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ABSTRACT

Modern neural networks are over-parametrized. In particular, each rectified linear
hidden unit can be modified by a multiplicative factor by adjusting input and out-
put weights, without changing the rest of the network. Inspired by the Sinkhorn-
Knopp algorithm, we introduce a fast iterative method for minimizing the `2 norm
of the weights, equivalently the weight decay regularizer. It provably converges to
a unique solution. Interleaving our algorithm with SGD during training improves
the test accuracy. For small batches, our approach offers an alternative to batch-
and group- normalization on CIFAR-10 and ImageNet with a ResNet-18.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved outstanding performance across a wide range of
empirical tasks such as image classification (Krizhevsky et al., 2012), image segmentation (He et al.,
2017), speech recognition (Hinton et al., 2012a), natural language processing (Collobert et al., 2011)
or playing the game of Go (Silver et al., 2017). These successes have been driven by the availability
of large labeled datasets such as ImageNet (Russakovsky et al., 2015), increasing computational
power and the use of deeper models (He et al., 2015b).

Although the expressivity of the function computed by a neural network grows exponentially with
depth (Pascanu et al., 2013; Raghu et al., 2017; Telgarsky, 2016), in practice deep networks are
vulnerable to both over- and underfitting (Glorot & Bengio, 2010; Krizhevsky et al., 2012; He et al.,
2015b). Widely used techniques to prevent DNNs from overfitting include regularization methods
such as weight decay (Krogh & Hertz, 1992), Dropout (Hinton et al., 2012b) and various data aug-
mentation schemes (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Szegedy et al., 2014;
He et al., 2015b). Underfitting can occur if the network gets stuck in a local minima, which can be
avoided by using stochastic gradient descent algorithms (Bottou, 2010; Duchi et al., 2011; Sutskever
et al., 2013; Kingma & Ba, 2014), sometimes along with carefully tuned learning rate schedules (He
et al., 2015b; Goyal et al., 2017).

Training deep networks is particularly challenging due to the vanishing/exploding gradient problem.
It has been studied for Recurrent Neural networks (RNNs) (Hochreiter et al., 2001) as well as stan-
dard feedforward networks (He et al., 2015a; Mishkin & Matas, 2015). After a few iterations, the
gradients computed during backpropagation become either too small or too large, preventing the op-
timization scheme from converging. This is alleviated by using non-saturating activation functions
such as rectified linear units (ReLUs) (Krizhevsky et al., 2012) or better initialization schemes pre-
serving the variance of the input across layers (Glorot & Bengio, 2010; Mishkin & Matas, 2015; He
et al., 2015a). Failure modes that prevent the training from starting have been theoretically studied
by Hanin & Rolnick (2018).

Two techniques in particular have allowed vision models to achieve “super-human” accuracy. Batch
Normalization (BN) was developed to train Inception networks (Ioffe & Szegedy, 2015). It intro-
duces intermediate layers that normalize the features by the mean and variance computed within the
current batch. BN is effective in reducing training time, provides better generalization capabilities
after training and diminishes the need for a careful initialization. Network architectures such as
ResNet (He et al., 2015b) and DenseNet (Huang et al., 2016) use skip connections along with BN
to improve the information flow during both the forward and backward passes.
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Figure 1: Matrices Wk and Wk+1 are updated by multiplying the columns of the first matrix with
rescaling coefficients. The rows of the second matrix are inversely rescaled to ensure that the product
of the two matrices is unchanged. The rescaling coefficients are strictly positive to ensure functional
equivalence when the matrices are interleaved with ReLUs. This rescaling is applied iteratively
to each pair of adjacent matrices. In this paper, we address the more complex cases of biases,
convolutions, max-pooling or skip-connections to be able to balance modern CNN architectures.

However, BN has some limitations. In particular, BN only works well with sufficiently large batch
sizes (Ioffe & Szegedy, 2015; Wu & He, 2018). For sizes below 16 or 32, the batch statistics have
a high variance and the test error increases significantly. This prevents the investigation of higher-
capacity models because large, memory-consuming batches are needed in order for BN to work in
its optimal range. In many use cases, including video recognition (Carreira & Zisserman, 2017) and
image segmentation (He et al., 2017), the batch size restriction is even more challenging because the
size of the models allows for only a few samples per batch. Another restriction of BN is that it is
computationally intensive, typically consuming 20% to 30% of the training time. Variants such as
Group Normalization (GN) (Wu & He, 2018) cover some of the failure modes of BN.

In this paper, we introduce a novel algorithm to improve both the training speed and generalization
accuracy of networks by using their over-parameterization to regularize them. In particular, we
focus on neural networks that are positive-rescaling equivalent (Neyshabur et al., 2015), i.e. whose
weights are identical up to positive scalings and matching inverse scalings. The main principle
of our method, referred to as Equi-normalization (ENorm), is illustrated in Figure 1 for the fully-
connected case. We scale two consecutive matrices with rescaling coefficients that minimize the
joint `p norm of those two matrices. This amounts to re-parameterizing the network under the
constraint of implementing the same function. We conjecture that this particular choice of rescaling
coefficients ensures a smooth propagation of the gradients during training.

A limitation is that our current proposal, in its current form, can only handle learned skip-
connections like those proposed in type-C ResNet. For this reason, we focus on architectures, in
particular ResNet18, for which the learning converges with learned skip-connection, as opposed to
architectures like ResNet-50 for which identity skip-connections are required for convergence.

In summary,

• We introduce an iterative, batch-independent algorithm that re-parametrizes the network
within the space of rescaling equivalent networks, thus preserving the function imple-
mented by the network;

• We prove that the proposed Equi-normalization algorithm converges to a unique canoni-
cal parameterization of the network that minimizes the global `p norm of the weights, or
equivalently, when p = 2, the weight decay regularizer;

• We extend ENorm to modern convolutional architectures, including the widely used
ResNets, and show that the theoretical computational overhead is lower compared to BN
(×50) and even compared to GN (×3);

• We show that applying one ENorm step after each SGD step outperforms both BN and GN
on the CIFAR-10 (fully connected) and ImageNet (ResNet-18) datasets.

• Our code is available at https://github.com/facebookresearch/enorm.

The paper is organized as follows. Section 2 reviews related work. Section 3 defines our Equi-
normalization algorithm for fully-connected networks and proves the convergence. Section 4 shows
how to adapt ENorm to convolutional neural networks (CNNs). Section 5 details how to employ
ENorm for training neural networks and Section 6 presents our experimental results.

2

https://github.com/facebookresearch/enorm


Published as a conference paper at ICLR 2019

2 RELATED WORK

This section reviews methods improving neural network training and compares them with ENorm.
Since there is a large body of literature in this research area, we focus on the works closest to the
proposed approach. From early works, researchers have noticed the importance of normalizing the
input of a learning system, and by extension the input of any layer in a DNN (LeCun et al., 1998).
Such normalization is applied either to the weights or to the activations. On the other hand, several
strategies aim at better controlling the geometry of the weight space with respect to the loss function.
Note that these research directions are not orthogonal. For example, explicitly normalizing the
activations using BN has smoothing effects on the optimization landscape (Santurkar et al., 2018).

Normalizing activations. Batch Normalization (Ioffe & Szegedy, 2015) normalizes the activations
by using statistics computed along the batch dimension. As stated in the introduction, the depen-
dency on the batch size leads BN to underperform when small batches are used. Batch Renormal-
ization (BR) (Ioffe, 2017) is a follow-up that reduces the sensitivity to the batch size, yet does not
completely alleviate the negative effect of small batches. Several batch-independent methods op-
erate on other dimensions, such as Layer Normalization (channel dimension) (Ba et al., 2016) and
Instance-Normalization (sample dimension) (Ulyanov et al., 2016). Parametric data-independent
estimation of the mean and variance in every layer is investigated by Arpit et al. (2016). However,
these methods are inferior to BN in standard classification tasks. More recently, Group Normaliza-
tion (GN) (Wu & He, 2018), which divides the channels into groups and normalizes independently
each group, was shown to effectively replace BN for small batch sizes on computer vision tasks.

Normalizing weights. Early weight normalization techniques only served to initialize the weights
before training (Glorot & Bengio, 2010; He et al., 2015a). These methods aim at keeping the vari-
ance of the output activations close to one along the whole network, but the assumptions made to
derive these initialization schemes may not hold as training evolves. More recently, Salimans &
Kingma (2016) propose a polar-like re-parametrization of the weights to disentangle the direction
from the norm of the weight vectors. Note that Weight Norm (WN) does require mean-only BN to
get competitive results, as well as a greedy layer-wise initialization as mentioned in the paper.

Optimization landscape. Generally, in the parameter space, the loss function moves quickly along
some directions and slowly along others. To account for this anisotropic relation between the pa-
rameters of the model and the loss function, natural gradient methods have been introduced (Amari,
1998). They require storing and inverting the N × N curvature matrix, where N is the number of
network parameters. Several works approximate the inverse of the curvature matrix to circumvent
this problem (Pascanu & Bengio, 2013; Marceau-Caron & Ollivier, 2016; Martens & Grosse, 2015).
Another method called Diagonal Rescaling (Lafond et al., 2017) proposes to tune a particular re-
parametrization of the weights with a block-diagonal approximation of the inverse curvature matrix.
Finally, Neyshabur et al. (2015) propose a rescaling invariant path-wise regularizer and use it to
derive Path-SGD, an approximate steepest descent with respect to the path-wise regularizer.

Positioning. Unlike BN, Equi-normalization focuses on the weights and is independent of the con-
cept of batch. Like Path-SGD, our goal is to obtain a balanced network ensuring a good back-
propagation of the gradients, but our method explicitly re-balances the network using an iterative
algorithm instead of using an implicit regularizer. Moreover, ENorm can be readily adapted to the
convolutional case whereas Neyshabur et al. (2015) restrict themselves to the fully-connected case.
In addition, the theoretical computational complexity of our method is much lower than the over-
head introduced by BN or GN (see Section 5). Besides, WN parametrizes the weights in a polar-like
manner, w = g × v/|v|, where g is a scalar and v are the weights, thus it does not balance the
network but individually scales each layer. Finally, Sinkhorn’s algorithm aims at making a single
matrix doubly stochastic, while we balance a product of matrices to minimize their global norm.

3 EQUI-NORMALIZATION

We first define Equi-normalization in the context of simple feed forward networks that consist of two
operators: linear layers and ReLUs. The algorithm is inspired by Sinkhorn-Knopp and is designed to
balance the energy of a network, i.e., the `p-norm of its weights, while preserving its function. When
not ambiguous, we may denote by network a weight parametrization of a given network architecture.
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3.1 NOTATION AND DEFINITIONS

We consider a network with q linear layers, whose input is a row vector x ∈ Rn0 . We denote by σ
the point-wise ReLU activation. For the sake of exposition, we omit a bias term at this stage. We
recursively define a simple fully connected feedforward neural network with L layers by y0 = x,

yk = σ (yk−1Wk) , k ∈ J1, q − 1K, (1)
and yq = yq−1Wq . Each linear layer k is parametrized by a matrix Wk ∈ Rnk−1×nk . We denote
by fθ(x) = yq the function implemented by the network, where θ is the concatenation of all the
network parameters. We denote by D(n) the set of diagonal matrices of size n × n for which all
diagonal elements are strictly positive and by In the identity matrix of size n× n.

Definition 1. θ and θ̃ are functionally equivalent if, for all x ∈ Rn0 , fθ(x) = fθ̃(x).

Definition 2. θ and θ̃ are rescaling equivalent if, for all k ∈ J1, q − 1K, there exists a rescaling
matrix Dk ∈ D(nk) such that, for all k ∈ J1, q − 1K,

W̃k = D−1k−1WkDk (2)
with the conventions that D0 = In0

and Dq = Inq
. This amounts to positively scaling all the

incoming weights and inversely scaling all the outgoing weights for every hidden neuron.

Two weights vectors θ and θ̃ that are rescaling equivalent are also functionally equivalent (see Sec-
tion 3.5 for a detailed derivation). Note that a functional equivalence class is not entirely described
by rescaling operations. For example, permutations of neurons inside a layer also preserve functional
equivalence, but do not change the gradient. In what follows our objective is to seek a canonical pa-
rameter vector that is rescaling equivalent to a given parameter vector. The same objective under a
functional equivalence constraint is beyond the scope of this paper, as there exist degenerate cases
where functional equivalence does not imply rescaling equivalence, even up to permutations.

3.2 OBJECTIVE FUNCTION: CANONICAL REPRESENTATION

Given a network fθ and p > 0, we define the `p norm of its weights as `p(θ) =
∑q
k=1 ‖Wk‖pp. We

are interested in minimizing `p inside an equivalence class of neural networks in order to exhibit
a unique canonical element per equivalence class. We denote the rescaling coefficients within the
network as dk ∈ (0,+∞)nk for k ∈ J1, q − 1K or as diagonal matrices Dk = Diag(dk) ∈ D(nk).
We denote δ = (d1, . . . , dq−1) ∈ Rn, where n is the number of hidden neurons. Fixing the weights
{Wk}, we refer to {D−1k−1WkDk} as the rescaled weights, and seek to minimize their `p norm as a
function of the rescaling coefficients:

ϕ(δ) =

q∑

k=1

∥∥D−1k−1WkDk

∥∥p
p
. (3)

3.3 COORDINATE DESCENT: ENORM ALGORITHM

We formalize the ENorm algorithm using the framework of block coordinate descent. We denote by
W [:, j] (resp. Wk[i, :]) the jth column (resp. ith row) of a matrix Wk. In what follows we assume
that each hidden neuron is connected to at least one input and one output neuron. ENorm generates
a sequence of rescaling coefficients δ(r) obtained by the following steps.

(1) Initialization. Define δ(0) = (1, . . . , 1).
(2) Iteration. At iteration r, consider layer ` ∈ J1, q− 1K such that `− 1 ≡ r mod q− 1 and define




d
(r+1)
k = d

(r)
` if k 6= `

d
(r+1)
` = argmin

t∈(0,+∞)n`

ϕ
(
d
(r)
1 , . . . , d

(r)
`−1, t, d

(r)
`+1, . . . , d

(r)
q−1

)
.

Denoting uv the coordinate-wise product of two vectors and u/v for the division, we have

d
(r+1)
` [i] =

√√√√√√

∥∥∥W`+1[i, :]d
(r)
`+1

∥∥∥
p∥∥∥W`[:, i]/d

(r)
`−1

∥∥∥
p

. (4)
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Algorithm 1: Pseudo-code of Equi-normalization
Input: Current layer weights W1, . . . ,Wq , number of cycles C, choice of norm p
Output: Balanced layer weights
// Perform T ENorm cycles
for t = 1 . . . T do

// Iterate through the layers
for k = 2 . . . q do

L[j]←− ‖Wk−1[:, j]‖p for all j ∈ Rnk

R[i]←− ‖Wk[i, :]‖p for all i ∈ Rnk

Dk−1 ←− Diag
√
R/L

Wk−1 ←−Wk−1Dk−1
Wk ←− (Dk−1)

−1
Wk

Algorithm and pseudo-code. Algorithm 1 gives the pseudo-code of ENorm. By convention, one
ENorm cycle balances the entire network once from ` = 1 to ` = q − 1. See Appendix A for
illustrations showing the effect of ENorm on network weights.

3.4 CONVERGENCE

We now state our main convergence result for Equi-normalization. The proof relies on a coordinate
descent Theorem by Tseng (2001) and can be found in Appendix B.1. The main difficulty is to prove
the uniqueness of the minimum of ϕ.
Theorem 1. Let p > 0 and (δ(r))r∈N be the sequence of rescaling coefficients generated by ENorm
from the starting point δ(0) as described in Section 3.3. We assume that each hidden neuron is
connected to at least one input and one output neuron. Then,

(1) Convergence. The sequence of rescaling coefficients δ(r) converges to δ∗ as r → +∞. As
a consequence, the sequence of rescaled weights also converges;

(2) Minimum global `p norm. The rescaled weights after convergence minimize the global `p
norm among all rescaling equivalent weights;

(3) Uniqueness. The minimum is unique, i.e. δ∗ does not depend on the starting point δ(0).

3.5 HANDLING BIASES – FUNCTIONAL EQUIVALENCE

In the presence of biases, the network is defined as yk = σ (yk−1Wk + bk) and yq = yq−1Wq + bk
where bk ∈ Rnk . For rescaling-equivalent weights satisfying (2), in order to preserve the input-
output function, we define matched rescaling equivalent biases b̃k = bkDk. In Appendix B.2, we
show by recurrence that for every layer k,

ỹk = ykDk, (5)

where ỹk (resp. yk) is the intermediary network function associated with the weights W̃ (resp.
W ). In particular, ỹq = yq , i.e. rescaling equivalent networks are functionally equivalent. We also
compute the effect of applying ENorm on the gradients in the same Appendix.

3.6 ASYMMETRIC SCALING

Equi-normalization is easily adapted to introduce a depth-wise penalty on each layer. We consider
the weighted loss `p,(c1,...,cq)(θ) =

∑q
k=1 ck‖Wk‖p. This amounts to modifiying the rescaling

coefficients as
d̃
(r+1)
` [i] = d

(r+1)
` [i] (ck+1/ck)

1/2p
. (6)

In Section 6, we explore two natural ways of defining ck: ck = cp(q−k) (uniform) and ck =
1/(nk−1nk) (adaptive). In the uniform setup, we penalize layers exponentially according to their
depth: for instance, values of c larger than 1 increase the magnitude of the weights at the end of the
network. In the adaptive setup, the loss is weighted by the size of the matrices.
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4 EXTENSION TO CNNS

We now extend ENorm to CNNs, by focusing on the typical ResNet architecture. We briefly detail
how we adapt ENorm to convolutional or max-pooling layers, and then how to update an elementary
block with a skip-connection. We refer the reader to Appendix C for a more extensive discussion.
Sanity checks of our implementation are provided in Appendix E.1.

4.1 CONVOLUTIONAL LAYERS

Figure 2 explains how to rescale two consecutive convolutional layers. As detailed in Appendix C,
this is done by first properly reshaping the filters to 2D matrices, then performing the previously
described rescaling on those matrices, and then reshaping the matrices back to convolutional fil-
ters. This matched rescaling does preserve the function implemented by the composition of the two
layers, whether they are interleaved with a ReLU or not. It can be applied to any two consecutive
convolutional layers with various stride and padding parameters. Note that when the kernel size is 1
in both layers, we recover the fully-connected case of Figure 1.

4.2 MAX-POOLING

The MaxPool layer operates per channel by computing the maximum within a fixed-size kernel. We
adapt Equation (5) to the convolutional case where the rescaling matrix Dk is applied to the channel
dimension of the activations yk. Then,

max (ỹk) = max (ykDk) = max (yk)Dk. (7)

Thus, the activations before and after the MaxPool layer have the same scaling and the functional
equivalence is preserved when interleaving convolutional layers with MaxPool layers.

4.3 SKIP-CONNECTION

We now consider an elementary block of a ResNet-18 architecture as depicted in Figure 3. In order
to maintain functional equivalence, we only consider ResNet architectures of type C as defined in
(He et al., 2015b), where all shortcuts are learned 1 × 1 convolutions. As detailed in Appendix C,
rescaling two consecutive blocks requires (a) to define the structure of the rescaling process, i.e.
where to insert the rescaling coefficients and (b) a formula for computing those rescaling coefficients.

5 TRAINING PROCEDURE: EQUI-NORMALIZATION & SGD

ENorm & SGD. As detailed in Algorithm 2, we balance the network periodically after updating the
gradients. By design, this does not change the function implemented by the network but will yield
different gradients in the next SGD iteration. Because this re-parameterization performs a jump in
the parameter space, we update the momentum using Equation (17) and the same matrices Dk as
those used for the weights. The number of ENorm cycles after each SGD step is an hyperparam-
eter and by default we perform one ENorm cycle after each SGD step. In Appendix D, we also
explore a method to jointly learn the rescaling coefficients and the weights with SGD, and report
corresponding results.

Computational advantage over BN and GN. Table 1 provides the number of elements (weights
or activations) accessed when normalizing using various techniques. Assuming that the complexity
(number of operations) of normalizing is proportional to the number of elements and assuming all
techniques are equally parallelizable, we deduce that our method (ENorm) is theoretically 50 times
faster than BN and 3 times faster than GN for a ResNet-18. In terms of memory, ENorm requires no
extra-learnt parameters, but the number of parameters learnt by BN and GN is negligible (4800 for
a ResNet-18 and 26,650 for a ResNet-50). We implemented ENorm using a tensor library; to take
full advantage of the theoretical reduction in compute would require an optimized CUDA kernel.
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Figure 2: Rescaling the weights of two consecutive convolutional layers that preserves the function
implemented by the CNN. Layer k scales channel number i of the input activations by γi and layer
k+1 cancels this scaling with the inverse scalar so that the activations after layer k+1 are unchanged.

Conv1

Block k

(1) Left rescaled
(2) Right rescaled 

Conv2
(2) Left rescaled
(3) Right rescaled 

ConvSkip
(1) Left rescaled
(3) Right rescaled 

Figure 3: Rescaling an elementary block within a ResNet-18 consists of 3 steps. (1) Conv1 and Con-
vSkip are left-rescaled using the rescaling coefficients between blocks k − 1 and k; (2) Conv1 and
Conv2 are rescaled as two usual convolutional layers; (3) Conv2 and ConvSkip are right-rescaled us-
ing the rescaling coefficients between blocks k and k+1. Identical colors denote the same rescaling
coefficients D. Coefficients between blocks are rescaled as detailed in Section C.2.

6 EXPERIMENTS

We analyze our approach by carrying out experiments on the MNIST and CIFAR-10 datasets and
on the more challenging ImageNet dataset. ENorm will refer to Equi-normalization with p = 2.

6.1 MNIST AUTO-ENCODER

Training. We follow the setup of Desjardins et al. (2015). Input data is normalized by subtracting
the mean and dividing by standard deviation. The encoder has the structure FC(784, 1000)-ReLU-
FC(1000, 500)-ReLU-FC(500, 250)-ReLU-FC(250, 30) and the decoder has the symmetric struc-
ture. We use He’s initialization for the weights. We select the learning rate in {0.001, 0.01, 0.1}
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Algorithm 2: Training with Equi-normalization
Input: Initialized network
Output: Trained network
for iteration = 1 . . . N do

Update learning rate η
Compute forward pass
Compute backward pass
Perform SGD step and update weights
Perform one ENorm cycle using matrices Dk

Update momentum buffers with the same Dk

Model ENorm BN (B=256) GN (B=16)

ResNet-18 12 636 40
ResNet-50 30 2,845 178

Table 1: Number of elements that are ac-
cessed during normalization (in million of acti-
vations/parameters, rounded to the closest mil-
lion). For BN and GN, we choose the typical
batch size B used for training.

and decay it linearly to zero. We use a batch size of 256 and SGD with no momentum and a weight
decay of 0.001. For path-SGD, our implementation closely follows the original paper (Neyshabur
et al., 2015) and we set the weight decay to zero. For GN, we cross-validate the number of groups
among {5, 10, 20, 50}. For WN, we use BN as well as a greedy layer-wise initialization as described
in the original paper.

Results. While ENorm alone obtains competitive results compared to BN and GN, ENorm + BN
outperforms all other methods, including WN + BN. Note that here ENorm refers to Enorm using the
adaptive c parameter as described in Subsection 3.6, whereas for ENorm + BN we use the uniform
setup with c = 1. We perform a parameter study for different values and setups of the asymmetric
scaling (uniform and adaptive) in Appendix E.2. Without BN, the adaptive setup outperforms all
other setups, which may be due to the strong bottleneck structure of the network. With BN, the
dynamic is different and the results are much less sensitive to the values of c. Results without any
normalization and with Path-SGD are not displayed because of their poor performance.

6.2 CIFAR-10 FULLY CONNECTED

Training. We first experiment with a basic fully-connected architecture that takes as input the
flattened image of size 3072. Input data is normalized by subtracting mean and dividing by standard
deviation independently for each channel. The first linear layer is of size 3072 × 500. We then
consider p layers 500 × 500, p being an architecture parameter for the sake of the analysis. The
last classification is of size 500 × 10. The weights are initialized with He’s scheme. We train for
60 epochs using SGD with no momentum, a batch size of 256 and weight decay of 10−3. Cross
validation is used to pick an initial learning rate in {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. Path-
SGD, GN and WN are learned as detailed in Section 6.1. All results are the average test accuracies
over 5 training runs.

Results. ENorm alone outperforms both BN and GN for any depth of the network. ENorm +
BN outperforms all other methods, including WN + BN, by a good margin for more than p =
11 intermediate layers. Note that here ENorm as well as ENorm + BN refers to ENorm in the
uniform setup with c = 1.2. The results of the parameter study for different values and setups of the
asymmetric scaling are similar to those of the MNIST setup, see Appendix E.2.

6.3 CIFAR-10 FULLY CONVOLUTIONAL

Training. We use the CIFAR-NV architecture as described by Gitman & Ginsburg (2017). Im-
ages are normalized by subtracting mean and dividing by standard deviation independently for each
channel. During training, we use 28 × 28 random crops and randomly flip the image horizontally.
At test time, we use 28 × 28 center crops. We split the train set into one training set (40,000 im-
ages) and one validation set (10,000 images). We train for 128 epochs using SGD and an initial
learning rate cross-validated on a held-out set among {0.01, 0.05, 0.1}, along with a weight decay
of 0.001. The learning rate is then decayed quadratically to 10−4. We compare various batch sizes
together with the use of momentum (0.9) or not. The weights are initialized with He’s scheme. In
order to stabilize the training, we employ a BatchNorm layer at the end of the network after the FC
layer for the Baseline and ENorm cases. For GN we cross-validate the number of groups among
{4, 8, 16, 32, 64}. All results are the average test accuracies over 5 training runs.
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Figure 4: MNIST auto-encoder results
(lower is better).
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Figure 5: CIFAR-10 fully-connected results
(higher is better).

Method Average train L2 error

Baseline 0.542
BN 0.171
GN 0.171
WN + BN 0.162

ENorm 0.179
ENorm + BN 0.102

Table 2: MNIST auto-encoder results
(lower is better).

Method Test top 1 accuracy

Baseline 88.94
BN 90.32
GN 90.36
WN + BN 90.50

ENorm 89.31
ENorm + BN 91.35

Table 3: CIFAR-10 fully convolutional results
(higher is better).

Results. See Table 3. ENorm + BN outperforms all other methods, including WN + BN, by a good
margin. Note that here ENorm refers to ENorm in the uniform setup with the parameter c = 1.2
whereas ENorm + BN refers to the uniform setup with c = 1. A parameter study for different values
and setups of the asymmetric scaling can be found in Appendix E.2.

6.4 IMAGENET

This dataset contains 1.3M training images and 50,000 validation images split into 1000 classes. We
use the ResNet-18 model with type-C learnt skip connections as described in Section 4.

Training. Our experimental setup closely follows that of GN (Wu & He, 2018). We train on 8
GPUs and compute the batch mean and standard deviation per GPU when evaluating BN. We use
the Kaiming initialization for the weights (He et al., 2015a) and the standard data augmentation
scheme of Szegedy et al. (2014). We train our models for 90 epochs using SGD with a momentum
of 0.9. We adopt the linear scaling rule for the learning rate (Goyal et al., 2017) and set the initial
learning rate to 0.1B/256 where the batch size B is set to 32, 64, 128, or 256. As smaller batches
lead to more iterations per epoch, we adopt a similar rule and adopt a weight decay of w = 10−4

for B = 128 and 256, w = 10−4.5 for B = 64 and w = 10−5 for B = 32. We decay the learning
rate quadratically (Gitman & Ginsburg, 2017) to 10−5 and report the median error rate on the final
5 epochs. When using GN, we set the number of groups G to 32 and did not cross-validate this
value as prior work (Wu & He, 2018) reports little impact when varying G from 2 to 64. In order
for the training to be stable and faster, we added a BatchNorm at the end of the network after the
FC layer for the Baseline and ENorm cases. The batch mean and variance for this additional BN are
shared across GPUs. Note that the activation size at this stage of the network is B × 1000, which is
a negligible overhead (see Table 1).

Results. We compare the Top 1 accuracy on a ResNet-18 when using no normalization scheme,
(Baseline), when using BN, GN and ENorm (our method). In both the Baseline and ENorm settings,
we add a BN at the end of the network as described in 6.3. The results are reported in Table 4. The
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Figure 6: ResNet-18 results on the ImageNet dataset, batch size 64.

performance of BN decreases with small batches, which concurs with prior observations (Wu & He,
2018). Our method outperforms GN and BN for batch sizes ranging from 32 to 128. GN presents
stable results across batch sizes. Note that values of c different from 1 did not yield better results.
The training curves for a batch size of 64 are presented in Figure 6. While BN and GN are faster to
converge than ENorm, our method achieves better results after convergence in this case. Note also
that ENorm overfits the training set less than BN and GN, but more than the Baseline case.

Batch size 32 64 128 256

Baseline 66.20 68.60 69.20 69.58
BN 68.01 69.38 70.83 71.37
GN 68.94 68.90 70.69 70.64
ENorm-1 (ours) 69.70 70.10 71.03 71.14

Table 4: ResNet-18 results on the ImageNet dataset (test accuracy).

6.5 LIMITATIONS

We applied ENorm to a deeper (ResNet-50), but obtained unsatisfactory results. We observed that
learnt skip-connections, even initialized to identity, make it harder to train without BN, even with
careful layer-wise initialization or learning rate warmup. This would require further investigation.

7 CONCLUDING REMARKS

We presented Equi-normalization, an iterative method that balances the energy of the weights of a
network while preserving the function it implements. ENorm provably converges towards a unique
equivalent network that minimizes the `p norm of its weights and it can be applied to modern CNN
architectures. Using ENorm during training adds a much smaller computational overhead than BN
or GN and leads to competitive performances in the FC case as well as in the convolutional case.

Discussion. While optimizing an unbalanced network is hard (Neyshabur et al., 2015), the criterion
we optimize to derive ENorm is likely not optimal regarding convergence or training properties.
These limitations suggest that further research is required in this direction.
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APPENDIX A ILLUSTRATION OF THE EFFECT OF EQUI-NORMALIZATION

We first apply ENorm to one randomly initialized fully connected network comprising 20 interme-
diary layers. All the layers have a size 500 × 500 and are initialized following the Xavier scheme.
The network has been artificially unbalanced as follows: all the weights of layer 6 are multiplied by
a factor 1.2 and all the weights of layer 12 are multiplied by 0.8, see Figure 7. We then iterate our
ENorm algorithm on the network, without training it, to see that it naturally re-balances the network,
see Figure 8.

Figure 7: Energy of the network (`2-norm of the weights), before ENorm. Each dot represents the
norm of one column in the layer’s weight matrix.

Figure 8: Energy of the network through successive ENorm iterations (without training). One color
denotes one iteration. The darker the color, the higher the iteration number.

APPENDIX B PROOFS

B.1 CONVERGENCE OF EQUI-NORMALIZATION

We now prove Theorem 1. We use the framework of block coordinate descent and we first state a
consequence of a theorem of Tseng (2001) [Theorem 4.1]1.

1Note that what Tseng denotes as stationary point in his paper is actually defined as a point where the
directional derivative is positive along every possible direction, i.e. a local minimum.
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Theorem 2. Let D ⊂ Rn be an open set and f : D → R a real function of B block variables
xb ∈ Rnb with

∑B
b=1 nb = n. Let x(0) be the starting point of the coordinate descent algorithm and

X the level set X =
{
x | f(x) ≤ f

(
x(0)

)}
. We make the following assumptions:

(1) f is differentiable on D ;

(2) X is compact ;

(3) for each x ∈ D, each block coordinate function f` : t→ f(x1, . . . , x`−1, t, x`+1, . . . , xB),
where 2 ≤ ` ≤ B − 1, has at most one minimum.

Under these assumptions, the sequence (x(r))r∈N generated by the coordinate descent algorithm is
defined and bounded. Moreover, every cluster point of (x(r))r∈N is a local minimizer of f .

STEP 1. We apply Theorem 2 to the function ϕ. This is possible because all the assumptions are
verified as shown below. Recall that

ϕ(δ) =

q∑

k=1

∥∥D−1k−1WkDk

∥∥p
p
=

q∑

k=1

∑

i,j

∣∣∣∣
dk[j]

dk−1[i]
Wk[i, j]

∣∣∣∣
p

. (8)

Assumption (1). ϕ is differentiable on the open set D = (0,+∞)n.

Assumption (2). ϕ → +∞ when ‖δ‖ → +∞. Let δ such that ϕ(δ) < Mp, M > 1. Let us show
by induction that for all k ∈ J1, q − 1K, ‖dk‖∞ < (CM)k, where C = max(C0, 1) and

C0 = max
Wk[i,j]6=0

(
1

|Wk[i, j]|

)
(9)

• For the first hidden layer, index k = 1. By assumption, every hidden neuron is connected at
least to one neuron in the input layer. Thus, for every j, there exists i such thatW1[i, j] 6= 0.
Because ϕ(δ) < Mp and d0[i] = 1 for all i,

(d1[j])
p |W1[i, j]|p =

(
d1[j]

d0[i]

)p
|W1[i, j]|p < Mp (10)

Thus ‖d1‖∞ < CM .

• For some hidden layer, index k. By assumption, every hidden neuron is connected at least
to one neuron in the previous layer. Thus, for every j, there exists i such that Wk[i, j] 6= 0.
Because ϕ(δ) < M , (

dk[j]

dk−1[i]

)p
|Wk[i, j]|p < Mp (11)

Using the induction hypothesis, we get ‖dk‖∞ < (CM)
k.

Thus, ‖δ‖∞ < (MC)
q because MC > 1. By contraposition, ϕ→ +∞.

Thus, there exists a ball B such that δ /∈ B implies ϕ(δ) > ϕ(δ0). Thus, δ ∈ X implies that x ∈ B
and X ⊂ B is bounded. Moreover, X is closed because ϕ is continuous thus X is compact and
Assumption (2) is satisfied.

Assumption (3). We next note that

ϕl(t) = ϕ
(
d
(r)
1 , . . . , d

(r)
`−1, t, d

(r)
`+1, . . . , d

(r)
q−1

)
(12)

has a unique minimum as shown in Section 3.3, see Equation (4). The existence and uniqueness of
the minimum comes from the fact that each hidden neuron is connected to at least one input and one
output neuron, thus all the row and column norms of the hidden weight matrices Wk are non-zero,
as well as the column (resp. row) norms or W1 (resp. Wq).
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STEP 2. We prove that ϕ has at most one stationary point on D under the assumption that each
hidden neuron is connected either to an input neuron or to an output neuron, which is weaker than
the general assumption of Theorem 1.

We first introduce some definitions. We denote the set of all neurons in the network by V . Each
neuron ν ∈ V belongs to a layer k ∈ J0, qK and has an index i ∈ J1, nkK in this layer. Any edge e
connects some neuron i at layer k − 1 to some neuron j at layer k, e = (k, i, j). We further denote
by H the set of hidden neurons ν belonging to layers q ∈ J1, q−1K . We define E as the set of edges
whose weights are non-zero, i.e.

E = {(k, i, j) |W (k)
i,j 6= 0}. (13)

For each neuron ν, we define prev(ν) as the neurons connected to ν that belong to the previous
layer.

We now show that ϕ has at most one stationary point onD. Directly computing the gradient of ϕ and
solving for zeros happens to be painful or even intractable. Thus, we define a change of variables as
follows. We define h as

h : (0,+∞)H → RH

δ 7→ log(δ)

We next define the shift operator S : RV → RE such that, for every x ∈ RV ,

S(x) = (ν − ν′)ν,ν′∈V s.t. ν′∈prev(ν)
and the padding operator P as

P : RH → RV

x 7→ y where
{
yν = 0 if ν ∈ V \H;

yν = xν otherwise.

We define the extended shift operator SH = S ◦ P . We are now ready to define our change of
variables. We define χ = ψ ◦ SH where

ψ : RE → R

x 7→
∑

e∈E
exp(pxe) |we|p

and observe that
ϕ = χ ◦ h (14)

so that its differential satisfies

[Dϕ](δ) = [Dχ](h(δ))[Dh](δ). (15)

Since h is a C∞ diffeomorphism, its differential [Dh](δ) is invertible for any δ. It follows that
[Dϕ](δ) = 0 if, and only if, [Dχ](h(δ)) = 0. As χ is the composition of a strictly convex function,
ψ, and a linear injective function, SH (proof after Step 3), it is strictly convex. Thus χ has at most
one stationary point, which concludes this step.

STEP 3. We prove that the sequence δ(r) converges. Step 1 implies that the sequence δ(r) is
bounded and has at least one cluster point, as f is continuous on the compact X . Step 2 implies
that the sequence δ(r) has at most one cluster point. We then use the fact that any bounded sequence
with exactly one cluster point converges to conclude the proof.

S IS INJECTIVE. Let x ∈ kerSH . Let us show by induction on the hidden layer index k that for
every neuron ν at layer k, xν = 0.

• k = 1. Let ν be a neuron at layer 1. Then, there exists a path coming from an input neuron
to ν0 through edge e1. By definition, P (x)ν0 = 0 and P (x)ν = xν , hence SH(x)e1 =
xν − 0. Since SH(x) = 0 it follows that xν = 0.
• k → k + 1. Same reasoning using the fact that xνk = 0 by the induction hypothesis.

The case where the path goes from neuron ν to some output neuron is similar.
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B.2 FUNCTIONAL EQUIVALENCE

We show (5) by induction that for every layer k, i.e.,

ỹk = ykDk,

where ỹk (resp. yk) is the intermediary network function associated with weights W̃ (resp. W ).
This holds for k = 0 since D0 = In0

by convention. If the property holds for some k < q − 1, then
by (2) we have ỹkW̃k+1 = ykDkW̃k+1 = ykWk+1Dk+1 hence, since b̃k+1 = bk+1Dk+1,

ỹk+1 = σ
(
ỹkW̃k+1 + b̃k+1

)
= σ (ykWk+1Dk+1 + bk+1Dk+1)

= σ (ykWk+1 + bk+1)Dk+1 = yk+1Dk+1.

The same equations hold for k = q − 1 without the non-linearity σ.

Using the chain rule and denoting by ` the loss of the network, for every layer k, using (5), we have

∂`

∂ỹk
=

∂`

∂yk
(Dk)

−1
. (16)

Similarly, we obtain

∂`

∂W̃k

= Dk−1
∂`

∂Wk
(Dk)

−1 and
∂`

∂b̃k
=

∂`

∂bk
(Dk)

−1
. (17)

Equation (17) will be used to update the momentum (see Section 5) and Equation (2) for the weights.

APPENDIX C EXTENSION OF ENORM TO CNNS

C.1 CONVOLUTIONAL LAYERS

Let us consider two consecutive convolutional layers k and k + 1, without bias. Layer k has Ck
filters of size Ck−1×Sk×Sk, where Ck−1 is the number of input features and Sk is the kernel size.
This results in a weight tensor Tk of size Ck ×Ck−1×Sk ×Sk. Similarly, layer k+1 has a weight
matrix Tk+1 of size Ck+1 × Ck × Sk+1 × Sk+1. We then perform axis-permutation and reshaping
operations to obtain the following 2D matrices:

Mk of size (Ck−1 × Sk × Sk)× Ck; (18)
Mk+1 of size Ck × (Ck+1 × Sk+1 × Sk+1) . (19)

For example, we first reshape Tk as a 2D matrix by collapsing its last 3 dimensions, then transpose
it to obtain Mk. We then jointly rescale those 2D matrices using rescaling matrices Dk ∈ D(k) as
detailed in Section 3 and perform the inverse axis permutation and reshaping operations to obtain
a right-rescaled weight tensor T̃k and a left-rescaled weight tensor T̃k+1. See Figure 2 for an
illustration of the procedure. This matched rescaling does preserve the function implemented by the
composition of the two layers, whether they are interleaved with a ReLU or not. It can be applied
to any two consecutive convolutional layers with various stride and padding parameters. Note that
when the kernel size is 1 in both layers, we recover the fully-connected case of Figure 1.

C.2 SKIP-CONNECTION

We now consider an elementary block of a ResNet-18 architecture as depicted in Figure 3. In order
to maintain functional equivalence, we only consider ResNet architectures of type C as defined in
(He et al., 2015b), where all shortcuts are learned 1× 1 convolutions.

Structure of the rescaling process. Let us consider a ResNet block k. We first left-rescale the
Conv1 and ConvSkip weights using the rescaling coefficients calculated between blocks k−1 and k.
We then rescale the two consecutive layers Conv1 and Conv2 with their own specific rescaling co-
efficients, and finally right-rescale the Conv2 and ConvSkip weights using the rescaling coefficients
calculated between blocks k and k + 1.
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Computation of the rescaling coefficients. Two types of rescaling coefficients are involved, namely
those between two convolution layers inside the same block and those between two blocks. The
rescaling coefficients between the Conv1 and Conv2 layers are calculated as explained in Section 4.1.
Then, in order to calculate the rescaling coefficients between two blocks, we compute equivalent
block weights to deduce rescaling coefficients.

We empirically explored some methods to compute the equivalent weight of a block using electrical
network analogies. The most accurate method we found is to compute the equivalent weight of
the Conv1 and Conv2 layers, i.e., to express the succession of two convolution layers as only one
convolution layer denoted as ConvEquiv (series equivalent weight), and in turn to express the two
remaining parallel layers ConvEquiv and ConvSkip again as a single convolution layer (parallel
equivalent weight). It is not possible to obtain series of equivalent weights, in particular when the
convolution layers are interleaved with ReLUs. Therefore, we approximate the equivalent weight as
the parallel equivalent weight of the Conv1 and ConvSkip layers.

APPENDIX D IMPLICIT EQUI-NORMALIZATION

In Section 3, we defined an iterative algorithm that minimizes the global `p norm of the network

`2(θ, δ) =

q∑

k=1

∥∥D−1k−1WkDk

∥∥p
p
. (20)

As detailed in Algorithm 2, we perform alternative SGD and ENorm steps during training. We now
derive an implicit formulation of this algorithm that we call Implicit Equi-normalization. Let us
fix p = 2. We denote by C(fθ(x), y) the cross-entropy loss for the training sample (x, y) and by
`2(θ, δ) the weight decay regularizer (20). The loss function of the network writes

L(θ, δ) = C(fθ(x), y) + λ`2(θ, δ) (21)

where λ is a regularization parameter. We now consider both the weights and the rescaling coef-
ficients as learnable parameters and we rely on automatic differentiation packages to compute the
derivatives of L with respect to the weights and to the rescaling coefficients. We then simply train
the network by performing iterative SGD steps and updating all the learnt parameters. Note that
by design, the derivative of C with respect to any rescaling coefficient is zero. Although the addi-
tional overhead of implicit ENorm is theoretically negligible, we observed an increase of the training
time of a ResNet-18 by roughly 30% using PyTorch 4.0 (Paszke et al., 2017). We refer to Implicit
Equi-normalization as ENorm-Impl and to Explicit Equi-normalization as ENorm.

We performed early experiments for the CIFAR10 fully-connected case. ENorm-Impl performs
generally better than the baseline but does not outperform explicit ENorm, in particular when the
network is deep. We follow the same experimental setup than previously, except that we addi-
tionally cross-validated λ. We also initialize all the rescaling coefficients to one.. Recall that
ENorm or ENorm denotes explicit Equi-normalization while ENorm-Impl denotes Implicit Equi-
normalization. We did not investigate learning the weights and the rescaling coefficients at different
speeds (e.g. with different learning rates or momentum). This may explain in part why ENorm-Impl
generally underperforms ENorm in those early experiments.

APPENDIX E EXPERIMENTS

We perform sanity checks to verify our implementation and give additional results.

E.1 SANITY CHECKS

We apply our Equi-normalization algorithm to a ResNet architecture by integrating all the methods
exposed in Section 4. We perform three sanity checks before proceeding to experiments. First,
we randomly initialize a ResNet-18 and verify that it outputs the same probabilities before and
after balancing. Second, we randomly initialize a ResNet-18 and perform successive ENorm cycles
(without any training) and observe that the `2 norm of the weights in the network is decreasing and
then converging, as theoretically proven in Section 3, see Figure 9.
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Figure 9: Iterating ENorm cycles on a randomly initialized ResNet-18 with no training.

We finally compare the evolution of the total `2 norm of the network when training it, with or without
ENorm. We use the setup described in Subsection 6.2 and use p = 3 intermediary layers. The results
are presented in Figure 10. ENorm consistently leads to a lower energy level in the network.

Figure 10: Training a fully-connected network on CIFAR-10, with (ENorm-1) or without (Baseline)
Equi-normalization.

E.2 ASYMETRIC SCALING: UNIFORM VS. ADAPTIVE

MNIST auto-encoder. For the uniform setup, we test for three different values of c, without BN:
c = 1 (uniform setup), c = 0.8 (uniform setup), c = 1.2 (uniform setup). We also test the adaptive
setup. The adaptive setup outperforms all other choices, which may be due to the strong bottleneck
structure of the network. With BN, the dynamics are different and the results are much less sensitive
to the values of c (see Figures 11 and 12).

CIFAR10 Fully Convolutional. For the uniform setup, we test for three different values of c,
without BN: c = 1 (uniform setup), c = 0.8 (uniform setup), c = 1.2 (uniform setup). We also test
the adaptive setup (see Table 5). Once again, the dynamics with or without BN are quite different.
With or without BN, c = 1.2 performs the best, which may be linked to the fact that the ReLUs are
cutting energy during each forward pass. With BN, the results are less sensitive to the values of c.
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Figure 11: Uniform vs adaptive scaling on
MNIST, without BN.
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Figure 12: Uniform vs adaptive scaling on
MNIST, with BN.

Method Test top 1 accuracy

ENorm uniform c = 1 86.98
ENorm uniform c = 0.8 79.88
ENorm uniform c = 1.2 89.31
ENorm adaptive 89.28

ENorm + BN uniform c = 1 91.85
ENorm + BN uniform c = 0.8 90.95
ENorm + BN uniform c = 1.2 90.89
ENorm + BN adaptive 90.79

Table 5: Uniform vs adaptive scaling, CIFAR-10 fully convolutional
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