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ABSTRACT

We present a method for policy learning to navigate indoor environments. We
adopt a hierarchical policy approach, where two agents are trained to work in co-
hesion with one another to perform a complex navigation task. A Planner agent
operates at a higher level and proposes sub-goals for an Executor agent. The
Executor reports an embedding summary back to the Planner as additional side
information at the end of its series of operations for the Planner’s next sub-goal
proposal. The end goal is generated by the environment and exposed to the Plan-
ner which then decides which set of sub-goals to propose to the Executor. We
show that this Planner-Executor setup drastically increases the sample efficiency
of our method over traditional single agent approaches, effectively mitigating the
difficulty accompanying long series of actions with a sparse reward signal. On the
challenging Habitat environment (Savva et al., 2019) which requires navigating
various realistic indoor environments, we demonstrate that our approach offers a
significant improvement over prior work for navigation.

1 INTRODUCTION

The ability to model and understand the world at a high-level is crucial for performing complex
tasks in real world environments. Part of this high-level understanding involves the ability to divide
and plan out tasks that are complicated and have long time horizons into more manageable subtasks.
For example, when navigating to a new location, we typically break the task down into a set of
manageable directions (i.e. drive along a certain road until a familiar landmark before taking a turn).
Imbuing machines with this ability of creating abstractions for long and complex tasks is an active
area of research known as hierarchical learning (Sutton et al., 1998; 1999).

Research for navigation has recently seen a rejuvenation due to the advent of learning-based ap-
proaches (Gupta et al., 2017; Parisotto & Salakhutdinov, 2017; Zhang et al., 2017; Henriques &
Vedaldi, 2018). Embodied learning-based approaches have shown some appealing properties over
classical approaches such as being able to operate in complex environments with limited sensor
data (Savva et al., 2019; Mishkin et al., 2019). However, there is a need for the ability to plan across
long time horizons with sparse reward signals. This in effect, causes limitations such as the inability
to overcome small obstacles when navigating towards a given goal and the requirement of invok-
ing the environment a large number of times for any meaningful learning to occur (Le et al., 2018).
Works which have combined hierarchical reinforcement learning with imitation learning have shown
promising results (Das et al., 2018b; Le et al., 2018), by leveraging expert trajectories with policy
sketches (Andreas et al., 2017), which are less expensive to obtain; however these sketches still
require annotation of the environment.

In this work, we study such hierarchical control for the task of indoor navigation, whereby an embod-
ied agent is randomly spawned within a novel and complex environment and must learn to navigate
this environment through interaction (Das et al., 2018a). We address this challenging learning prob-
lem through a hierarchical policy approach, where two agents are cooperatively trained together.
Each agent performs a different role, where one agent acts as a Planner, learning how to propose
good sub-goals to an Executor agent, which acts at the low level to achieve these sub-goals (Fig. 1).
In contrast to existing hierarchical policy learning approaches, communication between our two
agents is two-way, where the Executor provides the Planner with a summary of its series of actions
and recent observations. This aids the Planner in deciding the next sub-goal with additional side
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Figure 1: Our PLEX framework adopts a hierarchical policy approach, where a Planner proposes
sub-goals for an Executor to act upon within an environment. The Planner receives an egocentric,
top-down view with the target location and an embedding summary provided by the Executor. The
Executor receives visual sensory data (i.e. colour and depth) as its input and a sub-goal provided
by the Planner. Our method reduces the need for long-term planning and addresses the known
sample inefficiency problem accompanying memory models within deep reinforcement learning
approaches.

information provided by the Executor. To this end, we propose PLEX, a planning and executing
learning framework which offers the following contributions:

• A hierarchical reinforcement learning approach where two agents specialise on different
tasks but are jointly trained by sharing information
• We demonstrate both theoretically and empirically that our method benefits from signifi-

cantly improved sample efficiency as the time horizon is distributed between the Planner
and Executor
• By extension, our approach mitigates problems prevalent in long-horizon planning, espe-

cially those adopting LSTM (Hochreiter & Schmidhuber, 1997) planning approaches

2 RELATED WORK

Hierarchical Reinforcement Learning The application of hierarchical reinforcement learn-
ing (Sutton et al., 1998; 1999; Bakker et al., 2004) in real world settings has allowed deep rein-
forcement learning approaches to scale with the increasingly higher sample requirements that are
required by complex real world environments (Das et al., 2018b;a). Early works considered an
options-based approach, where there was an underlying assumption of the existence of some useful
set of options which are fully defined beforehand; this allowed learning to occur at a higher level
in terms of those set of options (Sutton et al., 1998; 1999). In Kulkarni et al. (2016), a hierarchi-
cal approach was adopted without the use of imitation learning. However, the work was limited
to exploring non-realistic environments and information flow was uni-directional from master to
controller. Andreas et al. (2017) proposed sub-goals which have semantic meaning; although this
demanded a high-level of supervision where rich annotations on a given environment were required.
The work of Le et al. (2018) showed that using a hierarchical learning approach can lead to a reduc-
tion in the cost of exploration on problems with sparse rewards under the limited context of game
environments. Das et al. (2018b) explored the embodied question answering task (Das et al., 2018a),
leveraging heuristics embedded in the environment for providing expert trajectories used in the imi-
tation learning initialisation stage. This method is heavily supervised and assumes that full semantic
information of the environment is known. Additionally, the approach of Das et al. (2018b) is lim-
ited to a specific set of sub-goals, for example: Exit-room, Find-object, etc., imposing limitations
on the expressiveness of the master policy. By contrast, our method allows the Planner to propose
sub-goals which directly relate to the given environment (i.e. a continuous point-goal vector) and
does not rely on external annotations for supervision.

Embodied Agent Learning There has been a recent surge of interest towards embodied agent
learning (Gupta et al., 2017) where an agent is personified and spawned within an environment and
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set to complete a certain task. Such tasks may include question answering (Das et al., 2018a), point
goal navigation (Anderson et al., 2018), roaming (Fang et al., 2019) and scene exploration or cover-
age (Chen et al., 2019; Fang et al., 2019). This problem is purposely set up in a way which allows
for relatively easy transfer from simulation environment to a physical robotic platform operating in
a real world environment. Various simulation environments have been designed around this (Savva
et al., 2019; Chang et al., 2017; Xia et al., 2018; Brodeur et al., 2017; Kolve et al., 2017), which
aim to provide a realistic indoor simulation for training embodied agents on the aforementioned
tasks. These environments allow an agent to invoke the environment numerous times, and in effect,
scale the sample hungry nature of the problem to an extent where agents perform at a reasonable
level (Savva et al., 2019; Das et al., 2018a). Savva et al. (2019) trained an agent using the Proximal
Policy Optimisation algorithm (Schulman et al., 2017), augmenting it with a memory unit (Chung
et al., 2014). Although this provided a strong initial baseline, achieving this required invoking an
environment for millions of steps. The recent work of Fang et al. (2019) attempted to address this by
proposing a memory component which makes use of the transformer network (Vaswani et al., 2017).
Although this approach mitigated a key weakness in LSTM memory units (Hochreiter & Schmid-
huber, 1997), it incurs with it a linear growth of memory usage which is addressed via memory
compression and hence increases the computational complexity of the model. The aforementioned
issues are not present in our framework since the Executor’s rollout is strictly shorter as we will soon
demonstrate.

3 METHOD

3.1 EXPLORING EFFICIENTLY

Previously, we have discussed an inefficiency in non-hierarchical reinforcement learning frame-
works; this inefficiency stems from the nature of the problem setup. Given an agent that is normally
initialised without any priors and explores an environment randomly, intuitively we can see that if
the distance between the goal state and an agent’s starting state is large, reaching the defined goal
will require several exploration rollouts. In other words, the probability of an agent reaching its
goal decreases with the distance of this goal and conversely increases as the distance to the goal
shrinks. More formally, we can define the relationship between the rollout length of the agent and
the exploration probability w.r.t to that rollout length:
Proposition 1. The rollout evolution of a randomly initialised agent is simplified to be a sum of
Bernoulli random variables Xi ∈ [−1, 1] with the initial probability p = 1

2 . The sum of these i.i.d
variables is SN =

∑N
i=1Xi. As we increase the rollout length N , the agent’s probability of explor-

ing decreases exponentially and is given by the following bound:

P(SN ≥ αN) ≤ e−Nβ (1)

where α > 1
2 . For proof of Proposition 1, please refer to Appendix A.2.

Intuitively and as shown theoretically, reducing the rollout length N has a positive impact on the
required exploration (for a more general form of this proposition, we refer the interested reader
to Gardes & Prat (2000)). One way to exploit this insight is through a hierarchical approach which
allows setting sub-goals that are closer in state space to the agent’s current state.

3.2 PLANNING AND EXECUTING

Given this insight, we now provide details of our hierarchical approach which consists of two main
components: a Planner and an Executor policy. Each of these components is treated as an inde-
pendent agent with respective policies πθPL

and πθEX
. A high-level overview of our framework

is shown in Fig. 2. The environment is denoted as P , from which states s are sampled. A reward
function R provides the reward conditioned on a state s, an action a and a goal. In general, a goal
denoted by g indicates the end goal for the current episode, with gP denoting the sub-goals given by
the Planner. NEX and NPL denote the respective rollout lengths of the Executor and Planner.

Executor Building upon previous RL frameworks, an Executor is optimised using standard policy
learning techniques (Schulman et al., 2017). A key difference between existing non-hierarchical
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Figure 2: A system overview of PLEX which consists of two main components: a Planner and
Executor agent. The Executor’s task is to perform a series of actions such that it will traverse the
environment towards a target location given by a point-goal vector (a sub-goal that is provided by
the Planner). The Planner’s task is to generate sub-goals that help navigate the entire system to
an end goal (which only the Planner can see). An environment’s state is comprised of an RGB-D
observation, an egocentric map and a point-goal vector measurement pointing towards a target loca-
tion as defined by Anderson et al. (2018). The Executor is provided with the RGB-D observation,
a sub-goal generated by the Planner and returns an Executor Latent Information (ELI) vector that
summarises its rollout. The Planner sees an egocentric map with a roughly 4m view horizon and the
ELI vector. The Planner and Executor agents are trained simultaneously and using the sub-goal by
the Planner and ELI vector by the Executor, we create a two-way communication channel, enabling
our framework to regulate the flow of information between our two agents.

approaches and our approach is the Executor End State or sub-goal gP , which is not provided by
the environment but rather by a Planner policy. Consequently, the rewards provided to the Executor
are sampled using the sub-goal (i.e.: ri ∼ R(ri|si−1, ai, gP )). In line with this, the Executor policy
also provides an Executor Latent Information (ELI) vector which summarises its rollout experience
back to the Planner policy to provide feedback for the Planner towards planning the next sub-goal.
In effect, this creates a cooperative feedback loop between the Executor and Planner. A detailed
outline of the Executor routine is provided by Algorithm 1.

Planner The Planner does not invoke the environment directly, but it modifies the goal and rewards
observed by the Executor when the Executor interacts with the environment. This modification is
achieved through the generation of planned sub-goals given to the Executor by the Planner. As
such, given a state s and an ELI vector provided by the Executor, the Planner produces a sub-
goal. Using this sub-goal, the Executor routine (Algorithm 1) is invoked and a reward is returned
to the Planner which provides it with feedback on the generated sub-goal. Upon optimising the
Planner, we note that the Executor should not be directly affected from the Planner optimisation
process (i.e. we terminate backpropagated gradients from the Planner policy before they reach the
Executor policy). In other words, the ELI vector provided by the Executor does not affect the
Executor directly, but implicitly through improving the Planner policy’s generated sub-goals since
providing direct feedback to the Executor through the ELI vector will result in a redundant Planner.
Algorithm 2 fully outlines our approach and details the Planner routine.

4 EXPERIMENTS

We focus on the indoor PointGoal navigation task as defined in Anderson et al. (2018). In this setup,
a point-goal vector providing the distance and angle towards the target point in the environment is
assumed. If the indoor environment would be an empty space, this task would be trivial. However,
in a more realistic, real world setting, the agent is spawned in a room within the environment and
the target may be in a different room. In such a case, the agent needs to effectively navigate around
obstacles and plan its future actions in the presence of other rooms that may or may not lead to the
target point.
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4.1 SENSORY INPUTS AND MODEL OUTPUTS

The environment provides RGB-D sensory information and inaccurate access to the location and ori-
entation (as could be obtained using a fusion of GPS and IMU sensors (Caron et al., 2006)). From
these sensors, the environment can provide a coarse egocentric top-down map; we construct our ego-
centric map by adapting a similar approach in Chen et al. (2019)1 (Section A.1 details the method
of Chen et al. (2019) for constructing the egocentric map). The top-down map has a resolution
of 0.5m per pixel which is a reasonable assumption given the provided sensors. In our hierarchical
problem formulation, the Planner is provided with the egocentric, top-down map of size 32×32 pix-
els, the point-goal vector (translated to ego-map point-goal) (distance, direction) and the Executor
Latent Information (ELI) provided by the Executor (a vector of 128 values). The Planner emits a bi-
nary category distribution for continue or stop operations and two continuous sub-goal distributions:
the distance N (µρ, σρ) and direction N (µθ, σθ). The Executor is provided with RGB-D sensory
information of 256 × 256 resolution along with the sub-goal computed by the Planner and emits a
four category distribution with the actions described in Section 4.3, and emits the ELI vector which
is returned to the Planner when the Executor stops or performs the maximum number of actions,
NEX (note that for the Executor, the stop action does not stop the entire episode but simply returns
control back to the Planner).

4.2 MODEL ARCHITECTURE AND PARAMETER VALUES

Our Planner has a perception model for extracting embeddings from the egocentric map. This per-
ception model is a CNN composed of 2 convolutional layers with filter size 4 × 4 and 3 × 3 with
a stride of 2 and 1 respectively with ReLU (Nair & Hinton, 2010) activation. The output of these
convolution layers is flattened and concatenated with the ELI vector and transferred to the last fully-
connected linear layer which outputs a 512 vector with ReLU activation. This output is concatenated
with the 2-valued point-goal vector.

The Executor’s perception model consists of 3 convolution layers with filter sizes of 8 × 8, 4 × 4
and 3× 3 with strides of 4, 2 and 1 respectively and ReLU activations. This is followed by a fully-
connected linear layer which outputs an embedding of 512 or 128, which depends on the model
variant (LSTM (Hochreiter & Schmidhuber, 1997) or SMT (Fang et al., 2019) respectively). We
concatenate the 2-valued sub-goal vector to the output embedding. For the LSTM memory model,
we employ the GRU formulation (Chung et al., 2014) with hidden state of size 512. For the SMT
memory model, we use an 8 multi-head attention mechanism (we do not employ the furthest point
sampling technique used in (Fang et al., 2019) as it did not affect the performance of our model).
The output of either the GRU component or the SMT is the action embedding (a vector of 128 values
corresponding to the output state vector of the LSTM) and also functions as the ELI vector.

Both the Planner and the Executor policies are trained using the Proximal Policy Optimisation al-
gorithm from Schulman et al. (2017), following the original settings found in the paper except for
parameters specific to Algorithms 1 and 2: NEX = 10, γEX = 0.9, NPL = 128, γPL = 0.95.
Note that the values of NEX and γEX are chosen such that the Executor will focus on short-term
rewards; this in turn will implicitly encourage the Planner to generate subsequent sub-goals which
are nearby (further discussed in Section 4.4).

4.3 ENVIRONMENT SETUP

Habitat (Savva et al., 2019) is a modular environment API and can be used with realistic indoor
environments (Xia et al., 2018; Chang et al., 2017) coupled with tasks such as PointGoal navi-
gation (Anderson et al., 2018) and Embodied Question Answering (Das et al., 2018a). For our
experiments, we use the Gibson dataset (Xia et al., 2018) and perform the PointGoal navigation
task (Anderson et al., 2018). We use the same train-test split as provided in Savva et al. (2019)
which consists of 72 train scenes with 4.9M PointGoal navigation tasks and 16 unseen test scenes
comprised of 1k PointGoal navigation tasks. The environment accepts 4 actions: [Forward, Turn
left, Turn right, Stop], where invoking the stop action ends an episode with an episode running to
a maximum of 500 steps otherwise. The reward structure is similar to Savva et al. (2019) with a
success providing a reward of 10; otherwise, the agent’s reward is the change in geodesic distance

1Code adapted from: https://github.com/taochenshh/exp4nav
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Figure 3: (a) The geodesic distance travelled by a random exploration policy with increasing number
of random actions. (b) The geodesic distance normalised by the number of random steps taken. Both
figures are averaged from 500 scenes.

between the agent and the target with an additional slack of λ = −0.01. In addition, we penalise for
obstacle collision with a cost c = −0.01. This additional collision penalty is a desirable property
for embodied agents (Chen et al., 2019).

4.4 EXECUTOR ROLLOUT HORIZON AND EXPLORATION EFFICIENCY

In Section 3, we discussed the negative impact a long rollout horizon has on the exploration effi-
ciency. The context was in a setup which allowed two actions, and did not take into account the
complexities of realistic environments (such as obstacles and more actions). Hence, to choose an
appropriate rollout length for the Executor (given the chosen environment and sensory input), we
perform a short experiment which analyses a random exploration policy within the proposed setup.
We randomly choose 500 starting locations from the training scenes, with a different initial starting
point for recurring scenes. The agent can take 3 actions: [Forward, Turn Left, Turn Right], where
the “Stop” action is excluded so that the rollout length can be inspected without being shortened.

As we increase the number of random actions the random policy takes (N = [2, 25]), we inspect
two values: the geodesic distance between the starting position and the end position of the policy
(Fig. 3a), and the geodesic distance normalised with the number of random actions taken by the
policy (Fig. 3b). The geodesic distance normalised by policy actions indicates the average distance
travelled per number of actions and is an indication of exploration efficiency. As such, for initial
exploration, we would generally want this value to be high.

Fig. 3b observes that as the rollout horizon of the random policy increases, the exploration efficiency
begins to rapidly decline. Whilst this decline is not exponential as suggested by Proposition 1, it
provides us with further motivation not to set NEX too high. Further, we need to consider a large
enough NEX to enable the Executor explore its environment. Given Figs. 3a and 3b and given a
egocentric map with a resolution of 0.5m per pixel, NEX = 10 appears to maintain a good balance
between the two criteria we wish to impose on the Executor: a high probability of exploring more
than a unit distance in the egocentric map, along with high exploration efficiency.

4.5 EXPERIMENTAL RESULTS

Baselines We compare our approach to two baseline methods PPO LSTM and PPO SMT. The
former refers to the method found in Savva et al. (2019), and the latter is a recent approach found
in Fang et al. (2019). For comparison, we employ two variants of our PLEX framework: PLEX
LSTM and PLEX SMT. This comparison allows a fair comparison regarding the benefits toward
improved sample efficiency that our framework offers for both compared baselines.

Evaluation Metrics For evaluating the performance on the PointGoal task, we examine the reward
each method obtains and the success ratio of each method. A success for an episode is defined when
the agent provides a stop action and the geodesic shortest path distance between the agent and its
end goal is less than 0.2m. We do not use the Shortest Path Length (SPL) as a evaluation metric,
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Figure 4: (a) The observed reward obtained by each model over 30M environment steps. (b) The
observed success rate of each model. In this case, a success is defined as the agent issuing a stop
action when the geodesic shortest path distance between the agent and its goal is less than 0.2m.
Note that across both reward and success rate curves, the baseline methods exhibit a slow down in
learning at around 15M environment steps whilst our method remains relatively robust and is able
to maintain a steady learning rate.

as defined by Anderson et al. (2018) since maximising on this metric as an objective can result in
agents which exhibit undesirable behaviours (such as approaching too closely and colliding with
obstacles). Instead, we observe the reward which is a unitless measure and penalises undesirable
behaviours such as obstacle collision and moving in the wrong direction. This metric, along with
success rates, provides good indicators for assessing performance on this task (Fang et al., 2019).

Quantitative Results In Figs. 4a and 4b, we show the respective reward and success ratios of each
method. Similarly, in Table 1, we outline the mean and variance of the final rewards and success
ratios for all the methods after 30M environment steps. Each experiment was repeated 10 times
across all methods. Note that the LSTM variant of our method (PLEX LSTM) achieves a success
rate of 0.81 which is only slightly higher than the PPO LSTM result reported in Savva et al. (2019).
The key difference is the significant lower number of environment steps (approximately half) that
our method required for achieving a similar result.

4.6 THE EFFECT OF EXECUTOR LATENT INFORMATION

The key idea behind the ELI vector is to provide additional information to the Planner that may not
be observed in the egocentric map. Hence, the ELI vector is a mechanism that can be used by the
Executor to relay a compressed representation of its previous observations to the Planner; assisting
it towards generating sub-goals. Since the ELI vector is an integration of previous observations
outputted by the Executor’s LSTM component, we refer to it as a summary of the Executor’s rollout.

We adapt a hierarchical framework by Kulkarni et al. (2016), where conveniently, we can modify
the Q-learning approach to a policy-based approach. In this context, our Executor replaces the

Performance Metrics
PPO SMT

(Fang et al., 2019)
PPO LSTM

(Savva et al., 2019)
PLEX SMT

(Ours)
PLEX LSTM

(Ours)
Avg. Reward 7.17±0.54 8.85±0.72 10.20±0.61 12.76±0.58
Avg. Success 0.65±0.03 0.61±0.02 0.72±0.02 0.81±0.01

Table 1: Avg. Reward and Avg. Success across the baseline models and our method applied to each
method. Note that whilst the performance difference between the two baselines is small, both of
our models outperform the baselines by a significant margin. Specifically, our PLEX LSTM variant
shows a significant improvement over both baselines, achieving a higher result than the baseline
PPO LSTM model (Savva et al., 2019) trained on more than double the number of environments
steps.
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Figure 5: (a) The impact towards obtained rewards with and without the ELI vector being provided
to the Planner on the LSTM variant of our PLEX framework. (b) The performance of our method
compared with PPO LSTM (Savva et al., 2019) on close and far subsets of the test set. In this case,
close goals were selected when mean geodesic shortest path distance was less than 5.76m and were
classified as far goals otherwise.

“Controller” and our Planner serves as the “Meta Controller”. This allows us to assess the effect of
not providing the Planner with an ELI vector. Empirically, these results are shown in Fig. 5a. We
can see that when the ELI vector is not provided, the communication channel from the Executor to
the Planner is removed and we observe a decline in performance. This observation aligns well with
our framework and demonstrates the value of enabling communication from the Executor back to
the Planner.

4.7 LEARNING ACROSS LONG TIME HORIZONS

Across both reward and success ratio curves, the two baseline methods gradually exhibit a slow down
behaviour starting at around 15M timesteps. In contrast, our PLEX framework appears relatively
robust, demonstrating a more consistent learning pace. This highlights a key difference between our
hierarchical method compared to the baseline approaches. Both baselines and our method are able
to successfully learn simpler tasks, where the goal is relatively close to the agent’s spawn location.
However, for tasks where the goal is further away, the need for a more structured approach is nec-
essary. Our empirical results illustrate a potential drawback of LSTM-like units (and by extension,
GRU), where they may suffer when learning long time horizon tasks.

We divide the test set into two subsets containing close and far goals using a dividing criteria which
uses the mean geodesic shortest path between the agent’s spawn location and its end goal. In this
case, close goals were selected when mean distance was less than 5.76m and were classified as far
goals otherwise. The results for this experiment are shown in Fig. 5b where the PPO LSTM is unable
to navigate to the far goals in the allocated number of environment steps. In contrast, our method is
far more successful in this task and is able to achieve a higher score on reaching far goals due to the
extra reward provided for navigating to further away targets. Although the PPO LSTM baseline does
eventually learn to navigate to further targets, it requires a much larger number of training iterations
and environment invocations.

5 CONCLUSION

In this work, we present a hierarchical reinforcement learning approach for solving PointGoal nav-
igation tasks. Our proposed approach uses a cooperative learning strategy in which two agents, an
Executor and a Planner are jointly learned to solve this task. This is enabled through a two-way
communication channel established between the two agents through the use of an Executor Latent
Information vector provided by the Executor and sub-goals generated by the Planner. We motivate
the use of this hierarchical approach both theoretically, as well as through empirical experiments
which demonstrate a significant improvement in sampling efficiency of our approach, allowing our
structured approach to perform significantly better on increasingly harder tasks when compared to
baseline approaches.
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A APPENDIX

A.1 EGOCENTRIC TOP-DOWN MAP CONSTRUCTION

Given an embodied agent trajectory of length N with corresponding depth images {Dn}Nn=1 ∈
RH×W and relative camera poses {Tn}Nn=1 ∈ SE(3), the set of 3D points Pn ∈ RHW×3 for frame
n are extracted as follow:

Pn[i, j, k] = TnD[i, j]K−1 [i, j, 1]
> (2)

where the camera intrinsic matrix is K ∈ R3×3. We then define the global set of all points at the
end of the trajectory as: M ∈ RHWN×3. The setM starts empty and is iteratively updated by the
following rule:

Mn =Mn−1 ∪ Pn (3)
As the set of all points M is built, the egocentric map can be derived by projecting all points in
M to a plane (we lose the “height” dimension and points projected to the same slot are resolved by
taking the highest point), cropping and aligning a box using the vector of the agent’s facing direction
which results in an egocentric map.

A.2 PROOF OF PROPOSITION 1

Proof. The moment generating function of SN is given by:

MSN
(θ) = [MX(θ)]N = [

∞∑
x=0

P(X = x)eθx]N = [
1 + eθ

2
]N (4)

The probability of the Bernoulli sum being greater then αN with α > 1
2 can be bounded using the

Chernoff bound:

P(SN ≥ αN) ≤ sup
θ>0
{e−θαN [

1 + eθ

2
]} (5)

Analytically solving this bound, we obtain θ∗ = log α
1−α . We are specifically interested in the case

where α > 1
2 , and as a result θ∗ > 0. Substituting θ∗ into Eq. 5 and defining β ≡ log 1

1−α +
α log α

1−α concludes the proof.

A.3 PLANNER AND EXECUTOR ALGORITHMS

Algorithm 1 A pseudo algorithm of Executor Policy Gradient; Actor-Critic variant

NEX ← initialise Executor rollout length
γEX ← initialise Executor discount factor
gP ← initialise Planner goal
rP = 0 initialise Planner reward
buffers[sb, ab, rb]← initialise state, action, reward buffers
for i = 1 to NEX do

ai, eθEX
∼ πθEX

(ai, eθEX
|si−1, gP ) Sample policy for action and latent information

si, ti ∼ P(si, ti|si−1, ai) Sample environment for state and terminal
ri ∼ R(ri|si−1, ai, gP ) Sample reward given Planner goal
accumulate rP ← r ∼ R(r|si−1, ai, g) Sample reward given end goal
update buffers← si−1, ai, ri

end for
πθEX

← update(πθEX
, buffers, γEX) (as in PPO (Schulman et al., 2017))

return (si, rP , ti, eθEX
)
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Algorithm 2 A pseudo algorithm of our PLEX framework

πθPL
, πθEX

← initialise Planner and Executor parameterised by θPL, θEX respectively
max iters← initialise number of training iterations
NPL← initialise Planner rollout length
γPL← initialise Planner discount factor
si−1 ∼ P(si−1) Reset environment get initial state
e−θEX

← initialise Executor Latent Information (ELI) vector with zeros
for iter = 1 to max iters do

buffers[sb, ab, rb, tb, eθb]← initialise state, action, reward, terminal and ELI vector buffers
for i = 1 to NPL do

gi ∼ πθPL
(gi|si−1, e−θEX

) Sample Planner policy for sub-goal
(si, ri, ti, e

+
θEX

)←Algorithm1(gi)

update buffers← (si−1, gi, ri, ti, e
−
θEX

)

e−θEX
← e+θEX

end for
πθPL

← update(πθPL
, buffers, γPL) (as in PPO (Schulman et al., 2017))

end for
return (πθPL

, πθEX
)
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