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Abstract

To enforce the correctness of compilers is impor-
tant for every computing system. Fuzzing is an
efficient way to find security vulnerabilities by
repeatedly testing programs with randomly modi-
fied input data. However, in the context of com-
pilers, fuzzing is challenging because the inputs
are pieces of codes which are supposed to be both
syntactically and semantically valid to pass front-
end checks. Moreover, the fuzzed inputs should
be distinct to trigger abnormal crashes, memory
leaks or failing assertions that not being detected
before. In this paper, we proposed an automatic
code synthesis framework called FUZZBOOST
based on reinforcement learning. By adopting
testing coverage information collected from run-
time traces as the reward, we propose a learning
system with the state-of-the-art deep Q-learning
algorithm that optimizes this reward. In this way,
the fuzzing agent learns the actions to perform
to fuzz a seed program that achieves an overall
goal of testing coverage improvement. We have
implemented this new approach and preliminary
evidence shows that reinforcement fuzzing can
outperform baseline random fuzzing on produc-
tion compilers (i.e. GCC).

1. Introduction
Fuzzing is an effective way to find security vulnerabilities
in compilers by repeatedly testing the codes with randomly
modified inputs. Many existing vulnerabilities are reported
by fuzzing techniques (Rash, 2019). Due to the unlim-
ited search space and limited computing resource, existing
fuzzing tools explore different methods in fuzz program in-
puts, that is source code for the scenario of compiler testing,
but none can exhaustively examine the entire input space
in practice, neither for searching the entire execution paths
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in target compilers. Therefore, they typically use fuzzing
heuristics to prioritize what fuzzing strategies to be taken.
Such heuristics may be purely random, or trying to maxi-
mize a specific goal, such as code coverage (Kifetew et al.,
2014), execution timeouts, errors, crashes (You et al., 2019),
etc.

Coverage-guided testing is widely adopted by fuzzers (Za-
lewski, 2015; Gan et al., 2018; Wang et al., 2018), which
utilizes code coverage as the heuristic for search a good
next fuzz action from a predefined list. These exhaustive
bounded search using domain-specific heuristics and are
thereby limited in applicability and scalability. Additionally,
they do not benefit from past experiences where common
knowledge in boosting the fuzzing process across different
seeds are shared when similar patterns in the seed files exist.
Moreover, most coverage-guided frameworks calculate the
rewards/fitness after a single mutation being taken but which
overlooks the power of mutation combinations. State-of-the-
art methods like AFL (American Fuzzing Lop) (Zalewski,
2017) incrementally add newly fuzzed programs into the
seed set according to defined heuristics after each mutation.
However, for coverage-guided fuzzing, testing coverage
does not increase in a linear way. In other words, each of
these mutations may not improve the testing efficacy incre-
mentally. They can even be rejected by lexical or semantic
checks on the early stage of compilation. But a trace of
mutations may trigger a giant improvement as it may help
more to generate a valid and different program to cover
more paths inside compilers.

The design of FUZZBOOST is inspired by the exercising of
reinforcement learning. Reinforcement learning is about
an agent that interacts with the environment, learning an
optimal policy, by trial and error, for sequential decision
making problems in a wide range of fields in both natural
and social sciences, and engineering (Sutton et al., 1998;
Bertsekas & Tsitsiklis, 1995). The integration of reinforce-
ment learning and neural networks has a long history with
many successfully deployed applications. Recently, with
more rapid pace in deep learning (LeCun et al., 2015), bene-
fiting from large amount data, powerful computation, and
mature software architectures, more exciting studies appear
that adopts reinforcement learning to solve problems that
cannot be solved before.
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Theoretically speaking, the problem of compiler fuzzing
can be seen as a problem of program synthesis, the goal
of which is to cover more paths, trigger more crashes or
memory leaks in the compiler’s execution trace while com-
piling such new codes. In this paper, we model the compiler
fuzzing as a multi-step decision-making process and formal-
ize it into a reinforcement learning problem. We may see
the problem of compiler fuzzing as a learning task with a
feedback loop. Initially, the fuzzing agent generates new
inputs with little knowledge but random heuristics. We will
let the compiler run with each new input and as the envi-
ronment’s feedback, for each program execution trace, we
capture runtime information gathered from binary instru-
mentation for evaluating the quality w.r.t. the heuristic we
defined for the current input program. For instance, the qual-
ity of the generated input can be measured as the number of
unique basic blocks on this trace, etc. By taking this quality
feedback into account, we construct an end-to-end learning
cycle that the fuzzing agent can learn from. By iterating the
learning cycle, the agent will be trained to generate a new
input program to fuzz compilers in the most effective and
efficient way.

We evaluate FUZZBOOST with seed programs from test
suites of production compilers, i.e. GCC (GCC, the GNU
Compiler Collection, 2019). We conduct experiments of
FUZZBOOST with various configurations of the learning
framework, including state size, activation functions, etc.
To demonstrate the effectiveness of our framework, we also
compare it to a baseline system which applies mutation ac-
tions with a uniformly distributed strategy. FUZZBOOST
outperforms baseline random fuzzing with a higher cover-
age improvement on a single seed program. Additionally,
to show the generalization of FUZZBOOST on boosting the
fuzzing process, we design the experiments with seed pro-
grams by α-conversion. As a result, our tool has a better
performance of scalability with a pre-trained model. That
means the fuzzing process will be boosted when we reuse
an existing model for new seed programs compared with an
untrained model.

In summary, we make the following contributions:

• We formalize compiler fuzzing as a reinforcement
learning problem by modeling it as a multi-step
decision-making process.

• We propose to use deep Q-learning that learns to
choose a trace of high-reward mutation actions for
any given seed program input.

• We implement a prototyping tool called FUZZBOOST
and conduct analysis on real-world fuzzing jobs. It out-
performs baseline random fuzzing in terms of testing
efficacy.

P1 P2 P3

Insert Replace DeleteAction

State

Reward

Figure 1. Compiler Fuzzing Process

2. Overview
Mutation-based fuzzing relies on generating new program
inputs by mutating with heuristics based on seed programs.
Traditionally, mutation-based fuzzing adopted iterations of
one-step fuzzing. In other words, to decide the interest of
adding a new mutated input into the seed set, they collect
the performance of such input after a single mutation by
capturing new crashes in the context of black-box fuzzing
or capturing new path information in the context of grey- or
white-box fuzzing. However, it overlooks potential perfor-
mances of a trace of mutations, some intermediate states of
which may not be good enough to attract interest or even
break the compilation process due to lexical checks on early
stages. Therefore, we re-model the problem as multi-step
decision-making problem that will give enough attention to
these intermediate states being ignored in previous design
models. And we formally define the compiler fuzzing and
learning process as a Markov decision-making process as
described in Figure 1.

As shown in the figure, in this multi-step decision-making
process, there is an input mutation engine M , that will per-
form a fuzzing action a, and subsequently observe a new
state x directly derived from the mutated program P2 by
exercising the predicted action a on a original seed pro-
gram P1. This input mutation engine will predict the pro-
gram rewrites with regard to an extracted state from the
seed program. With the given formalization, it is natu-
ral to use Markov decision process (MDP) to model this
problem, where the corresponding T-step finite horizon
MDP is defined as M = (s1, a1, r1, s2, a2, ..., sT ). Here
st, at, rt represent the state, action, and reward at time
step t = 1, ..., T − 1, respectively. To achieve the trace of
most effective rewrites of a seed program, our formalization
allows us to apply state-of-the-art reinforcement learning
methods, in particular, the Q-learning (Watkins & Dayan,
1992).

Traditional reinforcement learning is about an agent that
interacts with the environment, learning an optimal policy,
by trial and error, for sequential decision-making problems
in a wide range of fields (Sutton et al., 1998; Bertsekas &
Tsitsiklis, 1995). A RL agent interacts with an environment
over time. At each time step t, the RL agent receives a state
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st in a state space S and selects an action at from an action
space A, following a policy π(at|st), thus receives a scalar
reward rt and transitions to the next state st+1, according
to the environment dynamics, or model, for reward func-
tion R(s, a) and the state transition probability P (st+1|at)
respectively. In an episodic problem, such as the game of
Go, this process continues until the agent reaches a terminal
state and then it restarts. The return reward is discounted
with a discount factor γ ∈ (0,1], which is written as

Rt =

∞∑
k=0

γkrt+k. (1)

The goal of the agent is to maximize the expectation of such
long term reward from each state. The pick of discount
factor usually conforms with the problem design, for which,
a value close to 1 is for long time goals but a value close to
0 is more greedy.

2.1. Value Function

Value functions are critical for reinforcement learning prob-
lems for evaluating a given state at each time step. A
value function is a prediction of expected, accumulative,
discounted, future reward that evaluates how good each
state is, written as vπ(s) = E[Rt|st = s]. It is the expected
return for the policy π from state s. vπ decomposes into the
Bellman equation:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]. (2)

An optimal state value

v∗(s) = maxπvπ(s) = maxaqπ∗(s, a) (3)

is the maximum state value achievable by any policy for
state s. And v∗(s) decomposes into the Bellman equation:

v∗(s) = maxa
∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]. (4)

The action value qπ(s, a) = E[Rt|st = s, at = a] is the
expected return for selecting action a in state s and then
following policy π. qπ(s, a) decomposes into the Bellman
equation:

qπ(s) =
∑
s′,r

p(s′, r|s, a)[r+γ
∑
a′

π(a′|s′)qπ(s′, a′)]. (5)

An optimal action value function

q∗(s, a) = maxπqπ(s, a) (6)

is the maximum action value achievable by any policy for
state s and action a. And q∗(s, a) decomposes into the
Bellman equation:

q∗(s, a) =
∑
s′,r

p′(s′, r|s, a)[r + γmaxa′q∗(s
′, a′)]. (7)

We denote an optimal policy by π∗ and this optimal policy
is what we want to acquire for general prediction.

2.2. Temporal Difference Learning

When an RL problem satisfies the Markov property, i.e., the
future depends only on the current state and action, but not
on the past, it is formulated as a Markov Decision Process
(MDP), defined by the 5-tuple (S,A, P,R, γ). We may see
the formulated MDP abstraction of our problem in Figure ??.
To solve such problems, when system models are available,
we can use dynamic programming methods: that is to use
policy evaluation to calculate value function for a policy, and
value iteration and policy iteration for finding an optimal
policy. However, when there is no model to follow, such as
the problem of compiler fuzzing, that no general equations
are available to evaluate how good a program is in terms of
the testing efficacy of compilers. In this case, we resort to
Reinforcement Learning methods and Temporal difference
(TD) learning is central in RL. TD learning usually refers to
the learning methods for value function evaluation.

TD learning learns value function V (s) directly from expe-
rience with TD error, with bootstrapping, in a model-free,
online, and fully incremental way. TD learning is a predic-
tion problem. The update rule is

V (s)← V (s) + α[r + γV (s′)− V (s)], (8)

where α is a learning rate, and [r+γV (s′)−V (s)] is called
the error.

Q-learning (Watkins, 1989; Watkins & Dayan, 1992) intro-
duces by Watkins, is also regarded as temporal difference
learning and was recently combined with deep neural net-
works (Mnih et al., 2013; 2015) to efficiently learn policies
on more complex problems over a larger state space. Q-
learning is more often adopted in reinforcement learning
problems where we choose an off-policy control method
to find the optimal policy. Q-learning learns action value
function, with the update rule,

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)].
(9)

Q-learning refines the policy greedily with respect to action
values by the max operator. Our framework utilizes the deep
Q-learning which adopts the deep neural network for the Q
function. The algorithm for deep Q learning is presented
in Algorithm 1. The Q-network is initialized arbitrarily
with random weights at the beginning. During each episode,
we use an incrementally trained Q-network for predicting
actions in program mutations and retrain the model when
we get new rewards for each program state after performing
the predicted action. We provide more detailed learning
process description in Section 4.
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Algorithm 1 Reinforcement Compiler Fuzzing

Output: action value function Q-network
initialize Q-network arbitrarily, randomly assign the
weights
for for each episode e do do

extract state s from seed program
repeat

a ← action for s derived by Q-network, e.g., ε-
greedy
take action a, s′

calculate r from runtime trace
Q(s, a) ← Q(s, a) + α[r + γmaxa′Q(s′, a′) −
Q(s, a)
s← s′

until state s is a terminal state
end for

3. Design
As described in Section 2.2, we obtain deep reinforcement
learning (deep RL) methods for the compiler fuzzing prob-
lem specifically when we use deep neural networks to ap-
proximate any of the following component of reinforcement
learning: value function q(s, a : θ), policy π(a|s; θ), and
model (state transition function and reward function). Here,
the parameters θ are the weights in deep neural networks.
We utilize stochastic gradient descent to update weight pa-
rameters in deep RL. When off-policy, function approxi-
mation, in particular, non-linear function approximation,
and bootstrapping are combined together, instability and
divergence may occur. However, recent work like Deep
Q-Network (Mnih et al., 2015) and AlphaGo (Silver et al.,
2016) stabilized the learning and achieved outstanding re-
sults. In this section, we will detail the abstraction of the
fuzzing process and elaborate on how to map this process
into a deep reinforcement learning process.

In reinforcement learning, one episode is one complete
sequence of states, actions and rewards, which starts with
an initial configuration and ends with a terminal state. For
example, playing an entire game can be considered as one
episode, the terminal state being reached when one player
loses/wins/draws. In the problem of compiler fuzzing, one
episode can be defined as generating a good program by
mutating an existing seed program (initial state) with respect
to the defined quality and in our preliminary implementation,
we hard-coded the entire trace length of program mutations
as one of the terminal conditions (terminal state).

Before we start the learning process, we first start with
a randomly generated neural network. After initiating a
new episode, State 0 is initiated by preprocessing a seed
program P . We initially extract a substring within this seed
program with the window size w and offset s. By observing

this substring, the neural network will help us to predict
a mutation action to be taken. Mutation actions are being
taken on token-level which include insert a token, switch
two or more tokens, replace a token, or change the window
size or offset to enable another substring to observe and
mutate. Once an action is being taken, we run the compiler
(any production compiler) with the program after mutation
and calculate the reward r of this new program with a record
of the execution trace. With the increased number of actions
being taken, we deduct the reward by a discounted rate γ
which is a value between 0 and 1. The state will move to
State 1 after one action being taken. We iterate the mutation
prediction and evaluation until a terminal state. There are
four key elements in this process: action, state, environment,
and reward. We will elaborate on these key elements one
by one.

3.1. State

A state S is a concrete and immediate situation in which
the agent finds itself; i.e. a specific place and moment, an
instantaneous configuration that puts the agent in relation to
other significant things. It can the current situation returned
by the environment, or any future situation. In the problem
of compiler fuzzing, the agent learns to interact with a given
seed program. Therefore, the state is a function about a
given input seed program p. In our design, the interaction is
performed upon the observation of substrings of consecutive
symbols within such an input. Formally, let Σ denotes a
finite set of symbols. The set of possible program inputs I
in this language is defined by the Kleen closure I := Σ∗.
For an input program string p = (p1, p2, ..., pn) ∈ I , let

S(p) := (p1+i, p2+i, ..., pm+i)|i ≥ 0,m+ i ≤ n (10)

denote the set of all substrings of p. We define the states of
the Markov decision process to be I and I is a union set of
S(p). Thus, we have p ∈ I denotes an input program and
p0 ∈ S(p) ⊂ I is a substring of this input seed program.
The entire state space of a seed program is S(p), which is
theoretically infinite since any symbol in this language I can
be involved after mutation. In other words, the seed program
can be converted into any other programs that conforms the
programming language grammar.

3.2. Action

Action A is the set of all possible mutations the agent can
perform. An action is almost self-explanatory, but it should
be noted that agents choose among a list of possible ac-
tions. In the problem of compiler fuzzing, we define the
set of possible action A of our Markov decision process to
be mappings of extracted substrings S(p)0 to probabilistic
rewrite rules. The rewrite rules are defined in accord with
the extracted substring and predicted type. In a high-level,
we define two types of rewrites, on the extracted content
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and on the extraction window. To be more specific, the
rewrites of extracted content are performed on token-level
which include insertion, replacement, re-ordering, deletion
and replication. These pre-defined token-level rewrite rules
conform with C language lexical requirements. The neural
network will predict which type and on which position an
action should be performed and we employ a lexical analy-
sis on such extracted substring to conduct such mutations
on a finer-grained granularity. This will change the input
program pi into pi+1 by mutating the substring S(p) in ob-
servation, and meanwhile, keep the original syntactic and
semantic validity with the best effort. For the second type
mutations, they are designed to make a change of extraction
windows. The atomic mutations include window left shift
and right shift; and window size up and down, one character
length for each. Each of these actions does not modify the
original seed program but motivates an originally extracted
substring S(pi) into another substring S(pi+1). For both
types of mutations, the time step increases to next state until
termination on the current episode. The substring rewrites
will consider every substring in the seed program and predict
accordingly to maximize the accumulated rewards along the
mutation trace. We also define a terminate action to early
stop the mutation episode. That is to say, the mutation agent
can actively terminate a mutation episode while observing
the extracted substring.

3.3. Environment

The environment is the world through which the agent
moves. The environment takes the agent’s current state
and action as input, and returns as output the agent’s reward
and next state. In the problem of compiler fuzzing, the envi-
ronment is the compiler or verifier. To observe more detailed
information about the fuzzing efficacy, we develop a plug-in
based on program execution traces. That is to say, we record
dynamic traces when running any production compilers, i.e.
GCC, with generated programs. In compiler construction, a
basic block of an execution trace is defined as a straight-line
code sequence with no branches except for the entry and
exit point. We capture all the unique basic blocks B(Tp)
with respect to each execution trace Tp, and calculate a
store with all the unique basic blocks covered by the exist-
ing test suite I ′ so far. In our implementation FUZZBOOST,
the program execution trace is generated by Pin (Luk et al.,
2005), a widely-used dynamic binary instrumentation tool.
Pin provides infrastructures to intercept and instrument the
execution trace of a binary. During execution, Pin will insert
the instrumentation code into the original code and recom-
piles the output with a Just-In-Time (JIT) compiler. We
develop a plug-in of Pin to log the executed instructions.
Additionally, we develop another coverage analysis tool
based on the execution trace to report all the basic block
touched so far. It will also report whether and the number of

new basic blocks are covered by a certain new program in
the compiler code. Additionally, our environment will also
log and report abnormal crashes, memory leaks or failing
assertions of compilers with the assistance of internal errors
alarms from the compiling messages.

3.4. Reward

Rewards provide evaluative feedbacks for an RL agent to
make decisions. However, rewards may be sparse so that it
is challenging for learning algorithms, e.g., in computer Go,
a reward occurs at the end of a game. There are unsuper-
vised ways to harness environmental signals. The reward
function is a mathematical formulation for rewards. Reward
shaping is to modify the reward function to facilitate learn-
ing while maintaining the optimal policy. In the problem
of compiler fuzzing, to motivate the testing coverage, we
define the reward relates to the unique basic blocks covered
by a certain generated program p and the entire test suite I ′;
that is

R(p, I ′) := B(Tp)/
⋃
ρ∈I′

B(Tρ), (11)

where B(Tp) is the unique basic blocks of the execution
trace of a program p and I ′ ⊂ I is all the programs gen-
erated so far in the test suite. This stepwise reward R is a
continuous scalar value that has a range of (0, 1], where 1
is achieved when a specific execution trace covers all the
basic blocks that have being tested so far by existing test
cases. This reward motivates the mutation steps towards the
training purpose: improve the compiler testing coverage by
selecting a critical subsequence inside a seed program and
making simple mutations in a trace.

4. Learning
To start a deep Q-learning process for compiler fuzzing, we
propose FUZZBOOST which adopts a constructed forward
neural network with two layers connected with non-linear
activation functions. We build this end-to-end learning
framework with the environment reward calculated based
on dynamic trace analysis. In this section, we present the
overall learning process for FUZZBOOST by illustrating the
fuzz action prediction in the reinforcement learning process
of compiler fuzzing as shown in Figure 2.

4.1. Initialization

We start with an initial input seed p ∈ I , where the choice
of p is not constrained but can be any C program even it
is not well-formed. We employ the GCC test suite as our
sampling pool and randomly selected programs to be our
seed inputs. We propose to use a neural network as the
Q function to mimic the reasoning for input mutation of
compiler fuzzing. This deep neural network maps states
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Figure 2. Fuzz Action Prediction in the Reinforcement Learning Process of Compiler Fuzzing

(embedding of an extracted substring from seed programs)
to estimate Q values for all actions A. Due to the lack of
heuristics at the very beginning, we built it a reinforcement
learning process, where the neural network is randomly
initialized and gradually tunes the parameters θ with learned
mutation heuristics calculated with environment rewards.

4.2. State Extraction

FUZZBOOST will observe a substring within a seed program
to predict actions to perform. The substring is extracted
from the seed program by customized window, and encoded
as State(p). In Section 3.1, we defined the states of our
Markov decision process to be I = Σ∗. To be more specific,
it is a strict substring p′ at offset o ∈ 0, ..., |p| − |p′| and of
window size |p′|. To make the extracted state controllable,
we defined actions in Section 3.2, to shift and resize the
window. By performing window-related actions, the fuzzing
agent is able to see the whole program via partially observe
fragments consecutively. In other words, FUZZBOOST will
learn to select the most critical piece of code to mutate
incrementally during the training process.

4.3. Deep Q-Network

We implemented the Q-learning module in Tensor-
flow (Abadi et al., 2016). The deep neural network that
used for prediction is a forward neural network with two
hidden layers connected with non-linear activation func-
tions. The two hidden layers contain 100 and 512 hidden
units respectively, and fully connected with an input layer
with 100 units (which is the max window size for input sub-
string) and an output layer with 10 units (which is the size
of action space). The goal of the training is to maximize the
expected policy reward. Since the MDP is a finite horizon
in our practical design, we adopt a discount rate γ = 0.9
to address the long-term reward. We set the learning rate
α = 0.001 to achieve our best-tuned results. We use the
decayed epsilon-greedy strategy for exploration in the re-
inforcement learning iteration, that is the ε value was set
up to 1 at the very beginning and decays over time until

a min value, 0.01 in our configuration, is reached. In this
scenario, with the probability 1 − ε, the agent selects an
action a = argmaxa′Q(xt, at), which is the estimated opti-
mal by the on-training neural network. On the contrary, with
probability ε, the agent explores any other actions with a
uniformly distributed choice within the action space |A|. To
evaluate the proposed framework with the deep Q-Network,
we explored its effectiveness under several different initial
state sizes. We also explored several non-linear activation
functions, including tanh, sigmoid, elu, softplus, softsign,
relu. We report experimental results in Section 5.

4.4. Termination

A mutation episode will terminate when the agent detects
a terminal state. In our design, we define three conditions
that may trigger the terminal state of mutating of a single
seed program: (1) the agent executes the “terminate” ac-
tion from the neural network prediction; (2) the generated
program reaches a maximum number of mutation steps; or
(3) the agent generates an invalid action that triggers mis-
cellaneous effects during the reward calculation. The first
type of termination will cut the program mutation actively
by FUZZBOOST while the latter two are passively ended
with pre-defined policies. We hard-code the limitation of
mutation trace length to be 20 in all of our experiments.
Theoretically speaking, from the perspective of fuzz testing,
the mutation trace can be generated as long as possible to
achieve enough randomness. But in practice, to improve
the testing efficacy in a most effective way, we set up these
policies to enforce our learning agent to learn within the
shortest path.

5. Experiments
In our research, we proposed a reinforcement learning
framework FUZZBOOST that incrementally trains a deep
neural network to predict mutation actions on a given seed
program that improves the compiler testing coverage in a
most effective way. We evaluated FUZZBOOST based on
a seed input set gathered from the GCC test suite. We
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State Size 50 60 70 80 90 100
Coverage Improvement (%) 37.14 36.11 30.29 28.95 28.07 27.94

Table 1. Coverage improvements with different state size

Activation Function tanh sigmoid elu softplus softsign relu
Coverage Improvement (%) 37.14 28.27 7.48 13.72 14.22 13.26

Table 2. Coverage improvements with different activation functions

randomly sampled 20 C programs in the test suite as our
benchmark problems. We evaluated FUZZBOOST in terms
of the testing efficacy and scalability. We also addressed
the issue that the fuzzing process can be boosted with a
pre-trained model even if we reuse for new seed programs.
All measurements were performed on i7-7700T 2.90Ghz
with 12GB of RAM.

5.1. Testing Efficacy

Coverage improvement is the most important measurement
for testing. It denotes the overall lines/branches/paths in
the original code is being visited. In our design, we use the
accumulated number of unique basic blocks being executed
with the generated new test cases as an alternative to repre-
sent the code coverage. To show that FUZZBOOST learning
algorithm learns to perform high-reward actions given a
seed input observation, we compare the improved testing
efficacy against a baseline random action selection policy.
The choice of the baseline method uniformly distributed
among the action space A and we terminate the actions with
the same methodologies as our method described in Sec-
tion 4.4. We randomly sampled 20 C programs in the GCC
test suite, specifically, from the gcc.c-torture repository.

Baseline: We performed the experiments with the two dif-
ferent action selection strategies using each of the programs
from the sampling pool as the seed. We generated 1,000 new
tests from both strategies from the seeds and recorded the
accumulated number of unique basic blocks along the exe-
cution trace. In general, FUZZBOOST improved the testing
coverage by 37.14%. Figure 3 shows the coverage improve-
ment of four comparisons, among which the most and least
improvements, 79.17% (case 1, seed1.c) and 12.24% (case
2, seed2.c) respectively, are achieved. To conclude, an im-
provement of 5.59% coverage improvement is achieved at
most with the newly generated 1,000 programs by FUZZ-
BOOST for a single seed.

State Size: We increased the initial state size w = |x′| from
50 characters to 100 characters and measured the average
reward improvement compare with the baseline strategy
on seed1.c. Table 1 shows the results for this experiment.
We can see a decreasing improvement when increasing the
initial state size. To interpret this result, smaller substrings
are better processed than larger ones. In other words, our

model learns the best move of small windows and will select
the best action accordingly to improve coverage.

Activation Function: We are also interested in testing effi-
cacy improvements when applying different activation func-
tions in the proposed model. We conducted experiments
to generate 1,000 new program upon seed1.c with FUZZ-
BOOST trained with models using different activation func-
tions. Table 2 compares the different activation functions
with respect to improvement of coverage. For all activation
functions provided by the Tensorflow framework, we found
the tanh function to yield the best result for our setting.
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Figure 4. Average Mutation Length in an Episode with Training

End State: We define the compiler fuzzing as a multi-step
decision-making problem and set up the end-to-end learning
framework. Theoretically speaking, not like the problem of
Go, the end state of FUZZBOOST is not deterministic in all
cases. In our design, we hard-coded a limit on the length of
mutation traces for experiments, but naturally, the traces can
be endless to gain enough randomness and achieve a higher
reward. We also designed that the trace can be terminated by
the agent itself or triggered by miscellaneous effects during
the dynamic analysis. Thus, we are also interested in the
distribution of the trace lengths under different configura-
tions. Figure 4 shows the trace length distributions along
the learning process. From the result, we can see that, with
the training goes on, the trace lengths are increasing. That is
to say, the fuzzing agent tends to not to cut off the mutation.

5.2. Boosting with pre-training

We next address the question, given an agent which is
pre-trained on seed programs Ptrain = pi ∼ P , will this
agent improve the testing efficacy faster than learning from
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Figure 3. Number of Unique Basic Blocks

scratch? We prepare the training and testing data as follows.
We took case 1 which has the most coverage improvement
from the initial 20 seed program and created 9 α-equivalent
programs for this seed program. We call a program P ′ is
an α-equivalent program of program P when we only per-
form bound variable renaming on P . We used 80% of them
serves as Ptrain and the rest 20% are used for Ptest . After
pre-training the agent on Ptrain for 50 epochs, we saved the
model and reused it on Ptest . It continued the trial-and-error
reinforcement learning.

Figure 3d shows coverage improvement using FUZZBOOST
with an initially arbitrary model and another pre-trained
model respectively. We may see that the coverage improve-
ment for the latter case improves drastically towards the
highest value in the former case despite the minor difference
in the language of two seed programs. In addition, with the
training goes on, the coverage was again improved to a new
highest value that outperformed previous testing efficacy. It
reveals the transferability of a trained model in the context
of compiler fuzzing.

6. Related Work
Our study is related to the following aspects of research.

6.1. Deep Reinforcement Learning

Despite the popularity in solving the game of Go, rein-
forcement learning is also adopted as a powerful technique
for program synthesis. Brunel et al. performed reinforce-
ment learning on top of a supervised model with an objec-
tive that explicitly maximizes the likelihood of generating
semantically correct programs (Bunel et al., 2018). Re-
searchers also proposed Neurally Directed Program Search
(NDPS) (Verma et al., 2018), for solving the challenging
non-smooth optimization problem of finding a program-
matic policy with maximal reward. Our target is to generate
source programs that are well-formed but contain different
syntactic features to trigger compiler errors. In our design,

we may consider the improvement of testing coverage into
the reward as feedback for reinforcement learning.

6.2. Mutation-based Fuzzing

Mutation-based fuzzing uses an existing corpus of seed in-
puts for fuzzing. It generates new inputs by modifying the
provided seeds. A well-known fuzzer that is mutation-based
is called AFL (Zalewski, 2017) which randomly mutates
seed inputs and incrementally add new seeds into the set
with respect to defined heuristics. Several boosting tech-
niques are proposed to improve the efficiency of mutation-
based fuzzing. AFLFast (Böhme et al., 2017) boosts up
original AFL fuzzer by focusing on low-frequency paths
that allow the fuzzer to explore more paths with limited time.
Skyfire (Wang et al., 2017) applies the knowledge in existing
seed inputs for fuzzing programs that take highly-structured
inputs. Kargen and Shahmehri (Kargén & Shahmehri, 2015)
perform mutations on the machine code instead of directly
on a well-formed input that they can use the information
about the input format encoded in the generated program to
produce high-coverage inputs. DeepFuzz (Liu et al., 2019)
utilized an RNN-based model to encode program grammar
and generate new well-formed C programs for compiler
fuzzing. In this paper, our method boosts the mutation pro-
cess by using a deep neural network to predict the mutation
based on an observation of existing seed programs.

7. Conclusion
In this paper, we proposed FUZZBOOST, a deep reinforce-
ment learning framework to fuzz off-the-shelf compilers
by generating new programs with coverage-guided dynam-
ics. Our proposed end-to-end learning framework learns
to select the best actions to perform automatically without
any supervision. It improved the testing coverage on a seed
set from the GCC test suite and outperformed the baseline
fuzzing agent with a random selection strategy. Moreover,
after being pre-trained, it can generalize the strategy to new
instances much faster than starting from scratch.
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