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ABSTRACT

Recently, pre-trained language representation flourishes as the mainstay of the nat-
ural language understanding community, e.g., BERT. These pre-trained language
representations can create state-of-the-art results on a wide range of downstream
tasks. Along with continuous significant performance improvement, the size and
complexity of these pre-trained neural models continue to increase rapidly. Is
it possible to compress these large-scale language representation models? How
will the pruned language representation affect the downstream multi-task trans-
fer learning objectives? In this paper, we propose Reweighted Proximal Pruning
(RPP), a new pruning method specifically designed for a large-scale language rep-
resentation model. Through experiments on SQuAD and the GLUE benchmark
suite, we show that proximal pruned BERT keeps high accuracy for both the pre-
training task and the downstream multiple fine-tuning tasks at high prune ratio.
RPP provides a new perspective to help us analyze what large-scale language rep-
resentation might learn. Additionally, RPP makes it possible to deploy a large
state-of-the-art language representation model such as BERT on a series of dis-
tinct devices (e.g., online servers, mobile phones, and edge devices).

1 INTRODUCTION

Pre-trained language representations such as GPT (Radford et al., 2018), BERT (Devlin et al.,
2019) and XLNet (Yang et al., 2019), have shown substantial performance improvements using
self-supervised training on large-scale corpora (Dai & Le, 2015; Peters et al., 2018; Radford et al.,
2018; Liu et al., 2019a). More interestingly, the pre-trained BERT model can be fine-tuned with
just one additional output layer to create state-of-the-art models for a wide range of tasks, such as
question answering (Rajpurkar et al., 2016; 2018), and language inference (Bowman et al., 2015;
Williams et al., 2017), without substantial task-specific architecture modifications. BERT is concep-
tually simple and empirically powerful (Devlin et al., 2019).

However, along with the significant performance enhancement, the parameter volume and com-
plexity of these pre-trained language representations significantly increase. As a result, it becomes
difficult to deploy these large-scale language representations into real-life computation constrained
devices including mobile phones and edge devices. Throughout this paper, we attempt to answer the
following questions.

Question 1: Is it possible to compress large-scale language representations such as BERT via weight
pruning?

Question 2: How would the weight-pruned, pre-trained model affect the performance of the down-
stream multi-task transfer learning objectives?

The problem of weight pruning has been studied under many types of deep neural networks (DNNs)
(Goodfellow et al., 2016), such as AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman,
2014), ResNet (He et al., 2016), and MobileNet (Howard et al., 2017). It is shown that weight prun-
ing can result in a notable reduction in the model size. A suite of weight pruning techniques have
been developed, such as non-structured weight pruning (Han et al., 2015), structured weight pruning
(Wen et al., 2016), filter pruning (Li et al., 2016), channel pruning (He et al., 2017), ADMM-NN
(Ren et al., 2019) and PCONV (Ma et al., 2019) to name a few. Different from pruning CNN-
type models, BERT not only considers the metrics on the pre-training task, but also needs to make
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allowance for the downstream multi-task transfer learning objectives. Thus, the desired weight prun-
ing needs to preserve the capacity of transfer learning from a sparse pre-trained model to downstream
fine-tuning tasks.

In this work, we investigate irregular weight pruning techniques on the BERT model, including the
iterative pruning method (Han et al., 2015) and one-shot pruning method (Liu et al., 2019b). How-
ever, these methods fail to converge to a sparse pre-trained model without incurring significant ac-
curacy drop, or in many cases do not converge at all (see supporting results in Appendix). Note that
the aforementioned weight pruning techniques are built on different sparsity-promoting regulariza-
tion schemes (Han et al., 2015; Wen et al., 2016), e.g., lasso regression (`1 regularization) and ridge
regression (`2 regularization). We find that the failure of previous methods on weight pruning of
BERT is possibly due to the inaccurate sparse pattern learnt from the simple `1 or `2 based sparsity-
promoting regularizer. In fact, the difficulty of applying regularization to generate weight sparsity
coincides with the observation in (Loshchilov & Hutter, 2018) on the imcompatibility of conven-
tional weight decay (`2 regularization) for training super-deep DNNs as BERT. It is pointed out that
the main reason is that the direct optimization of a regularization penalty term causes divergence
from the original loss function and has negative effect on the effectiveness of gradient-based update.
To mitigate this limitation, (Loshchilov & Hutter, 2018) have modified the regularization in Adam
by decoupling weight decay regularization from the gradient-based update, and have achieved state-
of-the-art results on large-scale language pre-training and downstream multi-task transfer learning
objectives (Devlin et al., 2019).

Mask LMNSP Mask LM

Pre-training Reweighted Proximal Pruning Fine-Tuning

Unlabeled Sentence A and B Pair Unlabeled Sentence A and B Pair

MRPC MNLI CoLA

Mask LMNSP Mask LM

SQuAD

Masked 
Sentence A

Masked 
Sentence B

[CLS] [SEP]...Tok1 TokN Tok1 ... TokN [CLS] [SEP]...Tok1 TokN Tok1 ... TokN [CLS] [SEP]...Tok1 TokN Tok1 ... TokN

Start/End Span

Masked 
Sentence A

Masked 
Sentence B

Identical 
Universal 
Sparsity

Question Answer Pair

Question Paragraph

T1
TN

... T[SEP] T1
` TM

`...

E1 EN
... E[SEP] E1

` EM
`...E[CLS] E1 EN

... E[SEP] E1
` EM

`...E[CLS] E1 EN
... E[SEP] E1

` EM
`...E[CLS]

T1
TN

... T[SEP] T1
` TM

`... T1
TN

... T[SEP] T1
` TM

`...

Figure 1: Overview of pruning BERT using Reweighted Proximal Pruning algorithm and then fine-tuning on
a wide range of downstream transfer learning tasks. Through RPP, we find the identical universal sparsity Sŵ.
The BERT model pruned with RPP could be fine-tuned over the downstream transfer learning tasks.

In this work, we aim at more accurate universal sparse pattern search (see Figure 1 for an overview of
our approach) motivated by our experiments and the conclusion from Loshchilov & Hutter (2018).
We propose Reweighted Proximal Pruning (RPP), which integrates reweighted `1 minimization
(Candes et al., 2008) with proximal algorithm (Parikh et al., 2014). RPP consists of two parts : the
reweighted `1 minimization and the proximal operator. Reweighted `1 minimization serves as a bet-
ter method of generating sparsity in DNN models matching the nature of weight pruning, compared
with `1 regularization. Thanks to the closed-form solution of proximal operation on a weighted
`1 norm, in RPP the sparsity pattern search can be decoupled from computing the gradient of the
training loss. In this way the aforementioned pitfall in prior weight pruning technique on BERT
can be avoided. We show that RPP achieves effective weight pruning on BERT for the first time to
the best of our knowledge. Experimental results demonstrate that the proximal pruned BERT model
keeps high accuracy on a wide range of downstream tasks, including SQuAD (Rajpurkar et al., 2016;
2018) and GLUE (Wang et al., 2018).

We summarize our contributions as follows.

• We develop the pruning algorithm Reweighted Proximal Pruning (RPP), which acheives
the first effective weight pruning result on large pre-trained language representation model
- BERT. RPP achieves 59.3% weight sparsity without inducing the performance loss on
both pre-training and fine-tuning tasks.
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• We spotlight the relationship between the pruning ratio of the pre-trained DNN model and
the performance on the downstream multi-task transfer learning objectives. We show that
many downstream tasks except for SQuAD allows at least 80% pruning ratio compared
with 59.3% under the more challenging task SQuAD.

• We observe that as the pruning ratio of the pre-trained language model increases, the perfor-
mance on the downstream transfer learning tasks decreases. The descending range varies in
different downstream transfer learning tasks. However, the proposed RPP approach is able
to achieve a consistently high pruning ratio compared to iterative pruning based methods.

• We show that different from weight pruning in image classification tasks, RPP helps to find
the structured sparsity pattern in transformer blocks used in BERT. Moreover, we peer into
the effect of network pruning on the language representation embedded in BERT.

2 RELATED WORK

BERT and prior work on model compression BERT (Devlin et al., 2019) is a self-supervised
approach for pre-training a deep transformer encoder (Vaswani et al., 2017), before fine-tuning it
for particular downstream tasks. Pre-training of BERT optimizes two training objectives − masked
language modeling (MLM) and next sentence prediction (NSP) − which require a large collection
of unlabeled text. We use BooksCorpus (800M words) (Zhu et al., 2015) and the English instance of
Wikipedia (2,500M words) as the pre-training corpus, the same as Devlin et al. (2019). For detailed
information about the BERT model, readers can refer to the original paper (Devlin et al., 2019).

Michel et al. (2019) mask some heads in multi-head attention modules in BERT, and then evaluate
the performance on the machine translation task. Similarly, Hao et al. (2019) eliminates certain
heads in the multi-head attention module. First, the limited previous work do not consider the pre-
training metrics and the other downstream multi-mask transfer learning objectives. They only con-
sidered the specific machine translation task (out of over 10 transfer tasks), which is only a specific
fine-tuning and is limited for the universal pre-trained language representation (BERT). Second, the
multi-head attention module uses a weight sharing mechanism (Vaswani et al., 2017). So masking
some heads does not reduce the weight volume. Finally, multi-head attention allows the model to
jointly attend to information from different representation subspaces at different positions, while
single attention head inhibits this effect (Vaswani et al., 2017). As a result, masking some heads
in multi-head attention harms the weight sharing mechanism, without weight volume reduction. In
summary, the limited previous work in this area are not effective weight pruning method on BERT.
Shen et al. (2019) reports the quantization result of BERT model, which is orthogonal to our work
and can be combined for further compression/acceleration.

Reweighted `1 and proximal algorithm Candes et al. (2008) present reweighted `1 algorithm
and demonstrate the remarkable performance and broad applicability in the areas of statistical esti-
mation, error correction and image processing. Proximal algorithms can be viewed as an analogous
tool for non-smooth, constrained, large-scale, or distributed versions of these problems (Parikh et al.,
2014). To the best of our knowledge, ours is the first work that applies reweighted `1 minimization
to network compression, particularly for BERT pruning. ,

3 REWEIGHTED PROXIMAL PRUNING FOR LARGE-SCALE LANGUAGE
REPRESENTATION DURING PRE-TRAINING

Pruning for pre-trained language representations should not only consider the performance of pre-
training objectives, but also make allowance for the downstream fine-tuning transfer learning tasks.
Let fi denote the loss function of network for downstream task Ti ∼ p(T ), where p(T ) denotes the
distribution of tasks. Let w denote the parameters of the pre-trained model (pre-training in BERT),
and zi denote the i-th task-specified model parameters (fine-tuning in BERT). The downstream
tasks have separate fine-tuned models, even though they are initialized with the same pre-trained
parameters (Devlin et al., 2019). Starting from the pre-trained parameters w, the parameters zi(w)
are obtained through fine-tuning

minimize
w∈Rd

fi(w) (1)
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3.1 PRUNING FORMULATION IN TRANSFER LEARNING

Following the conventional weight pruning formulation, we first consider the problem of weight
pruning during pre-training:

minimize
w∈Rd

f0(w) + γ‖w‖p (2)

where f0 is the loss function of pruning, p ∈ {0, 1} denotes the type of regularization norm, and γ
is a regularization term. We note that the sparsity-promoting regularizer in the objective could also
be replaced with a hard `p constraint, |w‖p ≤ τ for some τ .

Let ŵ denote the solution to problem (2), and the corresponding sparse pattern Sŵ is given by
Sŵ = {i|ŵi = 0, ∀i ∈ [d]} (3)

For a specific transfer task i, we allow an additional retraining/fine-tuning step to train/fine-tune
weights starting from the pre-training results ŵ and subject to the determined, fixed sparse pattern
Sŵ, denoted as zi(ŵ;Sŵ). That is, we solve the modified problem equation 1

minimize
zi

fi
(
zi(ŵ;Sŵ)

)
(4)

Here, different from (1), the task-specific fine tuning weights variable zi(ŵ;Sŵ) is now defined
over Sŵ.

Our goal is to seek a sparse (weight pruned) model during pre-training, with weight collection ŵ and
sparsity Sŵ, which can perform as well as the original pre-trained model over multiple new tasks
(indexed by i). These fine-tuned models zi(ŵ;Sŵ) (for different i) share the identical universal
sparsity Sŵ.

3.2 REWEIGHTED PROXIMAL PRUNING

In order to enhance the performance of pruning pre-trained language representation over multi-task
downstream transfer learning objectives, we propose Reweighted Proximal Pruning (RPP). RPP
consists of two parts: the reweighted `1 minimization and the proximal operator. Reweighted `1
minimization serves as a better method of generating sparsity in DNN models matching the natural
objective of weight pruning, compared with `1 regularization. The proximal algorithm then sep-
arates the computation of gradient with the proximal operation over a weighted `1 norm, without
directly optimizing the entire sparsity-penalized loss, which requires gradient backpropagation of
the involved loss. This is necessary in the weight pruning of super-deep language representation
models.

3.2.1 REWEIGHTED `1 MINIMIZATION

In the previous pruning methods (Han et al., 2015; Wen et al., 2016), `1 regularization is used to
generate sparsity. However, consider that two weights wi, wj (wi < wj) in the DNN model are
penalized through `1 regularization. The larger weight wj is penalized more heavily than smaller
weight wi in `1 regularization, which violates the original intention of weight pruning, “removing
the unimportant connections” (parameters close to zero) (Han et al., 2015). To address this imbal-
ance, we introduce reweighted `1 minimization (Candes et al., 2008) to the DNN pruning domain.
Our introduced reweighted `1 minimization operates in a systematic and iterative manner (detailed
process shown in Algorithm 1), and the first iteration of reweighted `1 minimization is `1 regular-
ization. This designed mechanism helps us to observe the performance difference between `1 and
reweighted `1 minimization. Meanwhile, this mechanism ensures the advancement of reweighted `1
minimization over `1 regularization, as the latter is the single, first step of the former.

Consider the regularized weight pruning problem (reweighted `1 minimization):

minimize
w

f0(w) + γ
∑
i

αi|wi| (5)

where αi (αi > 0) factor is a positive value. It is utilized for balancing the penalty, and is different
from weight wi in DNN model. αi factors will be updated in the iterative reweighted `1 minimiza-
tion procedure (Step 2 in Algorithm 1) in a systematic way (Candes et al., 2008). If we set T = 1
for reweighted `1, then it reduces to `1 sparse training.
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Algorithm 1 RPP procedure for reweighted `1 minimization

1: Input: Initial pre-trained model w0, initial reweighted `1 minimization ratio γ, initial positive
value α0 = 1

2: for t = 1, 2, . . . , T do
3: w = w(t−1), α = α(t−1)

4: Step 1: Solve problem (5) to obtain a solution wt via iterative proximal algorithm (6)
5: Step 2: Update reweighted factors αti =

1
|wt

i |(t)+ε
(the inside wti denotes the weight wi in

iteration t, and the outside (t) denotes the exponent), ε is a small constant, e.g., ε = 0.001
6: end for

3.2.2 PROXIMAL METHOD

In the previous pruning methods (Han et al., 2015; Wen et al., 2016), `1 regularization loss is di-
rectly optimized through the back-propagation based gradient update of DNN models, and the hard-
threshold is adopted to execute the pruning action at the step of pruning (all weights below the
hard-threshold become zero). In our approach, we derive an effective solution to problem (5) for
given {αi}, namely, in Step 1 of Algorithm 2, in which back-propagation based gradient update is
only applied on f0(w) but not γ

∑
i αi|wi|.

We adopt the proximal algorithm (Parikh et al., 2014) to satisfy this requirement through decou-
pling methodology. In this way, the sparsity pattern search can be decoupled from back-propagation
based gradient update of the training loss. The proximal algorithm is shown in (Parikh et al., 2014)
to be highly effective (compared with the original solution) on a wide set of non-convex optimiza-
tion problems. Additionally, our presented reweighted `1 minimization (5) has analytical solution
through the proximal operator.

To solve problem (5) for a given α, the proximal algorithm operates in an iterative manner:

wk = proxλk,rw−`1 (wk−1 − λk∇wf0 (wk−1)) (6)

where the subscript k denotes the time step of the training process inside each iteration of RPP,
λk (λk > 0) is the learning rate, and we set the initial w to be w(t−1) from the last iteration of
reweighted `1. The proximal operator proxλk,rw−`1(a) is the solution to the problem

minimize
w

γ
∑
i

αi |wi|+
1

2λk
‖w − a‖22 (7)

where a = wk−1 − λk∇wf (wk−1). The above problem has the following analytical solution (Liu
et al., 2014)

wi,k =

{ (
1− γλkαi

|ai|

)
ai |ai| > λkγαi

0 |ai| ≤ λkγαi.
(8)

We remark that the updating rule (6) can be interpreted as the proximal step (8) over the gradient
descent step wk−1 − λk∇wf (wk−1). Such a descent can also be obtained through optimizers
such as AdamW. We use the AdamW (Loshchilov & Hutter, 2018) as our optimizer, the same with
(Devlin et al., 2019). The concrete process of AdamW with proximal operator is shown in Algorithm
3 of Appendix C.

Why chooses AdamW rather than Adam? Loshchilov & Hutter (2018) proposes AdamW to improve
the generalization ability of Adam (Kingma & Ba, 2014). Loshchilov & Hutter (2018) shows that
the conventional weight decay is inherently not effective in Adam and has negative effect on the
effectiveness of gradient-based update, which is the reason of the difficulty to apply adaptive gradi-
ent algorithms to super-deep DNN training for NLU applications (like BERT). Loshchilov & Hutter
(2018) mitigates this limitation and improves regularization of Adam, by decoupling weight de-
cay regularization from the gradient-based update (Loshchilov & Hutter, 2018). AdamW is widely
adopted in pre-training large language representations, e.g., BERT (Devlin et al., 2019), GPT (Rad-
ford et al., 2018) and XLNet (Yang et al., 2019). Our proposed RPP also benefits from the decou-
pling design ideology. The difference is that RPP is for the generation of sparsity, instead of avoiding
over-fitting, like decoupled weight decay in AdamW.
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Our new and working baseline: New Iterative Pruning (NIP). To get the identical universal
sparsity Sw, we tried a series of pruning techniques, including the iterative pruning method (Han
et al., 2015) and one-shot pruning method (Liu et al., 2019b). But these methods do not converge to
a viable solution. The possible reason for non-convergence of the iterative pruning method is that di-
rectly optimizing `p (p ∈ {1, 2}) sparsity-promoting regularization makes the gradient computation
involved and thus harms the loss convergence (We provide the loss curve and analysis in Appendix
D). To circumvent the convergence issue of conventional iterative pruning methods, we propose a
new iterative pruning (NIP) method. Different from iterative pruning (Han et al., 2015), NIP reflects
the naturally progressive pruning performance without any externally introduced penalty. We hope
that other pruning methods should not perform worse than NIP, otherwise, the effect of optimizing
the newly introduced sparsity-promoting regularization is negative. We will show that NIP is able
to successfully prune BERT to certain pruning ratios. We refer readers to Appendix A for the full
detail about NIP, our proposed baseline algorithm.

4 EXPERIMENTS

In this section, we describe the experiments on pruning pre-trained BERT and demonstrate the per-
formance on 10 downstream transfer learning tasks.

4.1 EXPERIMENT SETUP

We use the official BERT model from Google as the startpoint. Following the notation from Devlin
et al. (2019), we denote the number of layers (i.e., transformer blocks) asL, the hidden size asH , and
the number of self-attention heads as A. We prune two kinds of BERT model: BERTBASE (L =
12, H = 768, A = 12, total parameters = 110M) and BERTLARGE (L = 24, H = 1024, A =
16, total parameters = 340M). As the parameters of these transformer blocks take up more than
97% weights of the entire BERT, the weights of these transformer blocks are our pruning target.

Data: In pre-training, we use the same pre-training corpora as Devlin et al. (2019): BookCorpus
(800M words) (Zhu et al., 2015) and English Wikipedia (2, 500M words). Based on the same cor-
pora, we use the same preprocessing script1 to create the pre-training data. In fine-tuning, we report
our results on the Stanford Question Answering Dataset (SQuAD) and the General Language Under-
standing Evaluation (GLUE) benchmark (Wang et al., 2018). We use two versions of SQuAD: V1.1
and V2.0 (Rajpurkar et al., 2016; 2018). The GLUE is a collection of datasets/tasks for evaluating
natural language understanding systems2.

Input/Output representations: We follow the input/output representation setting from Devlin et al.
(2019) for both pre-training and fine-tuning. We use the WordPiece (Wu et al., 2016) embeddings
with a 30, 000 token vocabulary. The first token of every sentence is always a special classification
token ([CLS]). The sentences are differentiated with a special token ([SEP]).

Evaluation: In pre-training, BERT considers two objectives: masked language modeling (MLM)
and next sentence prediction (NSP). For MLM, a random sample of the tokens in the input sequence
is selected and replaced with the special token ([MASK]). The MLM objective is a cross-entropy
loss on predicting the masked tokens. NSP is a binary classification loss for predicting whether two
segments follow each other in the original text. In pre-training, we use MLM and NSP as training
objectives to pre-train, retrain the BERT model, and as metrics to evaluate the BERT model . In fine-
tuning, F1 scores are reported for SQuAD, QQP and MRPC. Matthew’s Corr and Pearson-Spearman
Corr are reported for CoLA and SST2 respectively. Accuracy scores are reported for the other tasks.

All the experiments execute on one Google Cloud TPU V3-512 cluster, three Google Cloud TPU
V2-512 clusters and 110 Google Cloud TPU V3-8/V2-8 instances.

1https://github.com/google-research/bert
2The datasets/tasks are: CoLA (Warstadt et al., 2018), Stanford Sentiment Treebank (SST) (Socher et al.,

2013), Microsoft Research Paragraph Corpus (MRPC) (Dolan & Brockett, 2005), Semantic Texual Similarity
Benchmark (STS) (Agirre & Soroa, 2007), Quora Question Pairs (QQP), Multi-Genre NLI (MNLI) (Williams
et al., 2017), Question NLI (QNLI) (Rajpurkar et al., 2016), Recognizing Textual Entailment (RTE) and Wino-
grad NLI(WNLI) (Levesque et al., 2012).
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Baseline: As there is no public effective BERT pruning method, we use the proposed NIP pruning
method on BERT as the baseline method. Th detail of NIP is shown in Appendix A. The progressive
pruning ratio is ∇p = 10% (prune 10% more weights in each iteration). Starting from the official
BERTBASE, we use 9 iterations. In each iteration t of NIP, we get the sparse BERTBASE with
specific sparsity, as (wt;Swt). Then we retrain the sparse BERTBASE wt over the sparsity Swt . In
the retraining process, the initial learning rate is 2·10−5, the batch size is 1024 and the retraining lasts
for 10, 000 steps (around 16 epochs). For the other hyperparameters, we follow the original BERT
paper Devlin et al. (2019). In each iteration, the well retrained sparse BERTBASE is the starting
point for the fine-tuning tasks and the next iteration.

4.2 REWEIGHED PROXIMAL PRUNING (RPP)

We apply the proposed Reweighted Proximal Pruning (RPP) method on both BERTBASE and
BERTLARGE, and demonstrate performance improvement. Detailed process of RPP is in Ap-
pendix B.

For BERTBASE, we use the hyperparameters exactly the same with our experiments using NIP. The
initial learning rate is λ=2 ·10−5 and the batch size is 1024. We iterate the RPP for six times (T=6),
and each iteration lasts for 100, 000 steps (around 16 epochs). The total number of epochs in RPP is
smaller than NIP when achieving 90% sparsity (96 < 144). There is no retraining process in RPP.
We set γ ∈ {10−2, 10−3, 10−4, 10−5} and ε=10−9 in Algorithm 1. Recall that RPP reduces to `1
sparse training as t=1.

In Figure 2, we present the accuracy versus the pruning ratio for pre-training objectives MLM and
NSP, and fine-tuning task SQuAD 1.1. Here we compare RPP with NIP. Along with the RPP contin-
uing to iterate, the performance of RPP becomes notably higher than NIP for both the pre-training
task and the fine-tuning task. The gap further increases as the RPP iterates more times. In Figure 2,
we find that the NSP accuracy is very robust to pruning. Even when 90% of the weights are pruned,
the NSP accuracy keeps above 95% in RPP algorithm and around 90% in NIP algorithm. For MLM
accuracy and SQuAD F1 score, the performance drops quickly as the prune ratio increases. RPP
slows down the decline trend to a great extent. On SQuAD 1.1 dataset/task, RPP keeps the F1 score
of BERTBASE at 88.5 (0 degradation compared with original BERT) at 41.2% prune ratio, while
the F1 score of BERTBASE applied with NIP drops to 84.6 (3.9 degradation) at 40% prune ratio.
At 80% prune ratio, RPP keeps the F1 score of BERTBASE at 84.7 (3.8 degradation), while the F1
score of BERTBASE applied with NIP drops to 68.8 (19.7 degradation compared with the original
BERT). In addition to the fine-tuning task of SQuAD 1.1, the other transfer learning tasks show the
same trend (RPP consistently outperforms NIP) and the detailed results are reported in Appendix C.

For BERTLARGE, we use the hyperparameters exactly the same with our experiments using NIP
except for the batch size. The initial learning rate is 2 · 10−5 and the batch size is 512. We iterate
the RPP for four times (T=6), and each iteration lasts for 100,000 steps (around 8 epochs). There is
no retraining process either. We set γ∈{10−2 10−3 10−4 10−5} and ε=10−9 in Algorithm 1. The
experimental results about pruning BERTLARGE and then fine-tuning are shown in Table 1.
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Figure 2: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and F1 score of fine-tuning on SQuAD 1.1 are reported).
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Table 1: BERTLARGE pruning results on a set of transfer learning tasks. The degradation is contrasted with
the original BERT (without pruning) for transfer learning.

Method Prune Ratio(%) SQuAD 1.1 QQP MNLI MRPC CoLA

NIP 50.0 85.3 (-5.6) 85.1 (-6.1) 77.0 (-9.1) 83.5 (-5.5) 76.3 (-5.2)
80.0 75.1 (-15.8) 81.1 (-10.1) 73.81 (-12.29) 68.4 (-20.5) 69.13 (-12.37)

RPP 59.3 90.23 (-0.67) 91.2 (-0.0) 86.1 (-0.0) 88.1 (-1.2) 82.8 (+1.3)
88.4 81.69 (-9.21) 89.2 (-2.0) 81.4 (-4.7) 81.9 (-7.1) 79.3 (-2.2)

Method Prune Ratio(%) SQuAD 2.0 QNLI MNLIM SST-2 RTE

NIP 50.0 75.3 (-6.6) 90.2 (-1.1) 82.5 (-3.4) 91.3 (-1.9) 68.6 (-1.5)
80.0 70.1 (-11.8) 80.5 (-10.8) 78.4 (-7.5) 88.7 (-4.5) 62.8 (-7.3)

RPP 59.3 81.3 (-0.6) 92.3 (+1.0) 85.7 (-0.2) 92.4 (-0.8) 70.1 (-0.0)
88.4 80.7 (-1.2) 88.0 (-3.3) 81.8 (-4.1) 90.5 (-2.7) 67.5 (-2.6)

4.3 VISUALIZING ATTENTION PATTERN IN BERT

We visualize the sparse pattern of the kernel weights in sparse BERT model applied with RPP, and
present several examples in Figure 3. Since we directly visualize the value of identical universal
sparsity Sw without any auxiliary function like activation map, the attention pattern is universal and
data independent.
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Figure 3: Visualization of sparse pattern S in pruned BERTBASE model w. We sample 6 matrices (3 query
matrices at the top row and 3 key matrices at the bottom row) from layer 2, layer 3 and layer 11 in the sparest
pruned BERTBASE.

BERT’s model architecture is a multi-layer, bidirectional transformer encoder based on the original
implementation (Vaswani et al., 2017). Following (Vaswani et al., 2017), the transformer archi-
tecture is based on “scaled dot-product attention.” The input consists of queries, keys and values,
denoted as matrices Q, K and V , respectively. The output of attention model is computed as

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (9)

where dk is the dimension. We visualize the sparse matrices Q and K of layer 2, layer 3 and layer
11 respectively in Figure 3. From Figure 3, we have the following observations and analyses.
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Structured pattern: Figure 3 demonstrates the structured pattern of non-zero weights in a pruned
transformer block. More specifically, we found that the pruned Q and K matrices within each
transformer yield interesting group-wise structures (column-wise non-sparsity for query matrix and
row-wise non-sparsity for key matrix). Interestingly, we obtained these structured sparse patterns
from our proposed RPP, an irregular pruning method (namely, no group-wise sparsity is penalized).
This is different from the irregular pruning on image classifiers, and thus shows the specialty of
pruning on language models. We also believe that the use of reweighted `1 approach matters to
find these fine-grained sparse patterns. Note that the structured sparsity pattern is more friendly to
hardware implementation and acceleration than the non-structured pattern.

Semantic interpretation: The structured pattern found by RPP (visualized in Figure 3) has the
following semantic interpretation. What might the large-scale language representation learn? The
answer becomes clear after the language representation is pruned by RPP. From the perspective of
attention mechanism, the query matrix Q (column-wise non-sparsity) mainly models the attention
information inside each sequence, while the key matrix K (row-wise non-sparsity) mainly models
the attention information between different sequences in the context.

4.4 t-SNE VISUALIZATION

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for dimensionality reduction
that is particularly well suited for the visualization of high-dimensional datasets (Maaten & Hinton,
2008). Pre-trained word embeddings are an integral part of modern NLP systems (Devlin et al.,
2019) and one contribution of BERT is the pre-trained contextual embedding. Hence, we visualize
word embedding in the original BERT model and the BERT model applied with RPP in Figure 4
using t-SNE. Since BERT is different from commonly-studied image classifier in network pruning,
we would like to examine if pruning on BERT will lead to significant change on the low-dimensional
manifold of the language representation. From Figure 4, we obtain the following observations and
insights.

Low-dimensional manifold: Figure 4 illustrates that, for both original BERT and BERT pruned
with RPP, the low-dimensional manifolds of the language representations are similar, showing the
similar projection. Taking the specific word “intelligent” in Figure 4 as an example, the distribution
of specific words and corresponding nearest words at the low-dimensional manifold (calculated
using cosine/Euclidean distance) remain the high degree of similarity. This implies that the BERT
applied with RPP keeps most of the language representation information similar to that from the
original BERT.

Linguistic interpretation of proper noun: There is one salient ribbon on the upper left of the
macroscopical t-SNE visualization of word embeddings in either the original BERT or the pruned
BERT through RPP. Each point in the ribbon represents a year number in annals. There is also one
salient short line on the lower left of the macroscopical t-SNE visualization of word embeddings in
either the original BERT or the BERT applied with RPP. Each point in most of the lines represents
an age number. Other proper nouns also reveal similar characteristics. Our proposed RPP remains
the embedding information of these proper nouns from the perspective of linguistic interpretation.

salient ribbon
salient ribbon

salient line salient line

Figure 4: t-SNE visualization of word embeddings in the original BERT model and the pruned BERT model
using RPP. From left to right: t-SNE of original BERT embedding, together with an enlarging region around
word “intelligent”; t-SNE of embedding in pruned BERT, together with an enlarging region. These visualiza-
tions are obtained by running t-SNE for 1000 steps with perplexity=100.
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5 CONCLUSIONS AND FUTURE WORK

This paper presents the pruning algorithm RPP, which achieves the first effective weight pruning
result on large pre-trained language representation model - BERT. RPP achieves 59.3% weight spar-
sity without inducing the performance loss on both pre-training and fine-tuning tasks. We spotlight
the relationship between the pruning ratio of the pre-trained DNN model and the performance on the
downstream multi-task transfer learning objectives. We show that many downstream tasks except
SQuAD allows at least 80% pruning ratio compared with 59.3% under task SQuAD. Our proposed
Reweighted Proximal Pruning provides a new perspective to analyze what does a large language
representation (BERT) learn.
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A ALGORITHM OF NEW ITERATIVE PRUNING

Algorithm 2 shows the detail process of our proposed NIP algorithm.

Algorithm 2 New Iterative Pruning (NIP) algorithm

1: Input: Initial model weights w, initial prune ratio p = 0%, progressive prune ratio∇p
2: for t = 1, 2, . . . , T do
3: w = w(t−1)

4: Sample batch of data from the pre-training data
5: Obtain sparsity Sw through hard threshold pruning, prune ratio pt = t · ∇p
6: Retrain w over sparsity constraint Sw
7: for all tasks in {Ti} do
8: Fine-tune zi(w;Sw) over sparsity Sw (if the desired prune ratio pt has been reached for

downstream task i)
9: end for

10: end for

B ALGORITHM OF REWEIGHTED PROXIMAL PRUNING (RPP)

Algorithm 3 shows the detail process of our enhanced AdamW (Loshchilov & Hutter, 2018) with
proximal operator.

Algorithm 3 Our enhanced AdamW (Loshchilov & Hutter, 2018) with proximal operator

1: Given α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−6, λ ∈ R
2: Initialize time step k ← 0, parameters of pre-trained model w, first moment vector mt=0 ← 0,

second moment vector vt=0 ← 0, schedule multiplier ηk=0 ∈ R
3: repeat
4: k ← k + 1
5: ∇fk (wk−1)← SelectBatch (wk−1)
6: gk ← ∇fk (wk−1)
7: mk ← β1mk−1 + (1− β1) gk
8: vk ← β2vk−1 + (1− β2) g2k
9: m̂k ←mk/

(
1− βk1

)
10: v̂k ← vk/

(
1− βk2

)
11: ηk ← SetScheduleMultiplier(k)
12: a← wk−1 − ηk

(
αm̂k/(

√
v̂k + ε) + λwk−1

)
13: wk ← proxλk,rw−`1(a)
14: until stopping criterion is met
15: return optimized sparse model w in pre-training

14
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C DOWNSTREAM TRANSFER LEARNING TASKS

As we mentioned in our main paper, we prune the pre-trained BERT model (using NIP and RPP)
and then fine-tune the sparse pre-trained model to different down-stream transfer learning tasks. In
this section, we exhibit the performance of pruned BERT using NIP and RPP on a wide range of
downstream transfer learning tasks to demonstrate our conclusions in the main paper.

Through finetuning the pruning BERT over different downstream tasks, we found that SQuAD the
most sensitive to the pruning ratio, showing an evident performance drop after 80% pruning ratio.
By contrast, the pruning can be made more aggressively when it is evaluated under other finetuning
tasks. This is not surprising, since SQuAD is a much harder Question Answering (QA) tasks, than
other simple classification tasks with limited solution space.

On the other hand, as the prune ratio of the pre-trained BERT increases, the performances on differ-
ent transfer learning tasks descend generally. The descending ranges differ in different downstream
transfer learning tasks. The descending range on SQuAD is the largest. Our proposed RPP mitigates
the descending trend on all downstream transfer learning tasks to a great extent, compared with NIP.
The intrinsic reason of this descending trend is left to future work.

C.1 QQP

Quora Question Pairs is a binary classification task where the goal is to determine if two questions
asked on Quora are semantically equivalent.
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Figure A1: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and F1 score of fine-tuning on QQP are reported).

Finetuning setting: for fine-tuning on QQP, we set learning rate λ = 2 · 10−5, batch size 32 and
fine tuned for 3 epochs.
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C.2 MRPC

Microsoft Research Paraphrase Corpus consists of sentence pairs automatically extracted from on-
line news sources, with human annotations for whether the sentences in the pair are semantically
equivalent. Dolan & Brockett (2005)

Finetuning setting: for fine-tuning on MRPC, we set learning rate λ = 2 · 10−5, batch size 32 and
fine-tune for 3 epochs.

40

50

60

70

80

90

100

Prune Ratio (%)
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

MLM (NIP) NSP (NIP) MRPC (NIP)
MLM (RPP) NSP (RPP) MRPC (RPP)

t=1 t=2 t=3 t=4 t=6

Ac
cu

rac
y (

%
) / 

F1
 sc

ore
 fo

r M
RP

C

t=5

Figure A2: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and F1 score of fine-tuning on MRPC are reported).

C.3 MNLI

Multi-Genre Natural Language Inference is a large-scale, crowdsourced entailment classification
task Williams et al. (2017). Given a pair of sentences, the goal is to predict whether the second
sentence is an entailment, contradiction, or neutral with respect to the first one.

Finetuning setting: for fine-tuning on MNLI, we set learning rate λ = 2 · 10−5, batch size 32 and
fine-tune for 3 epochs.
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Figure A3: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on MNLI are reported).
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C.4 MNLIM

Multi-Genre Natural Language Inference has a separated evaluation MNLIM. Following (Devlin
et al., 2019), the fine-tuning process on MNLIM is separated from MNLI. So we present our results
on MNLIM in this subsection.

Finetuning setting: for fine-tuning on MNLIM, we set learning rate λ = 2 · 10−5, batch size 32
and fine-tune for 3 epochs.
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Figure A4: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on MNLIM are reported).

C.5 QNLI

Question Natural Language Inference is a version of the Stanford Question Answering Dataset (Ra-
jpurkar et al., 2016) which has been converted to a binary classification task Wanget al., 2018a). The
positive examples are (question, sentence) pairs which do contain the correct answer, and the nega-
tive examples are (question, sentence) from the same paragraph which do not contain the answer.

Finetuning setting: for fine-tuning on QNLI, we set learning rate λ = 2 · 10−5, batch size 32 and
fine-tune for 3 epochs.
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Figure A5: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on QNLI are reported).
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C.6 SST-2

The Stanford Sentiment Treebank is a binary single-sentence classification task consisting of sen-
tences extracted from movie reviews with human annotations of their sentiment(Socher et al., 2013).

Finetuning setting: for fine-tuning on SST-2, we set learning rate λ = 2 · 10−5, batch size 32 and
fine-tune for 3 epochs. To consistent with the GLUE benchmark (Wang et al., 2018), the Pearson-
Spearman Corr score is reported.
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Figure A6: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on SST-2 are reported).

C.7 COLA

The Corpus of Linguistic Acceptability is a binary single-sentence classification task, where the goal
is to predict whether an English sentence is linguistically acceptable or not (Warstadt et al., 2018).

Finetuning setting: for fine-tuning on CoLA, we set learning rate λ = 2 · 10−5, batch size 32 and
fine-tune for 3 epochs. To consistent with the GLUE benchmark (Wang et al., 2018), the Matthew’s
Corr score is reported.
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Figure A7: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on CoLA are reported).
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D NON CONVERGENCE OF PRUNING BERT USING PREVIOUS METHODS
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Figure A8: Training loss curve of applying iterative pruning and RPP on BERT

As we mentioned in our main paper, we investigate a series of pruning techniques to prune BERT,
include the iterative pruning method (Han et al., 2015) and the one-shot pruning (Liu et al., 2019b).
However, most of the previous pruning techniques requires to directly optimize the `1/`2 regular-
ization using the back-propagation based gradient update in the original training of DNN models.
We execute a school of experiments and find that, this kind of method to optimize regularization
might not be compatible with BERT. We show the experiment results about this incompatibility
in this section. For the sake of fair comparison, we not only adopt the same hyperparameters (in
our experiments about NIP and RPP) on iterative pruning and one-shot pruning, we execute a wide
set of hyperparamters to make the iterative pruning and one-shot pruning work. We set the learn-
ing λ ∈ {2 · 10−4, 10−4, 5 · 10−5, 3 · 10−5, 2 · 10−5, 1 · 10−5, 1 · 10−6, 1 · 10−7, 1 · 10−8}, batch
sizeB ∈ {256, 512, 1024, 2048}. We execute the same hyperparameters (with NIP and RPP) and at-
tempt more hyperparameters on the iterative pruning and one-shot pruning, but iterative and one-shot
pruning could not converge to a valid solution. Figure A8 illustrates training loss curve of applying
iterative pruning, one-shot pruning and RPP on BERT. It is clear that iterative pruning and one-shot
pruning leads to a non-convergence result, while different settings of RPP (T = 0, T = 1, T = 2)
converge well.

From the perspective of optimization and convergence, we make the following analysis:

The previous method, such as Iterative Pruning (IP) and one-shot pruning, relies on directly optimiz-
ing the `1 / `2 penalized training loss to conduct DNN pruning (this is discussed by Han et al. (2015)
on iterative pruning, Section 3.1). As a result, a simultaneous back-propagation (for updating model
weights) is conducted over both the original training loss as well as the non-smooth sparsity regu-
larizer. When the penalty term is back-propagated together with the loss function, this affects the
convergence of the original loss function. The convergence performance is significantly degraded
for extremely large DNN model like BERT. This phenomenon is also observed in the training of
BERT (ADAM weight decay) that decouples the regularization term with the original loss function,
instead of using an overall back-propagation.

For the super-deep DNN model (like BERT), it becomes harder to count on the one-time back-
propagation flow to solve both the original training objective and the sparse regulariztion at the same
time. Loshchilov & Hutter (2018) notices this limitation and improves regularization of Adam,
by decoupling weight decay regularization from the gradient-based update (Loshchilov & Hutter,
2018). AdamW is widely adopted in pretraining large language representations, e.g., BERT (Devlin
et al., 2019), GPT (Radford et al., 2018) and XLNet (Yang et al., 2019). The difference is that,
the decoupled weight decay in AdamW is to avoid overfitting, while our purpose is to generate
sparsity. Moreover, previous algorithms with directly optimizing `1 through the back-propagation
based gradient update penalty on TPU will easily lead to the gradient NaN.
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Hence we proposed New Iterative Pruning (NIP) as our working baseline. We believe that NIP works
since NIP reflects the naturally progressive pruning performance without any externally introduced
penalty. As a fix of IP, NIP simplifies the training objective by removing the non-smooth sparsity
regularizer. This simple fix improves the convergence of the training process, and makes new itera-
tive pruning doable for BERT. We hope that other pruning methods should not perform worse than
NIP, otherwise, the effect of optimizing the newly introduced sparsity-promoting regularization is
negative.

To further improve the pruning performance, we need to find a better pruning method that exploits
our composite objective structure (original training loss + sparsity regularization), so that the back-
propagation is not affected for the original training objective of BERT. Motivated by that, proximal
gradient provides an elegant solution, which splits the updating rule into a) gradient descent over the
original training loss, and b) proximal operation over non-smooth sparsity regularizers. Moreover,
reweighted `1 minimization serves as a better sparsity generalization method, which self-adjusting
the importance of sparsity penalization weights. Furthermore, the incorporation of reweighted `1
will not affect the advantage of the proximal gradient algorithm. Thanks to the closed-form solution
(equation 8) of proximal operation on a weighted `1 norm, Reweighted Proximal Pruning (RPP) is
a desired pruning method on BERT model. We hope RPP proves to be effective in more kinds of
DNN models in the future.

20


	Introduction
	Related Work
	Reweighted Proximal Pruning for large-scale language representation during pre-training
	Pruning formulation in transfer learning
	Reweighted Proximal Pruning
	Reweighted 1 minimization
	Proximal method


	Experiments
	Experiment Setup
	Reweighed Proximal Pruning (RPP)
	Visualizing Attention Pattern in BERT
	t-SNE Visualization

	Conclusions and Future Work
	Algorithm of New Iterative Pruning
	Algorithm of Reweighted Proximal Pruning (RPP)
	Downstream Transfer Learning Tasks
	QQP
	MRPC
	MNLI
	MNLIM
	QNLI
	SST-2
	CoLA

	Non convergence of Pruning BERT using previous methods

