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a b s t r a c t 

A whole heart segmentation (WHS) method is presented for cardiac MRI. This segmentation method em- 

ploys multi-modality atlases from MRI and CT and adopts a new label fusion algorithm which is based 

on the proposed multi-scale patch (MSP) strategy and a new global atlas ranking scheme. MSP, developed 

from the scale-space theory, uses the information of multi-scale images and provides different levels of 

the structural information of images for multi-level local atlas ranking. Both the local and global atlas 

ranking steps use the information theoretic measures to compute the similarity between the target im- 

age and the atlases from multiple modalities. The proposed segmentation scheme was evaluated on a set 

of data involving 20 cardiac MRI and 20 CT images. Our proposed algorithm demonstrated a promising 

performance, yielding a mean WHS Dice score of 0.899 ± 0.0340, Jaccard index of 0.818 ± 0.0549, and 

surface distance error of 1.09 ± 1.11 mm for the 20 MRI data. The average runtime for the proposed label 

fusion was 12.58 min. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

According to the World Health Organization, an estimated 17.3

illion people died from cardiovascular diseases (CVDs) in 2008,

ccounting for 30% of deaths around the world ( Organization,

011 ). Early diagnosis and treatment play a vital role in reduc-

ng the mortality and morbidity of CVDs. Recently advances in

edical imaging and computing technology and their application

o the clinics have shown great potential towards achieving this

oal. Cardiac magnetic resonance imaging (MRI) is a unique non-

onizing radiation technique which provides clear view of heart’s

natomy. To enable the development of novel clinical applications

nd thus improve cardiology, accurate and automatic extraction of

he anatomical information becomes particularly important. 

Whole heart segmentation (WHS) aims to extract the substruc-

ures of the heart, commonly including the four chamber blood

avities, the left ventricular myocardium, and sometimes the great

essels as well if they are of interest ( Zheng et al., 2008; Peters

t al., 2009; Zhuang, 2013 ). The results of WHS have a number of

otential clinical applications. For instance, it can be directly used

o calculate the functional indices of the heart such as the ejection
� “This paper was recommended for publication by Dr. Nicholas Ayache”. 
∗ Corresponding author. Tel.: +86 2134208272. 
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raction and myocardial mass; it can provide the initial geomet-

ic information of the heart for surgical guidance such as in radio-

requency ablation of the left atrium. It is also anticipated that the

unctional analysis of the whole heart has the potential of detect-

ng subtle functional abnormalities or changes of the heart ( Vasan

t al., 1996 ). This is critical for the early diagnosis of patients who

therwise have normal systolic function of the ventricles but are

uspected to have abnormal function in other regions. Two exam-

les of WHS are provided in Fig. 1 . 

Obtaining fully automatic WHS is arduous due to the three

ajor challenges: (1) the large shape variations of the cardiac

natomy, (2) the indistinct boundaries between substructures of

he heart in cardiac MRI images, and (3) the low image quality

 Zhuang, 2013 ). Zheng et al. (2008) developed a statistical shape

odel (SSM) and learning-based method to hierarchically detect

oundary landmarks of the heart, based on the steerable features

nd marginal space learning. The SSM was used to regularize the

esulting shape of the WHS defined by the detected landmarks.

eters et al. (2009) and Ecabert et al. (2011) developed a de-

ormable model-based method for the WHS of both cardiac CT and

RI images. The large shape variations were tackled by the piece-

ise affine parametric adaptation and the boundary was detected

y the simulated search of the optimal response of edges. Kirisli

t al. (2010) constructed eight atlases and performed a multi-

enter, multi-vendor evaluation study on the WHS of CT data. The

http://dx.doi.org/10.1016/j.media.2016.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.02.006&domain=pdf
mailto:zhuangxiahai@sjtu.edu.cn
mailto:zhuangxiahai@163.com
http://dx.doi.org/10.1016/j.media.2016.02.006
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Fig. 1. Examples of cardiac images and whole heart segmentation (WHS) results: (a) and (b) are a cardiac MRI image and its corresponding manual WHS result, (c) and (d) 

are a cardiac CT image and the corresponding manual WHS result. 
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WHS performance was validated using a leave-one-out validation

strategy on 8 datasets with manual segmentation. Zhuang et al.

(2010) built a mean cardiac MRI atlas from 10 healthy subjects and

developed a comprehensive registration algorithm for the atlas-

based WHS of MRI. The authors employed the mean atlas to seg-

ment a test set involving nine different pathologies, relying on

the locally affine registration method (LARM) to tackle the large

shape variability of the cardiac anatomy. They also showed that the

conventional multi-atlas segmentation (MAS) scheme did not per-

formed better than the single mean atlas segmentation. Recently,

Zhuang et al. (2015) developed a MAS scheme for the WHS of CT

images, which adopted a new atlas ranking algorithm based on

conditional entropy. The results showed that both the atlas rank-

ing and label fusion could greatly affect the performance of a MAS

scheme. 

Previous studies show that the MAS reaches optimal perfor-

mance by fusing a certain number of selected atlases using an ef-

fective atlas ranking method ( Aljabar et al., 2009; Zhuang et al.,

2015 ). The global atlas selection idea has been extended to local

atlas selection, based on local substructures or organs ( Shi et al.,

2010; van Rikxoort et al., 2010; Wolz et al., 2013 ). Recently, the

idea has been further extended to the pixel level, to provide at-

las selection for each location ( Wolz et al., 2013; Tong et al., 2014;

2015 ). Currently, the atlas selection strategy generally requires the

users to determine the number of atlases selected for label fusion,

either on the global level or local level. In this manner, the selec-

tion is equivalent to applying a binary threshold on the contribu-

tion of atlases during label fusion. 

Furthermore, to implement the multi-level atlas selection, one

needs to define the masks of local regions according to the defi-

nition of anatomical structures ( Wolz et al., 2013 ). This limits the

flexibility of choosing the number of levels and consequently re-

duces the applicability of the method. 

Another general limitation of the conventional MAS is that

the atlases are constructed from one single modality. Since the

number of atlases determines the potential optimal performance

of MAS, including multi-modality atlases can be beneficial to the

applications when different modality atlases are available. Iglesias

et al. (2013) developed a MAS method where the atlas-to-target

image registration and label fusion are solved simultaneously.

Their proposed method was applied to cross-modality atlas-based

segmentation, i.e. the proton density brain MRI atlases were used

to segment the T1-weighted MRI and vice versa. Wang et al.

(2015) proposed a learning-based multi-source atlas segmentation

method. In their work, each atlas had intensity images from three
odalities, including T1-weighted, T2-weighted and fractional

nisotropy MRI, and the atlases were used to segment the target

mages from one modality such as T1 MRI. This is also different

rom the segmentation using multi-modality atlases, where one

tlas is constructed solely from one imaging modality and different

tlases can be built from different modalities. 

Recently, a number of works adopt learning-based methods

o predict the label of a target patch ( Zhang et al., 2012; 2011;

ong et al., 2014; 2015; Bai et al., 2015 ). In these methods, the

nown patches, with gold standard labeling, from the atlases are

sed as training data and the target patch is considered as the

est data. The voting weights of the known patches are implic-

tly implemented in the learning-and-prediction algorithm, such as

he linear sparse encode using dictionary learning framework or

he nonlinear kernel support vector machine method ( Awate and

hitaker, 2014; Tong et al., 2014; 2015; Bai et al., 2015 ). These ap-

roaches generally adopt the online learning scheme and a large

umber of atlases for training, and the performance is comparable

o the state-of-the-art joint label fusion method. 

To address the challenges of WHS and aforementioned limita-

ions in current MAS research, we propose a m ulti- m odality m ulti-

tlas segmentation (M 

3 AS) framework for WHS of cardiac MRI.

 

3 AS adopts a new multi-scale patch (MSP) strategy, based on the

ulti-scale theory ( Lindeberg, 1998 ), to obtain hierarchical local

tlas ranking. The multi-scale space theory can handle different-

evel information within a limited window and has been applied to

eature extraction/detection and image matching ( Lindeberg, 1998;

011; Holden et al., 2004; Leutenegger et al., 2011; Wu et al., 2015;

owe, 2004; Wu et al., 2014 ). We develop the MSP to compute the

atches from different scale spaces to represent the different lev-

ls of structural information, with low scale capturing local fine

tructure and high scale suppressing fine structure but providing

lobal structural information of the image. This is different from

he conventional patch-based methods which only compute the lo-

al structural information within the patch. To avoid increasing the

omputational complexity, we adopt the multi-resolution imple-

entation and couple it with the MSP where the high-scale patch

an be efficiently computed using a low-resolution image space. 

The main contributions of this work are summarized as fol-

ows: (1) the MSP for patch-based hierarchical local atlas ranking;

2) a framework for M 

3 AS label fusion which evaluates both global

mage similarity and local pixel/patch similarity using information

heoretic measures; (3) the non-binary global atlas ranking scheme

hich is formulated using a truncated Gaussian kernel regression

odel and does not require explicit atlas selection; (4) a validation
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tudy of WHS from cardiac MRI where comparisons between dif-

erent patch parameterization schemes and label fusion methods

re provided. 

The remainder of the paper is organized as follows: Section 2

escribes the methodologies of this work. Section 3 introduces the

xperiments and results, followed by the discussion and conclusion

n Section 4 . 

. Method 

This section elaborates on the methodologies of this paper. First,

ection 2.1 presents the framework of MAS and local weighted la-

el fusion (LWF). Here, we propose a local similarity metric for

ulti-modality images on the pixel level and introduce three joint

abel fusion (JLF) methods which are used for comparisons in the

xperiments. Then, Section 2.2 describes the proposed MSP for

ulti-level hierarchical local atlas ranking. Finally, Section 2.3 pro-

ides the framework of the proposed M 

3 AS, where the label fusion

s based on the MSP and a global atlas ranking scheme. 

.1. Multi-atlas segmentation and local weighted label fusion 

Let I be the target image to be segmented, { (A a , L a ) | a =
 , . . . , N} be the set of atlases where A a and L a are respectively

he intensity image and corresponding segmentation label image of

he a th atlas. For each atlas, MAS performs an atlas-to-target regis-

ration to derive the set of warped atlases, { (A a , L a ) | a = 1 , . . . , N} ,
here A a is the warped atlas intensity image and L a is the corre-

ponding segmentation result. 

MAS generally selects a subset of N 

′ ( N 

′ ≤ N ) atlases based on

n atlas ranking and selection criterion, and the segmentation re-

ult is derived by a label fusion step ( Rohlfing et al., 2004; Rohlfing

nd Maurer, 2005; Aljabar et al., 2009; van Rikxoort et al., 2010;

huang et al., 2015 ). The optimal value of N 

′ is unknown and dif-

ers from case to case. Hence, it is manually determined based on

revious experience and then fixed for all the target cases of an ap-

lication ( Bai et al., 2013; Zhuang et al., 2015 ). 

The majority vote fusion (MVF) ( Kittler et al., 1998 ) counts the

umber of atlases which provide the same label for a pixel c whose

abel is to be decided. The label obtaining the largest number of

otes is then selected as the estimated label: 

 (c) = argmax 
l∈{ l 1 ... l K } 

N ′ ∑ 

a =1 

δ(L a (c) , l) , (1)

here { l 1 . . . l K } is the set of K labels; δ( x, y ) is the Kronecker delta

unction which returns 1 when x = y and returns 0 otherwise. In

VF, the votes from all the atlases are equally treated, regardless

heir different segmentation qualities. This equality can however

ffect the performance of label fusion, particularly in the challeng-

ng cases, where only a small number of good atlases can generate

orrect labels. 

Artaechevarria et al. (2009) proposed the LWF where the contri-

ution (vote) of an atlas to the label fusion is weighted according

o the performance of the atlas segmentation, 

 (c) = argmax 
l∈{ l 1 ... l K } 

N ′ ∑ 

a =1 

w a (c) δ(L a (c) , l) , (2)

here w a ( c ) is the weighting function for the a th atlas on pixel c .

his idea of LWF has been implemented in many different fashions,

ither explicitly or implicitly ( Heckemann et al., 2006; Isgum et al.,

009; Coupe et al., 2010; Langerak et al., 2010; Sabuncu et al.,

010; Wolz et al., 2013; Eskildsen et al., 2012; Wang et al., 2013;

ai et al., 2013; Hu et al., 2014 ). 

In patch-based LWF, one computes the local appearance similar-

ty, such as the intensity difference, within a small patch between
he target and atlas images to estimate the local weights ( Sabuncu

t al., 2010; Bai et al., 2013; Wang et al., 2013 ). These methods

an also adopt a patch-search process to correct local misalign-

ents, particularly when the nonrigid algorithm is not adopted

or the atlas-to-target registration. For estimating the local weights,

ang et al. (2013) argued that different atlases may produce sim-

lar labeling errors, which may induce erroneous labeling in local

atches due to the accumulated false votes. They proposed the JLF,

hich estimates local weights by minimizing the expectation of la-

eling errors, which are computed based on the intensity differ-

nce between the atlas and the target image. 

Intensity difference is generally reliable in single-modality im-

ge segmentation or in the applications where the assumption

olds after applying intensity normalization to the images. While

o tackle multi-modality images such as cardiac CT and MRI, the

nformation theoretic measures are needed ( Bai et al., 2013; Wang

t al., 2013; Iglesias et al., 2013; Awate and Whitaker, 2014 ). 

.1.1. Joint label fusion 

In this section, we extend the JLF for the application of multi-

odality atlases whose performance are compared with our pro-

osed method in the experiments. JLF estimates the local weight of

 patch by minimizing the expectation of labeling errors on pixel c

 Wang et al., 2013 ): 

 

� 
c = argmin 

w c 

E 
[
δ(L gt (c) , L (c)) 2 | I, A 1 , . . . , L N 

]
= argmin 

w c 

N ∑ 

a =1 

N ∑ 

b=1 

w a (c) w b (c) M c (a, b) 

= argmin 

w c 

w 

t 
c M c w c , (3) 

here L gt is the unknown ground truth; δ( L gt ( c ), L ( c )) denotes the

abeling error on c ; w c = [ w 1 (c) , . . . , w N (c)] is the vector of local

eights and 

∑ N 
a =1 w a (c)= 1; M c is a pairwise dependency matrix,

hose element M c (a, b) denotes the expected label error of the

wo atlases a and b and represents the likelihood of the two atlas

oth providing wrong labeling on position c . For simplicity, we use

 a (c) = δ(L gt (c) , L a (c)) to denote the labeling error of atlas a on c :

 c (a, b) = E[ E a (c) E b (c) | I, A 1 , . . . , L N ] . (4)

The dependency matrix M c can be estimated using intensity

imilarity measures, such as intensity difference or correlation

oefficient between patches ( Wang et al., 2013 ). In M 

3 AS, new

easures which can provide local similarity or dissimilarity at a

ocation for images from different modalities are needed. In this

ork, we develop the following three measures to compute M c for

LF-based M 

3 AS: 

• JLF in is based on the original JLF method by Wang et al. (2013) ,

where the intensity of a patch is first normalized by the mean

and standard deviation of the intensity values of the patch. The

dependency matrix M c is then computed based on the intensity

normalized patches {P} , 
M c (a, b) = 

∑ 

x ∈P 
|P I (x ) − P a (x ) | × |P I (x ) − P b (x ) | . (5)

• JLF ei first computes the entropy images of the target image and

the atlas intensity images; then, the target and atlas images are

replaced by their corresponding entropy images for the com-

putation of M c ; finally, the joint label fusion for each pixel is

evaluated in a similar manner as JLF in except that M c in (5) is

calculated from the difference of entropy values. 

The entropy images are computed as follows ( Wachinger and

Navab, 2012 ): For each pixel in a cardiac image, a local patch

centered on the pixel is selected. For each of these patches, one
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Fig. 2. Examples of entropy image (EI): (a) an axial-view image of a cardiac MRI; (b) the corresponding EI of (a); (c) an axial-view image of a cardiac CT; (d) the correspond- 

ing EI of (c). The highlighted square patch and pixel (both in red color) illustrate that the entropy value of the patch is assigned to the pixel at the corresponding location. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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can compute its intensity entropy and store this entropy value

in the location of the pixel to create a new image, i.e. the en-

tropy image. In this work, we compute patch entropy using the

Parzen-window method ( Thevenaz and Unser, 20 0 0 ). Fig. 2 pro-

vides the examples and demonstrates the idea. 
• JLF cp computes the expected labeling error of an atlas based on

a local similarity measure, i.e. the conditional probability of the

target image given the atlas intensity image, 

P (E a (x )) = P (I(x ) |A a (x )) . (6)

The labeling error is then embedded into (4) to compute the

dependency matrix M c . The local similarity measure using (6)

is derived from the generative model, which is presented in

Section 2.1.2 . 

2.1.2. Estimating local similarity based on the conditional probability 

of images 

Sabuncu et al. (2010) proposed a generative model m : � →
{ 1 , . . . , N} , assuming that the target image is generated from one

or more atlas images, and formulated the multi-atlas label fusion

via maximum-a-posteriori (MAP) estimation, 

L � = argmax 
L 

P (L | I, {A a , L a } ) 
= argmax 

L 

P (L, I|{A a , L a } ) 
= argmax 

L 

∑ 

m 

P (m ) P (L, I| m, {A a , L a } ) . (7)

Bai et al. (2013) extended the generative model to a patch-based

model, assuming that each pixel of the target image is gen-

erated from a corresponding pixel in one of the atlas image.

They introduced a random vector field to represent this map-

ping, m = [ m n , m p ] 
t : � → { 1 , . . . , N} ×{ 1 , . . . , | �Psrc |} , where �Psrc

denotes the patch search region for pixel c . Given the mapping

field m , one can have two assumptions: First, the target pix-

els become conditionally independent, providing P (L, I| m, {A a , L a } )
= 

∏ 

x ∈ � P (L (x ) , I(x ) | m (x ) , {A a , L a } ) . Second, the intensity distri-

bution and label distribution of the target image are con-

ditionally independent, leading to P (L (x ) , I(x ) | m (x ) , {A a , L a } ) =
P (I(x ) | m (x ) , {A a } ) P (L (x ) | m (x ) , {L a } ) . 

In atlas-based segmentation, one can apply a fully nonrigid reg-

istration to achieve accurate mapping between the target image

and the atlas image. For a MAS method using this registration, the

label fusion is performed with the knowledge of the corresponding

mapping field, i.e. P ( m ) is a constant, and P (L (x ) | m (x ) , {L a } ) is 1 if
m ( x ) ∈ �Psrc and 0 otherwise. As a result, the maximization prob-

lem of (7) can be achieved by estimating the label for each pixel

independently. The label of pixel c is then computed as follows, 
 (c) = argmax 
l∈{ l 1 ... l K } 

N ∑ 

m n =1 

∑ 

m p ∈ �Psrc 

P (I(c) | m (c) , {A a } ) δ(L m n 
(c) , l) 

= argmax 
l∈{ l 1 ... l K } 

N ∑ 

m n =1 

∑ 

m p ∈ �Psrc 

P (I(c) |A m n 
(m p )) δ(L m n 

(c) , l) . (8)

et a = m n , (2) is a specific form of (8) where the search range

s constrained to the location of c . The local weight becomes the

onditional probability, 

 a (c) = P (I(c) |A a (c)) . (9)

his conditional probability represents the local similarity between

he two images at location c . 

.2. Hierarchical local atlas ranking based on multi-scale patch 

Generally, a patch-based method computes the local similar-

ty between two images within a patch. One can increase the

atch size and then compute the similarity within a larger region

o involve more global structural information of the images. This

ethod however leads to the following three problems: 

First, the conventional patch scheme adopts only one level for

atch-based atlas ranking. A multi-level patch strategy for hierar-

hical local atlas ranking is desired in the MAS label fusion. 

Second, the runtime of computing the local patch similarity is

roportional to the volume of the patch. For instance, to include

he information 10 pixels away from the central pixel, one needs

o adopt a patch size of 21 × 21 × 21 pixel, whose computational

oad is 74 (21 3 /5 3 ) times compared with that of a patch with size

f 5 × 5 × 5 pixel. 

Third, computing the patch similarity based on a large area re-

ults in a significantly reduced contribution of the center pixel to

he computation of the patch similarity. The center pixel refers to

he pixel whose label is to be evaluated. This is a dilemma where

ncluding global information by increasing the size of a patch is

ontradictory to the maintaining of the local information around

he central pixel. 

To address these problems, we propose the MSP and develop

he multi-level hierarchical local atlas ranking for the patch-based

abel fusion. A spatially varying weight (SVW) scheme is also in-

ented to tackle the third issue. The framework is illuminated in

ig. 3 . 

MSP is based on the scale-space theory, a framework for multi-

cale signal representation that is widely developed and applied

o feature extraction and image matching ( Lindeberg, 1998 ). Us-

ng this theory, one can handle image structures at different scales,

y representing an image as a one-parameter family of smoothed

mages using a kernel function with a scale parameter. Different

cales provide different information to the structures of the image.
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Fig. 3. Diagram illustrating the multi-scale patch (MSP) adopting the spatially varying weight (SVW) scheme, and the multi-level hierarchical atlas ranking. Here, c is the 

center pixel of the patch whose label is to be evaluated; x , in red color, is the pixel whose contribution to the patch similarity is to be calculated. The weight of x is 

determined according to its distance to c in the scaled image grid. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article). 
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he higher scale image suppresses fine structure but captures more

lobal structural information within a certain vision window, while

he lower scale image provides more local details of the structure.

ere, we adopt the Gaussian scale space, where the Gaussian ker-

el function is used and the scale is defined by the standard devi-

tion of the Gaussian ( Lindeberg, 2011 ). 

The following steps are employed to generate the MSP with N s 

cales and patch volume �P . 

(1) We first convolve the original images with N s scale param-

eters to generate the multi-scale images (MSIs), { I s } for the

target image and {A 

s 
a } for the atlases. The standard devia-

tions of the Gaussian kernel function for the N s scales are

set as σ 1 = 0, σ 2 = 1, . . . , σN s = N s −1 . Here, σ 1 = 0 means no

Gaussian convolution is applied for the first level. 

(2) For each scale, we generate the patches centered on the pix-

els to be evaluated. All these patches have the same num-

ber of pixels, as Fig. 3 shows. According to the scale-space

theory, the higher level scale the patch is generated from,

the more global structural information the patch has. This is

achieved by using the larger field-of-view and sparser sam-

pling for the patches coming from the image spaces with

larger scales. In this work, we set the sample spacings from

level-1 to level- N s scale spaces as v 1 = 1 pixel, v 2 = 2 pixels,

. . . , and v N s = N s pixels of the original images, as illustrated

in Fig. 3 , where the blue grids indicate the sample grids of

the patches. This scheme is equivalent to the strategy which

first down-samples the MSIs according to their scales and

then extracts the patches using the same sampling strategy.

The reader is referred to Fig. 3 for illustration. 

(3) Finally, the MSP is defined using the N s -level patches from

the multiple scale spaces, based on which we compute the

local patch similarity. 

The conditional probability of images, P (I(x ) |A a (x )) in (9) , is

sed to compute the local similarity. By assuming the conditional
ndependency at each location, the conventional patch similarity

an be computed, 

(I(P) , A a (P)) = 

( ∏ 

x ∈ �P 

P (I(x ) |A a (x )) 

) 1 / | �P | 

= exp 

( 

1 

| �P | 
∑ 

x ∈ �P 

log P (i x | j x ) 
) 

. (10) 

here i x = I(x ) and j x = A a (x ) . Here, the patch similarity resem-

les the geometric mean of the local similarity of all the pixel pairs

n the patch. 

For the MSP, we similarly compute the geometric mean of the

ocal similarity from each scale, 

 msp = exp 

( 

1 

N F 

N s ∑ 

s =1 

∑ 

x ∈ �P 

ω c,s (x ) log P (i x | j x ) 
) 

, (11) 

here s = 1 , . . . , N s indicates the index of MSIs; i x = I s ( x ) and

 x = A 

s 
a (x ) ; N F is the normalization factor; and ω c, s ( x ) is the SVW

hich is described in detail in Section 2.2.1 . 

.2.1. Spatially varying weight 

In patch-based label fusion, one can compute the local patch

imilarity using (10) , where each pixel pair is treated equally. As

iscussed above, this equal-weight-computation can dramatically 

educe the contribution of the center pixel whose label is to be de-

ided based on the local patch similarity. For example, for a patch

ize 3 × 3 × 3 pixel, the contribution of the center pixel to the

atch similarity computation is one 27th; and when the patch size

ncreases to 5 × 5 × 5 pixel, the contribution dramatically reduces

o be one 125th. Since the patch similarity is computed for evalu-

ting the labeling of the center pixel, a new scheme emphasizing

he importance of the center pixel is needed. 
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Fig. 4. Diagram demonstrating the new label fusion framework of multi-modality multi-atlas segmentation. 
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We propose the SVW scheme, where the contribution of a

pixel to the computation of local similarity decreases monotoni-

cally with respect to the increased distance of the pixel to the cen-

ter pixel. The local similarity of (10) is then revised as follows, 

S svw 

= exp 

( 

1 

N F 

∑ 

x ∈ �P 

ω(| x − c| ) log P (i x | j x ) 
) 

, (12)

where c is the center pixel; ω(d) = Gaussian (d, 0 , σsvw 

) , assuming

the contribution of pixels to the similarity measure be Gaussian

distributed and σ svw 

is the controlling parameter. For MSP in (11) ,

the SVW is defined according to the sample spacing for each level,

i.e., ω c,s (x ) = ω( | x −c| 
v s ) . Here v s is the patch sample spacing for each

scale level. 

2.2.2. Estimating conditional probability 

The conditional probability can be computed from the quotient

of the joint probability and marginal probability, 

P (i | j) = 

P (i, j) 

P ( j) 
= 

P (i, j) ∑ 

i P (i, j) 
. (13)

Conventionally, the joint intensity distribution of images at

scale level s can be estimated from the image pair using the Parzen

window estimation ( Thevenaz and Unser, 20 0 0 ), 

P (i, j) = 

1 

| �| 
∑ 

y ∈ �
β(i, I s ( y )) β( j, A 

s 
a (y )) , (14)

where β( ·) is the Parzen window estimation function. 

However, the sample size from one image pair can be small,

and the standard error of the estimated joint distribution using

(14) can be large. Consequently, the joint probability of intensity
air ( i, j ) can have different values when estimated from differ-

nt image pairs, namely from different atlases, particularly when

ulti-modality atlas images are involved. 

We therefore propose to estimate the joint intensity distribu-

ion between the target image and atlas images using the sample

oints from all the atlases for each scale space: 

 (i, j) = 

1 

N| �| 
N ∑ 

a =1 

∑ 

y ∈ �
β(i, I s (y )) β( j, A 

s 
a (y )) . (15)

n this work we adopt the cubic spline kernel function for the

arzen window function ( Thevenaz and Unser, 20 0 0 ). 

.3. Multi-modality multi-atlas segmentation (M 

3 AS) 

Fig. 4 provides the diagram of the proposed M 

3 AS. In this

ramework, we first register all the atlases to the target image

sing a comprehensive nonrigid registration algorithm specially

esigned for whole heart images ( Zhuang et al., 2010 ). Then, we

mploy the proposed MSP to compute the multi-level patch-based

ocal weights and adopt an atlas ranking scheme to calculate the

lobal weights. Finally we combine the two weighting schemes for

WF. 

.3.1. Atlas ranking for global weight 

A number of works have demonstrated the advantages of rank-

ng and selecting a subset of atlases, instead of using all for label

usion ( Rohlfing et al., 2004; Heckemann et al., 2006; Aljabar et al.,

009; Bai et al., 2013 ). This is because some atlases can gener-

te poor segmentation results which affect the consensus in fusing

ultiple classifiers. One can rank the atlases based on the expected

erformance and then select a subset with better performance. The
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onventional schemes compute an intensity-based similarity mea-

ure, such as mutual information (MI) or normalized mutual infor-

ation (NMI), as the ranking criterion. These methods assume that

he similarity measure indicate the expected segmentation quality,

hich may not always hold, particularly when multi-modality at-

ases are involved. 

In this work we employ the conditional entropy (CE) for atlas

anking ( Zhuang et al., 2015 ), 

 

g 
a ∝ −CE = −H(I|L a ) , (16)

here w 

g 
a denotes the global weight and H ( ·) is the entropy func-

ion. CE measures the uncertainty inherent in the intensity distri-

utions of the target image, conditioned on the propagated atlas

abel image. Compared with the intensity-based similarity mea-

ures, it provides a mechanism to compute the relationship be-

ween the target image and the atlas segmentation and thus is

ore effective in representing the segmentation performance of an

tlas. 

By considering label l as a random variable, one can derive the

E metric in forms of entropy and MI as 

E = 

∑ 

i ∈ I 

∑ 

l 

p(i, l) log 
p(i, l) 

p(l) 
= H(I) − MI (I, L a ) , (17)

here p ( i, l ) is the joint probability of the intensity value i and

abel l , and p ( l ) is the marginal probability of label l . Since the

eld-of-views and overlap regions between the target image and

he atlas segmentation result are determined by the target image,

he entropy of the target image, H ( I ), can be regarded as being con-

tant for all atlases. The global ranking metric is therefore propor-

ional to the minus CE or MI measure, 

 

g 
a ∝ R a , (18) 

here R a = −CE (I, L a ) or R a = MI (I, L a ) . 

To compute the global weights, we use the Gaussian kernel

unction, assuming a truncated normal distribution at μg of the

tlas ranking values, 

 

g 
a = Gaussian ( μg , σg , R a ) . (19) 

he mean and standard deviation, μg and σ g , can be estimated by

egressing this Gaussian kernel function to the ranking values from

ll atlases. 

.3.2. Label fusion for M 

3 AS 

The global weight from atlas ranking and the local weight from

ulti-level MSP are combined to compute w a ( c ) for LWF in (2) , 

 a (c) = w 

g 
a × w 

p 
a (c) , (20)

here w 

p 
a (c) = S msp is computed using (11) . Here, we use a prod-

ct of the global and local weights, assuming that the vote from

n atlas should get high weight if and only if both of the global at-

as ranking and MSP-based local atlas ranking achieve large values.

his is because we have a large number of atlases, 30 subjects in

his work, thanks to the usage of multi-modality atlases. 

. Experiments and results 

.1. Materials 

Twenty cardiac whole heart volumetric MRI data, provided by

he Imaging Division at King’s College London, were used. The MRI

equence was the balanced steady state free precession (b-SSFP)

or whole heart imaging. A 3D triggering b-SSFP turbo field echo

TFE) sequence, with arrhythmia rejection, was modified to enable

he imaging at the end diastolic phase. The sequence was imple-

ented on a 1.5T clinical scanner (Philips Healthcare, Best, The

etherlands) equipped with 32 independent receive channels. A
at saturation and T2 preparation pulses were used to null fat and

o increase the contrast between blood and cardiac muscle, and a

avigator beam before data acquisition was implemented to enable

he free-breathing scan. All the data were acquired at about 2 × 2

2 mm and reconstructed to around 1 × 1 × 1 mm. 

Another twenty contrast enhanced cardiac CT data were used.

ll the data were obtained from two state-of-the-art 64-slice CT

canners (Philips Medical Systems, Netherlands) using a standard

oronary CT angiography protocol at two sites affiliated to Shang-

ai Shuguang Hospital. Images were acquired in the axial view,

overing the whole heart from the upper abdominal to the aortic

rch. The in-plane resolution was about 0.4 4 × 0.4 4 mm and the

verage slice thickness was 0.60 mm. 

Thirty of the 40 subjects had cardiovascular diseases, including

ardiac function insufficiency (NYHA II), cardiac edema, hyperten-

ion (III), sick sinus syndrome, arrhythmia, atrial flutter, atrial fib-

illation, artery plaque, coronary atherosclerosis, aortic aneurysm

dilated aorta), Tetralogy of Fallot (right ventricle hypertrophy), di-

ated cardiomyopathy (left ventricle), aortic stenosis, pulmonary

rtery stenosis. Some patients had a combination of several differ-

nt types of pathologies. The dataset demonstrates a wide variety

f pathologies and heart shapes. Fig. 1 provides an MRI case and a

T case. 

.1.1. Manual segmentation and atlas construction 

Seven substructures were of interest in the WHS study,

ncluding: 

(1) the left ventricular cavity (LV); 

(2) the right ventricular cavity (RV); 

(3) the left atrial cavity (LA); 

(4) the right atrial cavity (RA); 

(5) the myocardium of the left ventricle (Myo) where the epi-

cardium (Epi) is assessed in the evaluation of surface delin-

eation; 

(6) the ascending aorta trunk from the aortic valve to the supe-

rior level of the atria; 

(7) the pulmonary artery (PA) trunk from the pulmonary valve

to the bifurcation point. 

The substructures of interest in each image were manually

abeled to generate the atlas label map as well as the gold

tandard for validation. The descending aorta was also labeled,

eparately from the ascending aorta, for assisting the atlas-to-

arget registration ( Zhuang et al., 2010 ), though it was not of

nterest and its segmentation would not be evaluated in this work.

he manual labeling was performed by well-trained students

ajoring in biomedical engineering or medical physics. Each result

as double checked and refined by an observer with expertise

n cardiac anatomy. During manual segmentation, the 3D data

ere re-orientated into the traditional view of the heart, meaning

he images were displayed in the short-axis and long-axis views.

he observers employed the brush tool in the software ITK-SNAP

 Yushkevich et al., 2006 ) to manually label each substructure

lice-by-slice. The manual segmentation took six to ten hours per

ase. Fig. 1 shows two examples. 

.1.2. Evaluation 

Two-fold cross validation strategy was used, by dividing the 20

RI data into two sets, one be the test set and the other be the

tlas set for both single-modality MAS or multi-modality MAS. All

f the twenty cardiac CT data were used as atlases to form a thirty-

ubject, multi-modality atlas set. 

For segmentation evaluation, Dice score (DS) ( Kittler et al.,

998 ), Jaccard index (JI) ( Jaccard, 1901 ) and surface-to-surface

istance (SD) were used. For WHS evaluation, we adopted the

eneralized version of DS, JI and SD, which are normalized with
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Fig. 5. Three orthogonal views of four segmentation cases with the WHS Dice scores in brackets, illustrating performance of the proposed segmentation method: case 1 and 

case 2 are the two worst cases among all the test subjects in terms of WHS Dice scores, and cases 3 and 4 are the two median cases. 

Table 1 

This table provides the Dice scores of the multi-modality MAS using majority vote label fusion (MVF), the single-modality MAS using the proposed 

label fusion algorithm (smMAS), the proposed M 

3 AS, and the inter-observer (Inter-Ob) and intra-observer (Intra-Ob) variations. The Jaccard index 

(JI) and surface distance (SD) of the proposed M 

3 AS are also provided. 

Dice (%) LV Myo RV LA RA aorta PA WHS 

MVF 94.1 ± 1.06 80.9 ± 3.87 88.3 ± 5.38 84.2 ± 7.92 84.7 ± 8.78 86.1 ± 7.95 73.6 ± 10.23 86.9 ± 3.99 

smMAS 93.9 ± 2.43 84.1 ± 4.77 90.6 ± 4.94 87.5 ± 6.14 87.7 ± 5.39 88.7 ± 4.82 82.0 ± 8.08 89.2 ± 3.75 

M 

3 AS 94.6 ± 1.67 85.2 ± 3.49 91.4 ± 4.48 87.8 ± 6.24 88.5 ± 5.29 89.1 ± 4.99 81.7 ± 8.41 89.9 ± 3.40 

Inter-Ob 93.7 ± 1.33 81.1 ± 2.90 90.1 ± 1.96 83.7 ± 4.58 85.8 ± 3.10 87.6 ± 5.24 76.3 ± 14.34 87.8 ± 1.36 

Intra-Ob 94.2 ± 0.84 83.9 ± 1.23 91.2 ± 2.59 86.8 ± 3.23 87.2 ± 2.48 91.1 ± 1.65 82.6 ± 3.77 89.5 ± 1.03 

M 

3 AS 

JI (%) 89.8 ± 2.99 74.4 ± 5.28 84.4 ± 7.22 78.8 ± 9.05 79.7 ± 8.16 80.7 ± 7.62 69.8 ± 11.59 81.8 ± 5.49 

SD (mm) 0.85 ± 0.72 1.23 ± 1.05 0.99 ± 0.99 1.34 ± 1.28 1.37 ± 1.44 0.85 ± 0.79 0.93 ± 0.85 1.09 ± 1.11 
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respect to the size of substructures, providing more objective

measurements ( Crum et al., 2006; Zhuang, 2013 ). All the images,

including the target image, atlas images and segmentation results,

were resampled into images with pixel size 1 × 1 × 1 mm. Hence,

a patch or search range with size a × b × c pixel is equivalent to

the size of a × b × c mm. 

All the algorithms, including the atlas-to-target registration and

label fusion, were implemented on a Lenovo ThinkStation D30

workstation. The implementations were based on single thread

for registration and label fusion, but the multiple tasks of atlas-

to-target registration were run simultaneously on the workstation

which had four Intel Xeon E5-2667 V2 CPUs and 32 cores. 

3.2. Performance of the proposed method 

Fig. 5 provides the visualization of four segmentation cases

by the proposed M 

3 AS method. This M 

3 AS method employed the

global weighting and the MSP-based local atlas ranking for label

fusion. The σ svw 

in (12) was set to 1 mm and N s in (11) was set

to 5. 

Table 1 presents the Dice scores of the single-modality MAS

(smMAS), the conventional MAS using MVF (MVF), the inter-
bserver and intra-observer variations for comparisons with the

roposed M 

3 AS. M 

3 AS was better than MVF in all categories with

tatistical significance using the paired, two-tailed t -test ( p <

.05). M 

3 AS was generally better than smMAS such as in WHS

ice ( p = 0 . 007 ), but the gain was limited due to the fact that

he atlas-to-target registration method performed better in single-

odality images than in inter-modality images. Note that the gain

f M 

3 AS was more evident in the segmentation of myocardium,

hich is the particularly challenging and important task in cardiac

egmentation. 

We selected six subjects for the inter-observer variation study.

he WHS Dice scores of these cases by M 

3 AS were the medians of

he twenty cases. For the intra-observer study, we selected four

ubjects based on the similar criterion. As Table 1 shows, Dice

cores of the inter- and intra-observer variations were worse than

hose of the M 

3 AS. This was probably because the label fusion al-

orithm tended to produce a mean of the multiple classifiers. The

olume overlap between the mean and each of the classifiers can

e greater than the overlap between the classifiers themselves. 

The Jaccard indices and SD of the proposed M 

3 AS are provided

n Table 1 . The average runtime was 2.82 min for the atlas-to-

arget registration and 12.58 min for the proposed label fusion. 
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Fig. 6. Patch-based label fusion for multi-modality multi-atlas segmentation: (a): the mean whole heart segmentation Dice scores using the four different patch schemes, 

with different patch sizes; (b): the Dice scores of the different patch schemes, with different search ranges. 

Fig. 7. Study parameterization of the spatially varying weight (SVW) patch scheme and the multi-scale patch (MSP) scheme. 
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.3. Study of patch strategies 

Fig. 6 (a) presents the mean WHS Dice scores of the four patch

chemes, with different patch sizes from 1 × 1 × 1 pixel/mm to 11

11 × 11 pixel/mm. The conventional patch scheme achieved the

ptimal performance with patch size 3 × 3 × 3 pixel. The perfor-

ance became worse when further increasing the patch size, due

o the dramatically reduced contribution of the center pixel whose

abel is to be evaluated. This problem was solved by the SVW patch

cheme, whose performance converged from the patch size 5 × 5

5 pixel. The MSP further greatly improved the label fusion per- 

ormance whose WHS Dice scores also converged from patch size

 × 5 × 5 pixel, thanks to the usage of SVW. Notice that the MSP

trategy could not adopt a patch with size 1 × 1 × 1 pixel. Fi-

ally, the proposed label fusion scheme, combining the global at-

as ranking and the MSP-based local ranking, generated the best

erformance among the four patch-based schemes. 

Fig. 6 (b) provides the mean WHS Dice scores of the five

chemes with different search ranges, from 1 × 1 × 1 pixel to 5

5 × 5 pixel. The MSP scheme adopted 5 scales and the proposed

ethod (global rank + MPS) adopted 3 scales. The figure shows

hat increasing the search range, which is believed to increase the

otential of correcting local misalignments, does not guarantee a
ignificant improvement of the segmentation performance. Partic-

larly, in the conventional patch scheme with patch size 1 × 1 ×
 pixel the mean WHS Dice scores became worse with respect to

he increased search range. This was probably due to the fact that

he atlas-to-target registration was a fully deformable method and

dopted the NMI similarity measure based on global image infor-

ation to provide a good alignment. By contrast, the patch-match

omputed patch similarity solely based on the local information of

he images. Since the whole heart images had indistinct bound-

ries between local substructures, e.g. the intensity values among

he blood pools of the four chambers and great vessels were simi-

ar, the patch-match became more likely to step into local optima,

ompared to the deformable registration. More importantly, the

omputation time of the label fusion increased dramatically with

espect to the increased size of search radius. 

Fig. 7 (a) illustrates the performance of the MSP-based label fu-

ion, with respect to the different values of the key parameters, i.e.

svw 

for the SVW patch and N s (the number of scales) for the MSP

cheme. The SVW patch-based label fusion adopted a 9 × 9 × 9

ixel patch. When σ svw 

= 0, the method is equivalent to the patch

cheme with size 1 × 1 × 1 pixel, and when σ svw 

= ∞ , the method

s equivalent to the conventional scheme without SVW. One can

ee that SVW obtained the optimal performance when σ svw 

∈ [0.5,
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1]. For MSP, the label fusion performance was first improved evi-

dently, and then converged when N s ≥ 5. 

3.4. Study and comparison with joint label fusion 

Fig. 7 (b) presents the mean WHS Dice scores of the three JLF

methods (described in Section 2.1.1 ). At the patch size of 5 × 5 ×
5 pixel, JLF in (WHS Dice score 0.880 ± .0355) was worse than JLF ei 

(WHS Dice score 0.883 ± .0310) with statistical significance ( p =
0 . 014 ); JLF ei was worse than JLF cp (Dice score 0.889 ± .0379) with

statistical significance ( p = 0 . 007 ). Using the Bonferroni correction,

we obtained the performance ranking of the three JLF methods,

from the worst to the best as JLF in , JLF ei , JLF cp , with statistical sig-

nificance ( p < 0.05). Compared to the conventional intensity and

entropy based measures, the proposed algorithm based on condi-

tional probability of images is a better local similarity measure in

multi-modality images. 

Fig. 7 (b) also provides the mean WHS Dice score of the pro-

posed method, 0.899 ± 0.0340, which was significantly better than

JLF cp ( p = 0 . 0193 ). 

4. Discussion and conclusion 

This work presents a new whole heart segmentation (WHS)

method using multi-modality atlases, i.e., M 

3 AS, for cardiac MRI.

The label fusion algorithm is based on the proposed multi-scale

patch (MSP) and a new global atlas ranking scheme. MSP uses

the information of images from multi-scale space and thus is able

to capture different levels of the structural information of images

for hierarchical local atlas ranking. Also, MSP adopts the spatially

varying weight (SVW) scheme to leverage the contribution of each

pixels to the local similarity computation in the patch-based label

fusion. The global atlas ranking estimates the weights using a trun-

cated Gaussian kernel regression, where the atlas ranking value is

computed based on the conditional entropy measure. The resulting

global atlas weighting scheme avoids the difficulty of manually de-

termining the optimal number of atlases selected for label fusion. 

The proposed M 

3 AS yielded a mean WHS Dice score of 0.899 ±
0.0340, Jaccard index of 0.818 ± 0.0549, surface distance error of

1.09 ± 1.11 mm for the 20 cardiac MRI data, where we adopted a

two-fold cross validation strategy and further included 20 cardiac

CT data to form a 30-subject atlas database. The average runtime

for the label fusion was 12.58 min. The WHS accuracy of M 

3 AS

was significantly better than that of the conventional multi-atlas

segmentation (MAS) method ( p < 0.001) in all the three error met-

rics. 

The patch study showed that SVW improved the conventional

patch scheme when the patch size was more than 1 × 1 × 1 pixel

and the improvement became increasingly evident with respect to

the increased patch size. MSP yielded significantly better WHS Dice

scores than the conventional patch scheme, for example 0.893 ±
0.0369 versus 0.882 ± 0.0371 ( p = 0 . 0016) using patch size 5 × 5

× 5 pixel and N s = 5 . The proposed patch scheme did not benefit

evidently from the increased patch size after a patch size of 5 ×
5 × 5 pixel. The results of the patch-search study showed that in-

creasing the search range did not necessarily improve the segmen-

tation performance, due to the challenge of indistinct boundaries

between local substructures. 

The computational load of the MSP-based label fusion is ap-

proximately linear to the volume of the adopted patch size, vol-

ume of search range, and the number of multi-scale space, namely

O (MSP) = N s × | �P |× | �search |× O (P 0 ) . Here, O (P 0 ) indicates the

computational complexity of the MSP label fusion which adopts

one single scale and no patch strategy. For example, the mean run-

time of P 0 was 22.0 s, which included about 20 s for computing

the joint histograms between the target image and the 30 atlases
nd 1–2 s for loading these images from the hard drive. The run-

ime of label fusion increased to 2.71 min after using a patch size

f 5 × 5 × 5 pixel, then further to 4.66 h with a search range 5

5 × 5 pixel, and finally to 11.3 h by using N s = 3 multi-scale

pace for the MSP. The last scheme achieved an average WHS Dice

core of 0.897 ± 0.0352, which was comparable to 0.899 ± 0.0340

f the proposed scheme ( N s = 5 , patch size 5 × 5 × 5 pixel, no

atch-search) which took less than 13 min. 

Computation time is a common concern in clinical practice. Par-

llel computation, such as GPU programming, is an efficient strat-

gy to reduce the runtime of label fusion. This will be our future

ork. Adopting a scheme with smaller patches and fewer levels of

cales, without spoiling the accuracy, is another useful strategy. For

xample, one can achieve a clinical acceptable WHS Dice score of

898 ± .0342 within three minutes using three scales ( N s = 3 ) and

 patch scheme with size of 3 × 3 × 3 pixel. When the number

f atlases is significantly greater than the number of cores of the

orkstation, we recommend to adopt a multi-level atlas ranking

cheme, by first using a fast atlas ranking method to select a subset

f good atlases to build a subject-specific atlas database ( Zhuang

t al., 2015 ). 

In the literature, Peters et al. (2009) evaluated their method on

 set of 42 volumetric cardiac MRI images using a 4-fold cross val-

dation strategy. The reported runtime for the tool was 10–20 s

or one case and the mean distance between the automatically fit-

ed mesh model and the gold standard mesh derived from man-

al adaptation of the model, was about 0.60–0.83 mm for dif-

erent substructures. Zhuang et al. (2010) employed one atlas to

egment 37 subjects involving 9 different pathologies. The mean

ice scores were about 0.77 to 0.92 and the computation time was

bout two to four hours. Kirisli et al. (2010) performed a MAS vali-

ation study using the leave-one-out cross validation scheme on 8

ubjects. In this work, the authors did not report the performance

f myocardium segmentation, which is the particularly challeng-

ng and important task of cardiac segmentation. The Dice scores of

ther substructures were about 0.89 to 0.95 and the mean runtime

as 20 min. 

A number of works employed the MAS and patch-based label

usion for other segmentation tasks of cardiac images. Bai et al.

2013) developed a probabilistic patch-based label fusion algorithm

or myocardium segmentation. The authors proposed to iteratively

efine the registration after each label fusion step, to further im-

rove the performance of segmentation. In their work, the patch

imilarity was computed based on intensity difference between

he target and atlas images. Hence, the image intensity of cardiac

RI needed to be normalized before performing the label fusion.

heir MAS method was also applied to the right ventricle seg-

entation reported in ( Petitjean et al., 2015 ). Zhuang et al. (2015)

roposed an atlas ranking and selection criterion based on condi-

ional entropy for MAS-based WHS of cardiac CT. The work demon-

trated the importance of atlas ranking measures. However, simi-

ar to most of the existing label fusion algorithms, the number of

tlases selected for label fusion was manually determined. Wang

t al. (2014) proposed a learning-based algorithm to train a local

lassifier based on the random forest method for each patch of the

arget image. The local classifiers were then used to predict labels

f the patches. The authors applied this method to the MAS of car-

iac ultrasound images. Bai et al. (2015) explored patch-based label

usion with augmented features. The proposed fusion strategy was

lso a learning-based algorithm, i.e. using the support vector ma-

hine (SVM) approach to train local classifiers. The authors eval-

ated their proposed method using a set of 83 cardiac MRI data,

nd compared the performance with the conventional MVF and

he state-of-art JLF. Their proposed method and the JLF generated

imilar accuracy for myocardium segmentation, and both of them

erformed evidently better than the MVF. Notice that due to the
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ifference in the test data sets, evaluation metrics and implemen-

ation, an objective inter-work comparison can be difficult. 

In conclusion, the proposed M 

3 AS is able to take advantage

f atlases from different modalities and outperforms the single-

odality based MAS. The WHS method is fully automatic and ro-

ust. This method can generate accurate results, comparable to

anual segmentation from experts, for geometrical modeling of

he heart using cardiac MRI. Hence, it can be useful in clinical care

f cardiovascular diseases. 
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