at a glance; one may readily find
clusters exclusively representing phenomena such
as months of the year, days of the week, synonyms
for “good”, or spelling variations of the word “to-
morrow” (Ritter et al., 2011).

To analyse this observation, we iteratively ex-
pand the tree, unrolling it in reverse merge order,
and measure the homogeneity of part-of-speech
of each node (Rosenberg and Hirschberg, 2007).
If it is that words with the same part-of-speech
are placed in the same distributional cluster, there
will be high-homogeneity groups. For example,
while high-level nodes are likely to comprise a
broad range of words and classes, it is possible
that nodes deeper down the tree are by dominated
by one single part-of-speech.

To measure this, we set a threshold h for a min-
imum homogeneity of part-of-speech tag that a

#clust. node item
17 0.118 0.001

100 0.036 0.250
300 0.064 0.233
800 0.103 0.281
1600 0.143 0.325

#clust. node item
17 0.474 0.647
100 0.496 0.390
300 0.498 0.333
800 0.547 0.425

1600 0.562 0.456

Table 4: Node- and item-level homogeneity in English
(left) and Hebrew (right). Hebrew has one of the least
dissimilar Brown clusters from part-of-speech ground
truth. h = 0.85, a = 2500.

node may have. The extent of homogeneity is then
calculated two ways. Firstly, node homogeneity:
the proportion of all nodes that are homogeneous,
i.e. the dominant part of speech accounts for more
that h of the group. Secondly, item homogeneity:
how many items are accounted for by homoge-
neous groups to account for the volume of words
in each group. Note that we refer to item instead
of word type as words are split by part of speech
(Section 2.5). For example, a group consisting
of Danish { ham PRON, de PRON } is homoge-
neous regarding part of speech, but only accounts
for two items, and so contributes to the first metric
as much as a very large homogeneous node, but
less under the second metric.

We can see that, interestingly, as we “unfurl” the
clustering down its hierarchy, there is a paucity of
clusters that are homogeneous in terms of part-of-
speech tag for English. The scores here are consis-
tently low. In contrast, Hebrew Brown clusters re-
late more strongly to part-of-speech than English
ones. With 17 clusters, almost half the nodes in
the Brown tree have over 85% of their members
being the same part of speech.

4 Conclusions

Distributionally-derived clusters are distinct from
part-of-speech tags. Indeed, distributional simi-
larity does not directly predict part-of-speech tag;
rather, the information is largely complementary,
with the extent varying across languages. The rep-
resentations from Brown clustering and from par-
titioning words in embedding space are comple-
mentary; so, both should be experimented with as
features and sources of information. In closing –
these clusterings relate differently across different
language types, have internal cohesiveness, and
have been found by many others to be useful in
language processing. This motivates an interest-
ing avenue of investigation: what do the clusters
actually mean?
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