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ABSTRACT

As deep neural networks become widely adopted for solving most problems in
computer vision and audio-understanding, there are rising concerns about their
potential vulnerability. In particular, they are very sensitive to adversarial attacks,
which manipulate the input to alter models’ predictions. Despite large bodies of
work to address this issue, the problem remains open. In this paper, we propose
defensive tensorization, a novel adversarial defence technique that leverages a la-
tent high order factorization of the network. Randomization is applied in the latent
subspace, therefore resulting in dense reconstructed weights, without the sparsity
or perturbations typically induced by the randomization. Our approach can be
easily integrated with any arbitrary neural architecture and combined with tech-
niques like adversarial training. We empirically demonstrate the effectiveness of
our approach on standard image classification benchmarks. We further validate the
generalizability of our approach across domains and low-precision architectures
by considering an audio classification task and binary networks. In all cases, we
demonstrate superior performance compared to prior works in the target scenario.

1 INTRODUCTION

Deep neural networks (DNNs) are powerful predictive models that achieve impressive accuracy
across a wide range of artificial intelligence tasks, including image classification (He et al., 2016;
Krizhevsky & Hinton, 2009) and speech recognition (Amodei et al., 2016a; Graves et al., 2013;
Graves & Jaitly, 2014). The popularity of DNNs in production-ready systems has raised a serious
security concern as DNNs are found to be susceptible to a wide range of adversarial attacks (Madry
et al., 2017; Akhtar & Mian, 2018; Dong et al., 2018; Huang et al., 2017; Goodfellow et al., 2014;
Kurakin et al., 2016), where small and imperceptible perturbations of the input data lead to incorrect
predictions by the networks. These shortcomings pose an obstacle in wide-scale adoption of DNNs
and expose an inherent weakness in their reliability. This is especially important when such models
become part of security and safety related solutions (Amodei et al., 2016b).

This susceptibility of DNNs to adversarial perturbations has led to a large volume of work that
attempts to design robust networks (Dhillon et al., 2018; Lin et al., 2019; Samangouei et al., 2018;
Song et al., 2017; Guo et al., 2017). However, advances in designing robust DNNs have been
followed with stronger perturbation schemes that defeat such defences (Athalye et al., 2018).

Most defenses that rely on randomization, either apply randomized transformations to the input,
e.g. (Xie et al., 2018), or randomization applied within the network, e.g., on the activations (Dhillon
et al., 2018) or on the weights directly (Wang et al., 2018). However, all these approaches typically
introduce artificats (e.g. sparsity in the weights or activations) and can be defeated by carefully
crafted attacks (Athalye et al., 2018). In addition, it is preferable to not to rely on modifications of the
inputs but have a network that is inherently robust against attacks. In this paper, we take a different
approach to randomization. We first parametrize the network using tensor factorization, effectively
introducing a latent subspace spanning the weights. We then apply randomization in that latent
subspace, enabling us to create models that are robust to adversarial attacks, without modifying
directly the weights, activations or inputs. In summary, we make the following contributions:

• We propose a novel adversarial defence technique that relies on a latent randomized tensor
parametrization of each layer in the network and can be seamlessly integrated within any net-
work architecture.
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• We thoroughly evaluate the robustness of our method against various adversarial attacks and show
that it consistently and significantly improves over the current state-of-the-art especially when
combined with adversarial training.

• We show that our method successfully hardens the models against these attacks for both quantized
and real-valued nets.

• We verify that our strategy works across domains, by experimenting on both image-based and
audio-based classification.

2 RELATED WORK

In this Section, we review the related work on adversarial attacks (Section 2.1) and defences (Sec-
tion 2.2), followed by an overview of tensor methods for deep learning (Section 2.3).

2.1 ADVERSARIAL ATTACKS

First, we review a few of the most popular adversarial attacks alongside the current defense strategies
employed. Given a data sample, e.g., an image X , an adversary will try to find a small perturba-
tion, often imperceptible to a human eye, but that, added to the input sample, will cause it to be
misclassified by the target model, with high confidence. Mathematically, the attacked generates a
perturbation ∆ bounded in terms of some `p norm, i.e. ‖∆‖p ≤ ε, typically with p = 2 or p = ∞.
The adversarial sample is obtained by adding the perturbation to the input sample Xadv = X + ∆.

Several ways of obtaining this adversarial perturbations have been proposed (Goodfellow et al.,
2014; Athalye et al., 2018; Carlini & Wagner, 2017). Among them, black box attacks, consider the
network as a black-box in which the attacker has no information regarding its architecture or the
gradients. White-box attacks on the contrary, assume complete access to the network architecture
and all its parameters. Moreover, attacks can either be untargeted, in which case the goal is simply
to make the network predict any wrong label, or targeted, in which case the aim is to force the
network to predict a specific label, independently from the input sample. Next, we introduce the
main white-box attacks used in this paper.

Fast Gradient Sign Method (FGSM) is a single-step, gradient based technique, introduced
by Goodfellow et al. (2014) to generate `∞-bounded adversarial perturbations as follows:

Xadv = X + ε · sgn(∇XL(θ,X , y)) (1)

where θ is the parameters of the target neural network. While the single gradient-step nature of
FGSM makes it better for transferability attacks, this can also lead to a suboptimal ascent direction.

Basic Iterative Method (BIM) and Projected Gradient Descend (PGD) aims to address the
shortcoming of FGSM by running it for several iterations. Kurakin et al. (2016) propose BIM, in
which the FGSM is run for for several iteration, clipping the values of the perturbation at each step
to be inside the bounds. Madry et al. (2017) further improve upon this by prepending BIM with a
random start and replacing clipping with a projection onto the acceptable set:

X t+1
adv = ΠX+S(X t

adv + α · sgn
(
∇XL(θ,Xt

adv, y)
)
, (2)

where α is the step size and ΠX+S is a projection operation forcing the generated adversarial sam-
ples to be in the `p ball S around X. A model resilient to PGD attacks is considered to be reasonably
resistant to all first order attacks (Madry et al., 2017).

2.2 ADVERSARIAL DEFENCES

Despite recent advances, developing robust neural networks remains an open, challenging prob-
lem (Athalye et al., 2018). Current defense strategies typically attempt to either detect the adver-
sarial samples and denoise them, or inject adversarial samples during training. The latter is known
as adversarial training (Goodfellow et al., 2014; Kurakin et al., 2016; Madry et al., 2017) and is
considered the most resilient defense technique. However, the above mentioned defences typically
do not increase the robustness to black box attacks. In addition they can typically be defeated using
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two-step approaches (Tramèr et al., 2017). Feature squeezing is another model hardening approach
introduced by Xu et al. (2017). This technique proposes to reduce the complexity of the data rep-
resentation which in turn causes the adversarial perturbations to disappear due to lower sensitivity.
Guo et al. (2017) proposes a set of five transformation, namely image cropping and re-scaling, bit-
depth reduction, JPEG compression, pixel dropping and image quilting, that applied to the image
to increase the robustness to adversarial attacks of a given model. However, even the combination
of all these transformations was shown to be vulnerable to carefully tuned attacks (Athalye et al.,
2018). Samangouei et al. (2018) introduces the so-called Defense-GAN technique. The main idea
is to project the samples into the manifold of a generator before classifying them. Similarly, Song
et al. (2017) uses a PixelCNN instead of a generative model. Despite the variety of recently pro-
posed defence strategies, in (Athalye et al., 2018) the authors show that most of the existing defense
techniques rely on one form of gradient obfuscation (gradients shattering, stochastic gradients and
vanishing/exploding gradients), proposing both a method to detect such class of defences and to
defeat them.

As opposed to all the aforementioned works which either manipulate the data samples (Samangouei
et al., 2018; Song et al., 2017; Guo et al., 2017) or introduce stochasticity on the activations (Dhillon
et al., 2018) or weights Wang et al. (2018) of each layer, we propose a novel defense strategy that
leverages tensor factorization of the weights in order to apply randomization in that latent space,
before reconstructing the weights the weights. The approach is introduced in details in section 3.

2.3 TENSOR METHODS IN DEEP LEARNING AND RANDOMIZED TENSOR DECOMPOSITION

Tensors are high dimensional generalizations of matrices (Kolda & Bader, 2009). Recently, tensor
decompositions have found a surge of applications in deep learning, mainly focusing on networks
compression and acceleration. By parametrizing layers of neural networks using tensor decomposi-
tion, or even whole networks (Kossaifi et al., 2019a), the number of parameters can be reduced with
little to no loss of performance, and in some cases the operations can be done more efficiently (Lebe-
dev et al., 2015; Novikov et al., 2015; Kim et al., 2016; Astrid & Lee, 2017).

In some cases, tensor decompositions can exhibit high computational cost and possibly low con-
vergence rates when applied to massive data. To accelerate computation, and enable them to scale,
several randomized tensor decompositions have been developed. In this way, CP decomposition can
be done by selecting randomly elements from the original tensor (Battaglino et al., 2018), or using
randomization to solve the problem on one or several smaller tensors before projecting back the
result to the original space (Erichson et al., 2017; Sidiropoulos et al., 2014; Vervliet et al., 2014).
Wang et al. (2015) proposed a fast yet provable randomized CP decomposition using FFT to perform
tensor contraction. Randomization approaches have also be explored for fast approximation of other
tensor decompositions, e.g., Tucker decomposition via sketching (Tsourakakis, 2010; Zhou et al.,
2014) and tensor ring using tensor random projections (Yuan et al., 2019).

These methods are orthogonal to our approach and can be combined with it. As opposed to the
aforementioned works, which focus on compression or efficiency, we explore tensor factorization
methods in the context of adversarial defense, proposing a novel approach in which the weight
tensor of each convolutional layer are parametrized using a randomized tensor decomposition that
significantly hardens the model, increasing its robustness to a wide range of adversarial attacks. Our
method is generic and can be applied to both real-valued networks and binary ones. In addition, it
is orthogonal to the existing defence methods and can be combined with existing defenses such as
adversarial training. The method is introduced in details in section 3.

3 DEFENSIVE TENSORIZATION

In this section, we introduce our method for the defense against adversarial attack. Our defense
leverages a randomized higher-order factorization method, which is used as the basis for our de-
fense. Typically, defensive methods relying on randomization do so by introducing sparsity in either
the weights or the input activation tensors of the layers of the deep neural neural network. For
instance, Dhillon et al. (2018) sparsify the input tensor, by stochastically pruning some of the acti-
vations and scaling up the remaining ones. Wang et al. (2018) apply sparsification to the weights
directly using dropout both during training and testing. However, all these approaches degrade per-
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formance by setting activations to zero, and, while rescaling the non-zero entries can mitigate the
issue, increasing the sparsity (and therefore the efficiency of the defense) translates into large losses
in performance. By contrast, we propose to rely on a latent parametrization of the layers using tensor
decomposition. Intuitively, a latent subspace spanning the weights is learnt, along with a non-linear
projection to and from that subspace. The sparsity inducing randomization is applied in the latent
space. Upon projection, the resulting weights are dense and yet preserve the robustness against ad-
versarial attacks. This allows us to built models that are both more robust to adversarial methods
than existing works, while preserving high classification accuracy.

Notation: Throughout the papers, we denote vectors (1storder tensors) as small bold letters v, ma-
trices (2ndorder tensors) as bold capital letters M and tensors, which generalize the concept of ma-
trices for orders (number of dimensions) higher than 2, in capital calligraphic letters X . The n–mode
product is defined, for a given tensor X ∈ RD0×D1×···×DN and a matrix M ∈ RR×Dn , as the tensor
T = X ×n M ∈ RD0×···×Dn−1×R×Dn+1×···×DN , with: Ti0,i1,··· ,in =

∑Dn

k=0 Min,kXi0,i1,··· ,in .

Latent high-order parametrization of the network: We introduce tensor factorization in the con-
text of deep neural networks. Note that this method is independent of the dimensionality of the
input but we introduce it here, without loss of generality, for the case of a 4 dimensional kernel
of 2D convolutions. Specifically, we consider a deep neural network composed of L layers con-
volutional layers, interlaced with non-linearities Φl, l ∈ [1 . . L]. Let’s consider a convolutional
layer l ∈ [1 . . L], taking as input an activation tensor Xl and parametrized by a weight tensor
Wl ∈ RF,C,H,W , where F,C,H,W correspond respectively to number of Filters (e.g. output chan-
nels), input Channels, Height and Width of the convolutional kernel. The output of that layer, after
applying non-linearity, will be Φ (Xl ?Wl).

We introduce a latent parametrization of the weight kernelWl by expressing it as a low-rank tensor,
in this paper using a Tucker decomposition Kolda & Bader (2009). In other words we expressWl

in a latent subspace as a core tensor Gl. The mapping to and from this subspace is done via factor
matrices UF

l ,U
C
l ,U

H
l and UW

l : Wl = Gl ×0 U
F
l ×1 U

C
l ×2 U

H
l ×3 U

W
l .

Randomizing in the latent subspace: In addition to the above deterministic decomposition, we
introduce, for each layer, a randomization term stochastically controlling the rank of the decompo-
sition. To do so, we introduce diagonal sketching matrices MF ,MC ,MH and MW , the diagonal
entries of which are i.i.d. and follow a Bernoulli distribution parametrized by probability θ ∈ [0, 1].
Specifically, we samples random vectors λF ∈ RO,λC ∈ RC ,λH ∈ RH and λW ∈ RW ,
the entries of which are i.i.d. following a Bernoulli distribution parametrized by probability θ.
We can then define the sketching matrices as MO = diag(λF ),MC = diag(λC),MH =
diag(λH) and MW = diag(λW ).

This randomization is then applied not directly to the weight tensor W , but rather in the low-rank
subspace, effectively randomizing the rank of the convolutional kernel:

W̃l = (Gl ×0 MF × · · · ×3 MW )︸ ︷︷ ︸
randomized core Ĝl

×0

(
UF

l M
>
F

)
× · · · ×3

(
UW

l M>W
)︸ ︷︷ ︸

randomized factors ÛF
l ,ÛI

l ,Û
H
l ,ÛW

l

(3)

This stochastic reduction of the rank can be done without affecting performance thanks to the over-
parametrization of deep networks, which, while crucial for learning (Du & Lee, 2018; Soltanolkotabi
et al., 2018), create large amounts of redundancies. In addition, since Gl ×0 MF ×0

(
UF

l M
>
F

)
=

Gl ×0

(
UF

l M
>
FMF

)
, and MF ,MI ,MH and MW are idempotent, eq. 3 can be simplified to:

W̃l = (Gl ×0 MF × · · · ×3 MW )×0 U
F
l × · · · ×3 U

W
l = G̃l ×0 U

F
l × · · · ×3 U

W
l (4)

In other words, we sketch the core tensor, then project it back using the original factors. An impor-
tant detail is that the randomization terms from the above equation, G̃ = G ×0 MF × · · · ×N MW

is never explicitly computed using actual tensor contractions. Instead, the elements sampled are
directly selected from the core and the corresponding factors, which is much more computationally
effective. For the binary case, we additionally apply the process from eq. (5) by plugging in eq. (4).

The randomization being done in the latent subspace, it induces no sparsity, unlike pruning or
dropout based methods and the reconstructed weights are dense. Since the weights are learnt end-
to-end with randomization on the latent cores, the network naturally learns not to rely on any single
latent component for prediction, thus learning intrinsically more robust representations. The result
is a network that is naturally more robust to perturbations in the inputs.
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4 EXPERIMENTAL SETTING

In this section, we detail the experimental setting used for the experiments for image-based classifi-
cation and audio-based classification.

4.1 DATASETS

We conducted experiments on two widely used databases for image-based classification and audio-
based classification, respectively:

CIFAR-10 (Krizhevsky & Hinton, 2009) is a widely used image classification dataset consisting
of 60, 000 images of size 32 × 32px in 10 classes, equally represented. The dataset is divided into
50, 000 images for training and 10, 000 for testing. We did not use any particular data augmentation,
beside random horizontal flipping.

Speech Command (Warden, 2018) is an audio recognition dataset comprised of 105, 000 1-second
utterances of words from a large number of users spanning over a small vocabulary. The objective
is to recognize among ten spoken words: yes, no, up, down, left, right, on, off, stop, go, in addition
to recognizing words outside the vocabulary as unknown, and detecting silence. The dataset is
balanced and all audio recordings are captured with a sampling frequency of 16 KHz. We use a
80%-10%-10% splits for training, validation and testing respectively.

4.2 IMPLEMENTATION DETAILS

Training the model All our CIFAR-10 (Krizhevsky & Hinton, 2009) experiments were conducted
using a ResNet-18 (He et al., 2016) architecture. The network was trained for 350 epochs using SGD
with momentum (0.9) and a starting learning rate of 0.1 that was dropped at epoch 150 and 250 by
a factor of 0.1. The weight decay was set to 1e − 6. In order to accelerate the training process the
models with θ < 1 were initialized from a pretrained model that was trained without stochasticity
(θ = 1). The binary counterpart models were trained following the method proposed by Rastegari
et al. (2016) using the same optimizer and learning scheduler as for the real-valued ones. For the ex-
periments conducted on the Speech Command dataset we build on the SoundNet5 (Aytar et al., 2016)
architecture containing 5 convolutional layers [in channels, out channels, kernel, stride, padding]:
[1, 16, (1×64), (1×2), (0×32)], [16, 32, (1×32), (1×2), (0×16)], [32, 64, (1×16), (1×2), (0×
8)], [64, 128, (1×8), (1×2), (0×4)], [128, 256, (1×4), (1×2), (0×2)] and 2 linear ones: [512, 256]
and [256, 12]. Each convolutional layer was followed by a max-pooling operation. We trained all of
the audio models using Adam (Kingma & Ba, 2014) for 50 epochs with an initial learning rate set to
0.01 that was dropped by 0.1× at epoch 25 and 35. The binarization and re-parametrization follows
the same procedure as for CIFAR-10.

Attack Method

Type ε Baseline Ours
θ = 0.95 θ = 0.9 θ = 0.8

Clean
95.3 94.5 93.0 90.1(no attack)

FG
SM

2 48.7 84.9 86.8 83.4
8 22.5 65.4 69.9 71.5
16 12.7 54.0 56.0 60.3

B
IM

2 23.0 60.2 69.5 71.8
8 0.0 26.6 33.1 45.5
16 0.0 27.0 33.0 42.4

PG
D 2 22.9 64.4 72.3 76.2

8 0.0 27.0 28.1 42.9
16 0.0 22.4 27.4 34.3

Table 1: Real-valued network performance on CIFAR-10
for FGSM, BIM and PGD attacks with ε ∈ {2, 8, 16}.

Attacking the model For FGSM, we
run the attack for various values of
ε = {1, 2, 4, 8, 16, 32, 64, 128} (for
an image range [0 . . 255]) across
the entire validation/testing set aver-
aging the results over 10 runs. On
the Speech Command dataset, since
the raw data is in the range [−1, 1],
we scaled the value of ε accordingly,
running it for the following values
ε = {0.008, 0.032, 0.063}. For the
iterative methods BIM and PGD, we
follow Kurakin et al. (2016) and Song
et al. (2017) setting the step size to
1 and the number of iterations to
bmin(ε+ 4, 1.25ε)c.
Threat Model: we assume that the
attacker has access to everything (e.g.
the architecture of the network, its
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Figure 1: FGSM (left) and PGD (right) attacks on the CIFAR-10 image classification dataset for
various values of ε with and without adversarial training. Notice that our method alone surpasses
the strong adversarial training defence. When combined together the robustness is increased even
further. Results are averaged over 10 runs.

weights, inputs, outputs, training process and gradients, etc) except the random seed used for sam-
pling the Bernoulli random variables.

All of our models were implemented using PyTorch (Paszke et al., 2017) and trained on a single Ti-
tan X GPU. The latent, randomized tensor factorization was implemented using TensorLy (Kossaifi
et al., 2019b). For the adversarial attacks we used the FoolBox (Rauber et al., 2017) package.

5 RESULTS

In this section, we empirically demonstrate the robustness property of our proposed method against
adversarial examples by extensively evaluating it on CIFAR-10 and comparing it against existing
state-of-the-art defense techniques. Moreover, we show that our approach can be combined with
adversarial training based techniques leading to further robustness gains. All the experiments are
run using the experimental setup described in Section 4.

Robustness to adversarial attacks: When evaluated using the FGSM attack on the CIFAR-10
dataset our method is significantly more robust than the baseline approach, especially for high values
of ε (see Table 1 and Fig. 1). Furthermore, the results presented in Table 1 show that for lower
values of θ = 0.8, our network significantly decreases the typical high attack success-rate achieved
by strong iterative attack algorithms such as BIM and PGD.

Comparison to the State-of-the-Art. To better understand the performance of our method, we
compare it against existing state-of-the-art defense techniques such as: DQ (Lin et al., 2019) in
which the authors attempt to reduce the propagation of the adversarial attacks inside the network
by controlling the Lipschitz constant, features squeezing (Xu et al., 2017) that simple reduces the
dimensionality of the search space by controlling the color bit depth of each pixel while applying
spatial smoothing and finally, adversarial training in two variants: R+FGSM as proposed in (Lin
et al., 2019) and PGD (Madry et al., 2017). Where the later (i.e. adversarial training) is considered
to be one of the strongest defence techniques developed. For feature-squeezing we used 5 bits for
image color reduction combined with a 2 × 2 median filter. For adversarial training as in (Madry
et al., 2017; Kurakin et al., 2016) we sample the number of steps (for PGD) and ε randomly. As
the results from Table 2 show, our method consistently outperforms existing defense strategies for
various attacks (FGSM, BIM, PGD), across different values of ε = {2, 8, 16}. Furthermore, when
combined with adversarial training our method can further increase its resilience to attacks.

Defending against omniscient attackers Another interesting question is whether our defense strat-
egy would still work against an omniscient attacker, i.e., an attacker with access to the full un-
randomized weights. We trained a network for θ = 0.9. Then, during training, we first generate
an adversarial example using the full, un-randomized weights (i.e. θ = 1) and test it using the
stochasticity (i.e. θ = 0.9). As can be seen in Table 3, our network is still robust against these
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Method clean FGSM
ε = 2/8/16

PGD
ε = 2/8/16

Normal 95.4 48.7/22.6/12.9 22.9/0/0
DQ (Lin et al., 2019) 95.9 68/53/42 62/4/0

Feature squeezing (Xu et al., 2017) 94.1 61/35/27 64/2/0
Adv. training+R FGSM (Lin et al., 2019) 91.6 81/52/38 84/43/11
Adv. training PGD (Madry et al., 2017) 86.6 74/46/31 76/44/20

Ours (θ = 0.8) 90.1 83.4/71.5/60.3 76.2/42.9/34.3
Ours (θ = 0.95) + Adv. training PGD 89.5 86.5/81.4/70.1 84.9/75.4/59.8

Table 2: Comparison against various defense methods against FGSM and PGD with ε =
{2, 8, 16} on the CIFAR10 dataset. Notice that our method, especially when combined with ad-
versarial training, significantly outperforms other state-of-the-art methods.

attacks, despite the attacker having full access to the weights. Similar behaviour can be observed for
other values of θ. Note that this is an extreme scenario and in general, the weights could be stored
separately (and safely) with the network getting, at each time, the randomly reconstructed weights.

6 ABLATION STUDIES

ε FGSM PGD BIM

2 91.1 82.5 81.9
8 85.4 74.1 80.4

16 82.4 53.9 80.1

Table 3: Robustness against attacker
with access to the un-randomized
weights. FGSM, BIM and PGD attacks
with ε ∈ {2, 8, 16} are computed using
the full (un-randomized) weights (i.e.
θ = 1) and used against the same net-
work with the same weights but with
θ = 0.9.

To further validate our findings we test out approach on
two different scenarios: on fully binarized networks (Sec-
tion 6.1) and audio classification task (Section 6.2).

6.1 ATTACKING BINARY NEURAL NETWORKS

With the growing popularity of deep learning based meth-
ods and the constant need of incorporating such ap-
proaches on mobile devices, network quantization has
emerged as a potential hardware-friendly solution, which
squeezes the original network by reducing the number
of bits required to represent the model parameters. In
its most extreme form, binarization, the weights and fea-
tures are represented using a single bit (Courbariaux et al.,
2016; Rastegari et al., 2016; Bulat & Tzimiropoulos,
2017). The typical approach quantizes the network using the sign function (Courbariaux et al.,
2015), however this introduces high quantization errors that hinder the learning process. To allevi-
ate this, a real-valued scaling factor is introduced by Rastegari et al. (2016). In this work we binarize
the network following Rastegari et al. (2016):

I ∗W = (sgn(I)©∗ sgn(W))�Kα, (5)

where I ∈ Rc×win×hin andW ∈ Rc×h×w denote the input and respectively the weight of the L-th
convolutional layer, α ∈ Rc×1×1 represent the weight scaling factor and K ∈ R1×hout×wout the
input scaling factor. Both α andK are computed analytically as proposed by Rastegari et al. (2016).

While it was previously thought that such binarized networks are more resilient to adversarial at-
tacks (Khalil et al., 2018; Liu et al., 2018; Galloway et al., 2017) than their real-valued counterpart,
in this work we confirm the recent findings of (Lin et al., 2019) by showing that in fact it is the oppo-
site, i.e., binary networks are more susceptible to adversarial attacks. Typically, during the training
phase the derivative of the quantization function (sgn) is approximated using a STE (e.g., an identity
function clipped to [−1, 1] in this case). The same estimator can be used during the attacking phase
and it often leads to a high rate of success of the attacks. Interestingly, the results in Table 4 show
that we can go one step further by approximating the derivative of the sgn function using tanh(x)
and tanh(0.75 ∗ x) respectively. The use of these approximations make the binary networks become
more sensitive to the attacks. When evaluated on a binary network on the CIFAR-10 dataset, in
accordance with the behaviour found on real-valued models, our method shows significant improve-
ments across the entire range of values and attacks tested (see Table 4 and Fig. 1). We note that for
the binary case, since such networks have a lower representational capacity, we set θ = 0.99.
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Attack Method

Type ε
Baseline

Ours (θ = 0.99)Identity tanh(x) tanh(0.75x)

Clean
83.7 83.7 83.7 80.0(no attack)

FG
SM

2 36.6 34.5 34.1 76.9
8 6.9 6.1 5.8 65.0
16 4.3 3.4 3.0 58.7

B
IM

2 37.0 34.7 35.1 66.3
8 0.0 0.0 0.0 46.4
16 0.0 0.0 0.0 44.0

PG
D 2 41.7 38.7 39.8 67.5

8 0.1 0.0 0.0 47.9
16 0.0 0.0 0.0 41.5

Table 4: Binary network performance on CIFAR-10 for FGSM, BIM and PGD attacks with ε ∈
{2, 8, 16}. Our approach is significantly more robust, especially against iterative attacks.

6.2 DEFENSIVE TENSORIZATION FOR AUDIO CLASSIFICATION

To further demonstrate the generalizability of our approach, we next consider adversarial attacks on
the audio domain. In-line with the latest success in audio recognition, we consider an end-to-end
audio model following SoundNet (Aytar et al., 2016) architecture, that operates directly on the raw
audio signal, without requiring any feature extractions (e.g., MFCC or log mel-spectrogram). We
found that the end-to-end models show higher degree of vulnerability to the adversarial attacks, e.g.,
around 6% absolute degradation compared to the model operating on log mel-spectrogram. In case
of the small vocabulary audio recognition task, we only consider FGSM attack and summarize our
findings in Table 5. With a higher degree of stochasticity (i.e. θ = 0.9), both the real and the
binarized model exhibit much higher resilience to the adversarial attacks.

Quantization ε Baseline Defensive Tensorization

θ = 0.99 θ = 0.95 θ = 0.9

R
ea

l

No attack 93.8 92.0 89.6 88.1

0.008 33.0 49.6 58.2 61.0
0.032 14.9 33.0 40.2 44.2
0.063 7.6 23.8 31.8 35.7

B
in

ar
y No attack 88.0 89.0 83.5 83.2

0.008 12.2 50.1 54.4 56.0
0.032 3.0 31.5 35.6 40.2
0.063 0.2 26.7 30.3 30.5

Table 5: Performance on Speech Command for FGSM attacks with ε ∈ {0.008, 0.032, 0.063}
using both binary and real-valued models. Notice that our approach is significantly more robust.

7 CONCLUSION

In this paper, we propose defensive tensorization, a novel adversarial defence technique that lever-
ages a latent high order factorization of the network. Randomization is applied in the latent subspace,
therefore resulting in dense reconstructed weights, without the sparsity or perturbations typically in-
duced by the randomization. We empirically demonstrate that our approach makes the network
significantly more robust to adversarial attacks. Contrarily to a widely spread belief, we observe
that binary networks are more sensitive to adversarial attacks than their real-valued counter-part. We
show that our method significantly improves robustness in the face of adversarial attacks for both bi-
nary and real-valued networks. We demonstrate this empirically through thorough experimentation
on image and audio classification.
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A APPENDIX

Algorithm for defensive tensorization We summarize in Algorithm. 1 the steps for inference using
our proposed defensive tensorization.

Algorithm 1 Defensive tensorization
1: Input sample X0.
2: for each layer l do
3: Sample random vector λF , · · · ,λW ∼ Bernouilli (θ)
4: Create sketch matrices MF = diag(λF ), · · · ,MW = diag(λW )

5: Sketch the latent Core G̃l = Gl ×0 MF × · · · ×3 MW

6: ReconstructWk using Equation (3) . Randomized dense reconstruction
7: Xl+1 ← Φl(Wl ? Xl) . Convolve Xl with the randomized reconstruction and apply Φl

8: return XL

Low-dimensional visualization of loss landscape: To visually assess the impact of both our
randomization scheme and adversarial training on the optimization landscape, we visualise the eval-
uation of the loss in a fixed neighbourhood around an unseen data point. Specifically, given a model
and a data point x, we visualize the loss function learned by the model in the close proximity of x.
For clarity, we visualise the loss in a 2–dimensional space, by selecting the two relevant axis: the
direction of the gradient at x (x-axis) and a randomly chosen direction, orthogonal to the direction
of gradient (y-axis). Next, a mesh-grid is constructed by sampling uniformly points along these two
directions for the range [−0.5, 0.5]. Then a contour plot is constructed by evaluating the losses for
all points on the mesh-grid. Examples of loss-surfaces are shown in Fig. 2, 3 and 4.

Effect on the optimization landscape: Intuitively, the randomization (which is done in the latent
subspace of the decomposition, not on the weights themselves), changes the loss function, at each
pass, making it hard to converge to a fixed attack due to the presence of many spurious minimums.
This can be seen by looking at the landscape of the loss function around an arbitrary sample in
Fig. 2, 3. For the adversarial case, the landscape is inline with the finding of Madry et al. (2017),
where the authors show the adversarial training smooths the loss space around 0. This is even more
noticeable for the method that combines our approach with adversarial training (see Fig. 4).

Figure 2: Contour plot of the loss surface of the real model evaluated on the l∞ neighbourhood of
a CIFAR-10 image for θ = {1, 0.95, 0.9, 0.8} (from left to right). The direction of the gradient was
computed for θ = 1 and a random, orthogonal direction. These were kept fixed for the subsequent
plots θ = 0.95, 0.9 and 0.8. The red circle denotes the ε = 32 neighbourhood.
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Figure 3: Contour plot of the loss surface of the real model evaluated on the l∞ neighbourhood of
a CIFAR-10 image for θ = {1, 0.95, 0.9, 0.8} (from left to right). For each plot (i.e. each value of
θ), we recomputed the direction of the gradient. The red circle denotes the ε = 32 neighbourhood.

Figure 4: Contour plot of the loss surface of our model, adversarially trained model for various
values of θ evaluated on the l∞ neighbourhood of an unseen CIFAR-10 image. The same direction
was used for all three plots. The red circle denotes the ε = 32 neighbourhood.
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