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Abstract

In this work, we approach one-shot and few-shot
learning problems as methods for finding good
prototypes for each class, where these prototypes
are generalizable to new data samples and classes.
We propose a metric learner that learns a Breg-
man divergence by learning its underlying convex
function. Bregman divergences are a good can-
didate for this framework given they are the only
class of divergences with the property that the
best representative of a set of points is given by
its mean. We propose a flexible extension to pro-
totypical networks to enable joint learning of the
embedding and the divergence, while preserving
computational efficiency. Our preliminary results
are comparable with the prior work on the Om-
niglot and Mini-imagenet datasets, two standard
benchmarks for one-shot and few-shot learning.
We argue that our model can be used for other
tasks that involve metric learning or tasks that re-
quire approximate convexity such as structured
prediction and data completion.

1. Introduction

Deep learning methods have shown tremendous perfor-
mance on many tasks involving large-scale data. However,
collecting large amounts of data is costly or even infeasible
for many applications (Kaiser et al., 2017; Altae-Tran et al.,
2017). The few-shot learning problem aims to achieve good
performance on adapting to novel classes where only a small
number of examples per novel class are available. In scenar-
ios with few examples, classical classification, fine-tuning,
or retraining methods fail due to severe overfitting, catas-
trophic forgetting, or inflexibility to adapt to new samples
and categories (Fink, 2005).

This problem has been of increasing interest to researchers,
some of whom have been inspired by humans’ ability to
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recognize novel classes very successfully with very few
examples. The most recent approaches to solve the few-shot
learning problem involve meta learning, which attempts to
learn transferable knowledge between classes and tasks at
training time, in order to help generalization and adaptivity
at test time. Information is stored either in the initialization
of the weights (Finn et al., 2017), in a recurrent memory
unit (Santoro et al., 2016), in the optimization strategy (Ravi
& Larochelle, 2016), or in an embedded space (Snell et al.,
2017). In this work, we focus on the last approach due
to its simplicity and compelling results, whereas the other
methods require complex training mechanisms, complex
inference, or the gathering of many similar tasks.

In particular, we based our approach on prototype net-
works (Snell et al., 2017), which learn an embedding of
the input data, and then construct prototypes for classes via
averages or weighted averages over points in each class.
A single vector representation per class is assumed to be
sufficient to contain class-specific features (Rosch, 1973).
In (Snell et al., 2017), the Euclidean distance is used to
measure distance between a query point and a class proto-
type. In contrast to existing work, we treat the problem as
a joint embedding and metric learning problem. Because
prototypes are typically represented by means of points, for
the metric learning function we choose to learn a Bregman
divergence as the underlying divergence. This class of diver-
gences has the key property that the best representative of a
set of points (in terms of the sum of divergences between the
points and the representative) is given by the mean, which
we argue makes it appropriate for constructing prototypes
of classes for our problem.

Compared to existing methods such as relation networks
(Sung et al., 2018), ours is a more flexible approach since
we focus on Bregman divergences, of which squared Eu-
clidean distances are a special case. We may favor Bregman
divergences over Euclidean distances since symmetry and
the triangle inequality may not be necessary for data in a
few-shot learning problem. In Figure 1 we show a possible
scenario to demonstrate this. Suppose image A and image
B have the same shape, and image B and image C have
the same color. Image A and image C need not be similar,
but the triangle inequality forces a resemblance between A
and C. Similarly, representations and similarity measures of
class members’ may not be desired to be symmetric. Proto-
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Figure 1. The triangle inequality may fail to represent relations

between samples. Images are from 3 different categories from
Omniglot and mini Imagenet. See text for details.

types share the abstract representative features with the data
points, but each point has idiosyncratic features, that may
break symmetry when interpreting the embedding space.

Each Bregman divergence is parametrized by a convex func-
tion; furthermore, this relationship is a surjection. We design
the metric learning function of our deep learning model with
a convexity constraint with respect to the embedding space.
This convex function is used to calculate the Bregman diver-
gence as a learned metric. Our formulation also provides
flexibility for the architectural design of the convex function,
with a regularization term to improve generalizability. We
empirically measure a convexity score by drawing random
points from the convex hull of the data samples to verify our
claim.

Overall, we propose a model that has a learnable embedding
and a learnable Bregman divergence that can be trained
simultaneously. Compared with the state-of-art, our initial
results are promising. Other than improving the results
with the current model and testing on other datasets, our
preliminary work has two clear future directions:

(i) Taking our convex framework to other sets of problems
such as semi-supervised learning, similarity learning, struc-
tured prediction, etc.

(i1) Following different approaches to satisfy and measure
convexity such as modifying the constraint or the optimiza-
tion algorithm itself.

2. Related Work

Few shot learning methods have received increasing interest
given the recent success of discriminative models. Many
of these effective methods fall under meta learning, where
these approaches store transferable information in different
ways to remedy overfitting issues and provide adaptivity for
new samples and classes.

Meta learning by initialization: The most well-known
method under this category is MAML (Finn et al., 2017).
These methods attempt to learn an initialization over the

weights, such that a similar few shot learning problem can
be adapted by fine-tuning (Gidaris & Komodakis, 2018),
(Mishra et al., 2017). Many related target tasks are employed
in order to train a model which can later be fine-tuned for
each task. The need for fine-tuning and many tasks limits
the efficiency of these methods.

Meta learning by a recurrent memory: In these meth-
ods, such as MANN (Santoro et al., 2016), Meta Nets
(Munkhdalai & Yu, 2017), and Memory Matching Networks
(Cai et al., 2018), the useful knowledge required to solve the
tasks are stored in a recurrent manner using a memory unit.
Existing information in the memory and new information is
compared to update the model and perform the task. How-
ever, this type of algorithm suffers from inherent issues in
RNNSs such as instability and difficulty in properly storing
long-term dependency.

Meta learning by optimizer: This category of methods
aims at training an optimizer to provide gradients and to be
used in fine tuning. The LSTM-based optimizer (Ravi &
Larochelle, 2016) is an example of this approach. These
methods also require fine-tuning while currently-proposed
optimizers add unnecessary complexity to the training phase
compared to the benefit for their performance.

Meta learning by embedding: These approaches are based
on metric learning methods that aim to learn an embedded
space to store the relations between the samples and classes.
A comprehensive overview on metric learning can be found
in (Kulis, 2013). The task is then performed with a classi-
fier that uses the embedding and a fixed metric. This type
of method is free from the various complexity issues that
the other approaches have. Siamese Networks (Koch et al.,
2015), Matching Networks (Vinyals et al., 2016), Relation
Nets (Sung et al., 2018), and Prototypical Nets (Snell et al.,
2017) are examples from this class which efficiently rep-
resent each class by its mean. Our work resembles this
setting, with the distinction that our work jointly learns the
embedding and the metric from a set of distance families
called Bregman divergences.

Data Augmentation methods: Another approach for few-
shot learning is to leverage additional data to eliminate
overfitting issues (Antoniou & Storkey, 2019), (Wang et al.,
2018). Learned transformations are applied or new data is
generated to enrich prior information. We will not consider
this approach separately since they can be combined with
the above methods.

3. Proposed Method

We now define our problem setup and notations. Assume
we are given a set of examples coming from N classes.
The training data is split into a training set, and a separate
validation set V. Both sets are divided into a support set
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S with K samples per class and a query set () with the
remaining samples for each class. The tasks are defined as
N-way K-shot learning, which corresponds to having K
samples for each one of N classes in .S. We consider the
cases where K is 1 or 5 and N is 5 for our experiments.

We refer to the embedding function of our model as f,, s
and the subsequent convexified layers as ¢,,, where wy
and wy are the trainable weights for these functions, respec-
tively. For simplicity we drop the weight variables from the
notation, and continue with f and ¢. We use z’ and z” to
represent a random pair from the space of interest.

3.1. Bregman Divergence

Before diving into details of our model, we briefly review
Bregman divergences and their properties to better clarify
our choice for the class of divergences. Bregman diver-
gences are derived from a strictly convex and differentiable
function, denoted as ¢. The Bregman divergence between
two points ' and 2" is defined as:

Dyl ") = 6la') = o(a") = Vo(") (@' ~ ") (1)

Bregman divergences are not metrics, but they satisfy suffi-
cient properties for our problem, namely non-negativity and
having a unique 0. We previously discussed why symmetry
and the triangle inequality may not be desired for our set-
ting. Since we are exploring the case where we represent
classes as their means in the embedded space, our choice
of distance should have the mean as the minimizer for the
distances within a class.

Mean Minimization Property: Assume we have an n-
dimensional random variable X defined on a convex set
Qe R" d: R"x R"— Ris acontinuous function and
d(X, X) > 0 with continuous derivatives. It is known that
FEld(X,z)] < E[d(X,z')] forall ’ € Q where z = E[X],
if, and only if d € D where ¢ is the corresponding strictly
convex function (Frigyik et al., 2008).

For the cases where all samples are not available, or if
the distribution is discrete, the expectation can simply be
replaced by the sample averages. Assume we have M ob-
served samples {x;} . The inequality can be rewritten as
the following:

Yoid(xs, ) <Y cqd(xg,a’) forall o' € Q where T =
a7 > @i, if and only if d € D,

Thus, given a set of points, the best representative is given
by the mean, under any Bregman divergence. Each Bregman
divergence is identified by a ¢ such as Euclidean distance is
a Bregman divergence identified with ¢ = 22,
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Figure 2. Our model architecture for few shot learning. F'({S;})
are the class embedded clusters and F'(Q) are the query points.
{p(S;)} are the calculated class means in the embedded space.
$w, 1s a convex function and B, represents Bregman loss.

3.2. Model

We overview our model in Figure 2. Our model consists of
two learnable functions: (i) the embedding function f, and
(i) the metric learning function ¢. The embedding function
f brings in non-linearity to the framework, which provides
flexibility when integrating with the metric learning func-
tion. The metric learning function is a neural network ¢
that is trained via a convexity constraint to output a con-
vex function with respect to the embedded features f(z;),
followed by Bregman divergence using the learned ¢. We
impose convexity by using midpoint convexity characteri-
zation with the continuity of f, which is equivalent to the
standard convexity definition.

Midpoint Convexity: ¢ is midpoint convex if and only
if Cy(al,a") = (') + (a”) — 26(£52) > 0 for
all z/,2" € Q. If ¢ is continuous and satisfies midpoint
convexity, ¢ is convex (Jensen, 1905).

At a high level the problem can be expressed as:

min L, (Dy(f (), 1), y)
subject to 2

Jor wnecallog (@, fam)<old =0,

where 1] represents the n'" class’s mean on the embedded
space induced by f. x and y represent the sample and target
pairs coming from T'. L, represents a classification loss,
e.g., cross entropy loss or mean squared error loss.

Midpoint convexity implies that for any input pairs, the mid-
point value of the function is not greater than the function
value of the midpoint of the pairs. The integral turns into a
summation since we have a finite number of samples. This
definition naturally integrates to our framework without ad-
ditional significant computation since pairs are already used
to determine the similarities. We obtain an approximately
convex network by feeding a sufficient number of samples.
We reformulate the indicator function with a clamping func-
tion to impose the convexity inequality, which penalizes any
pair of points that violates the midpoint convexity constraint.
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This formulation also gives flexibility in architectural design
for the convex function.

We use a regularization term in order to further control
overfitting and convexity in hard tasks by controlling the

gradient change, i.e, the Lipschitz constant of the convex
function.

_ Vi@ (@) = Vi o(f (@)

||l — 2|

L, for all m', 2 e

3)
We combine L, loss and L, loss with a weighting term,
and relax the LHS term in the constraint inequality in 2,
denoted as L., to train our model. We follow a joint training
approach; however, it is of value to note that alternating
training between the embedding function and the metric
function would be another option suitable for our setting.

4. Experiments

We applied our model on two commonly used datasets for
our experiments: Omniglot and mini-Imagenet.

The Omniglot dataset consists of 1,623 handwritten letters
coming from 60 different alphabets. Each letter image has
dimensions 28x28 and has 20 samples. We applied rotations
to increase the number of classes. The data is then divided
into training, validation and test sets with 4112, 688 and 423
classes similar to a previous approach (Snell et al., 2017).
The Mini-Imagenet dataset is derived from ILSVRC12 (Rus-
sakovsky et al., 2015). It contains 1000 classes with 600
84x84 images each. We split the data into training, valida-
tion and test cases by using a standard method proposed in
(Ravi & Larochelle, 2016).

We choose our model architecture to be comparable with ex-
isting methods. We use 3 convnet blocks for the embedding
function, where each block consists of a 3x3 convolutional
layer followed by a batch normalization, ReLU and pooling
layers. Our embedding layer is 128 dimensional for the
Omniglot and 512 dimensional for the mini Imagenet. Our
convex network also contains 2 fully connected layers with
sigmoid activations. The fully connected layers followed by
a linear layer output a scalar for each input pair. Then the
Bregman divergence term is calculated to classify samples
according to their distance to the class means. It is worth
mentioning that different kinds of layers other than fully-
connected layers for the metric function are adaptable to our
scheme.

We test our model and compare with existing algorithms
for 1-way 5-shot and 5-way 5-shot problems. We use meta-
validation set to determine the best model to use in the test
case. The accuracies for each task are given in Tables 1 and
2. Despite the fact that these are our preliminary results,
they are comparable with the previous models.

We define a way to measure the convexity we achieve for ¢.

Table 1. Accuracy results for Omniglot Dataset

5-WAY 5-WAY
MODELS 1-SHOT  5-SHOT
SIAMESE NETS 96.7 98.4
MATCHING NETS 98.1 98.9
META NETS 99.0 -
MAML 98.7 99.9
PROTOTYPICAL NETS 98.5 99.6
RELATION NETS 99.6 99.8
PROTOTYPICAL-BREGMAN NETS 99.0 99.7

Table 2. Accuracy results for Mini-ImageNet Dataset

5-WAY 5-WAY
MODELS 1-SHOT  5-SHOT
MATCHING NETS 43.5 55.3
META NETS 49.2 -
MAML 48.7 63.11
PROTOTYPICAL NETS 49.4 68.2
RELATION NETS 50.4 65.3
PROTOTYPICAL-BREGMAN NETS 49.8 58.9

We select random pairs and divide the line connecting the
pairs into 100 segments with 101 points. We then re-sample
new pairs from these points and record how much L. de-
viates from the convexity constraint. We take the overall
average deviation of all pairs. Our results for Omniglot
dataset are: (i) For training, we obtain 8, 421078 4221078,
(i) For testing, we obtain 6, 721073 4+ 52107, We will
run more tests for the convexity measure and analyze its
behavior under different problem configurations and various
modifications to the network, e.g., sensitivity to hyperpa-
rameters and different architectures.

5. Conclusion and Future Work

In this paper we proposed an alternative method for few
shot learning. Our method is based on two jointly learnable
functions: a nonlinear embedding function followed by
a metric learning function. Our metric function learns a
suitable Bregman divergence via approximating a convex
function, with a motivation that using Bregman divergences
allows the mean to be the most representative point for the
relevant class. We achieve comparable preliminary results
sufficient to validate their potential.

We plan to further investigate our model and do more ex-
tensive parameter and architecture search to improve our
results. We can utilize different constraints or optimization
methods to satisfy convexity, or apply an alternating training
between embedding and metric function. We can also carry
our method to other problems that contains convexity such
as semi-supervised learning and structured prediction.
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