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ABSTRACT

Capturing high-level structure in audio waveforms is challenging because a single
second of audio spans tens of thousands of timesteps. While long-range dependen-
cies are difficult to model directly in the time domain, we show that they can be
more tractably modelled in two-dimensional time-frequency representations such
as spectrograms. By leveraging this representational advantage, in conjunction
with a highly expressive probabilistic model and a multiscale generation procedure,
we design a model capable of generating high-fidelity audio samples which cap-
ture structure at timescales which time-domain models have yet to achieve. We
demonstrate that our model captures longer-range dependencies than time-domain
models such as WaveNet across a diverse set of unconditional generation tasks,
including single-speaker speech generation, multi-speaker speech generation, and
music generation.

1 INTRODUCTION

Audio waveforms have complex structure at drastically varying timescales, which presents a challenge
for generative models. Local structure must be captured to produce high-fidelity audio, while long-
range dependencies spanning tens of thousands of timesteps must be captured to generate audio which
is globally consistent. Existing generative models of waveforms such as WaveNet (van den Oord
et al., 2016a) and SampleRNN (Mehri et al., 2016) are well-adapted to model local dependencies,
but as these models typically only backpropagate through a fraction of a second, they are unable to
capture high-level structure that emerges on the scale of several seconds.

We introduce a generative model for audio which captures longer-range dependencies than existing
end-to-end models. We primarily achieve this by modelling 2D time-frequency representations such as
spectrograms rather than 1D time-domain waveforms (Figure 1). The temporal axis of a spectrogram
is orders of magnitude more compact than that of a waveform, meaning dependencies that span tens
of thousands of timesteps in waveforms only span hundreds of timesteps in spectrograms. In practice,
this enables our spectrogram models to generate unconditional speech and music samples with
consistency over multiple seconds whereas time-domain models must be conditioned on intermediate
features to capture structure at similar timescales.

Modelling spectrograms can simplify the task of capturing global structure, but can weaken a model’s
ability to capture local characteristics that correlate with audio fidelity. Producing high-fidelity audio
has been challenging for existing spectrogram models, which we attribute to the lossy nature of
spectrograms and oversmoothing artifacts which result from insufficiently expressive models. To
reduce information loss, we model high-resolution spectrograms which have the same dimensionality
as their corresponding time-domain signals. To limit oversmoothing, we use a highly expressive
autoregressive model which factorizes the distribution over both the time and frequency dimensions.

Modelling both fine-grained details and high-level structure in high-dimensional distributions is
known to be challenging for autoregressive models. To capture both local and global structure in
spectrograms with hundreds of thousands of dimensions, we employ a multiscale approach which
generates spectrograms in a coarse-to-fine manner. A low-resolution, subsampled spectrogram that
captures high-level structure is generated initially, followed by an iterative upsampling procedure that
adds high-resolution details.
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Figure 1: Spectrogram and waveform representations of the same 4 second audio signal. The waveform
spans nearly 100,000 timesteps whereas the temporal axis of the spectrogram spans roughly 400.
Complex structure is nested within the temporal axis of the waveform at various timescales, whereas
the spectrogram has structure which is smoothly spread across the time-frequency plane.

Combining these representational and modelling techniques yields a highly expressive and broadly
applicable generative model of audio. Our contributions are are as follows:

• We introduce MelNet, a generative model for spectrograms which couples a fine-grained
autoregressive model and a multiscale generation procedure to jointly capture local and
global structure.
• We show that MelNet is able to model longer-range dependencies than existing time-domain

models. Additionally, we include an ablation to demonstrate that multiscale modelling is
essential for modelling long-range dependencies.
• We demonstrate that MelNet is broadly applicable to a variety of audio generation tasks,

including unconditional speech and music generation. Furthermore, MelNet is able to model
highly multimodal data such as multi-speaker and multilingual speech.

2 PRELIMINARIES

We briefly present background regarding spectral representations of audio. Audio is represented
digitally as a one-dimensional, discrete-time signal y = (y1, . . . , yn). Existing generative models for
audio have predominantly focused on modelling these time-domain signals directly. We instead model
spectrograms, which are two-dimensional time-frequency representations which contain information
about how the frequency content of an audio signal varies through time. Spectrograms are computed
by taking the squared magnitude of the short-time Fourier transform (STFT) of a time-domain signal,
i.e. x = ‖STFT(y)‖2. The value of xij (referred to as amplitude or energy) corresponds to the
squared magnitude of the jth element of the frequency response at timestep i. Each slice xi,∗ is
referred to as a frame. We assume a time-major ordering, but following convention, all figures are
displayed transposed and with the frequency axis inverted.

Time-frequency representations such as spectrograms highlight how the tones and pitches within an
audio signal vary through time. Such representations are closely aligned with how humans perceive
audio. To further align these representations with human perception, we convert the frequency axis to
the Mel scale and apply an elementwise logarithmic rescaling of the amplitudes. Roughly speaking,
the Mel transformation aligns the frequency axis with human perception of pitch and the logarithmic
rescaling aligns the amplitude axis with human perception of loudness.

Spectrograms are lossy representations of their corresponding time-domain signals. The Mel trans-
formation discards frequency information and the removal of the STFT phase discards temporal
information. When recovering a time-domain signal from a spectrogram, this information loss man-
ifests as distortion in the recovered signal. To minimize these artifacts and improve the fidelity of
generated audio, we model high-resolution spectrograms. The temporal resolution of a spectrogram
can be increased by decreasing the STFT hop size, and the frequency resolution can be increased by
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(a) Time-delayed stack (b) Frequency-delayed stack

Figure 2: The context x<ij (grey) for the element xij (black) is encoded using 4 RNNs. Three of these
are used in the time-delayed stack to extract features from preceding frames. The fourth is used in
the frequency-delayed stack to extract features from all preceding elements within the current frame.
Each arrow denotes an individual RNN cell and arrows of the same color use shared parameters.

increasing the number of Mel channels. Generated spectrograms are converted back to time-domain
signals using classical spectrogram inversion algorithms. We experiment with both Griffin-Lim (Grif-
fin & Lim, 1984) and a gradient-based inversion algorithm (Decorsière et al., 2015), and ultimately
use the latter as it generally produced audio with fewer artifacts.

3 PROBABILISTIC MODEL

We use an autoregressive model which factorizes the joint distribution over a spectrogram x as a
product of conditional distributions. Given an ordering of the dimensions of x, we define the context
x<ij as the elements of x that precede xij . We default to a row-major ordering which proceeds
through each frame xi,∗ from low to high frequency, before progressing to the next frame. The joint
density is factorized as

p(x) =
∏
i

∏
j

p(xij | x<ij ; θij), (1)

where θij parameterizes a univariate density over xij . We model each factor distribution as a
Gaussian mixture model with K components. Thus, θij consists of 3K parameters corresponding to
means {µijk}Kk=1, standard deviations {σijk}Kk=1, and mixture coefficients {πijk}Kk=1. The resulting
factor distribution can then be expressed as

p(xij | x<ij ; θij) =
K∑
k=1

πijk N (xij ; µijk, σijk). (2)

Following the work on Mixture Density Networks (Bishop, 1994) and their application to
autoregressive models (Graves, 2013), θij is modelled as the output of a neural network and
computed as a function of the context x<ij . Precisely, for some network f with parameters ψ, we
have θij = f(x<ij ; ψ). A maximum-likelihood estimate for the network parameters is computed
by minimizing the negative log-likelihood via gradient descent.

To ensure that the network output parameterizes a valid Gaussian mixture model, the network first
computes unconstrained parameters {µ̂ijk, σ̂ijk, π̂ijk}Kk=1 as a vector θ̂ij ∈ R3K , and enforces
constraints on θij by applying the following transformations:

µijk = µ̂ijk (3)
σijk = exp(σ̂ijk) (4)

πijk =
exp(π̂ijk)∑K
k=1 exp(π̂ijk)

. (5)

These transformations ensure the standard deviations σijk are positive and the mixture coefficients
πijk sum to one.

4 NETWORK ARCHITECTURE

To model the distribution in an autoregressive manner, we design a network which computes the
distribution over xij as a function of the context x<ij . The network architecture draws inspiration
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from existing autoregressive models for images (Theis & Bethge, 2015; van den Oord et al., 2016c;b;
Chen et al., 2017; Salimans et al., 2017; Parmar et al., 2018; Child et al., 2019). In the same way
that these models estimate a distribution pixel-by-pixel over the spatial dimensions of an image, our
model estimates a distribution element-by-element over the time and frequency dimensions of a
spectrogram. A noteworthy distinction is that spectrograms are not invariant to translation along the
frequency axis, making 2D convolution less desirable than other 2D network primitives which do not
assume invariance. Utilizing multidimensional recurrence instead of 2D convolution has been shown
to be beneficial when modelling spectrograms in discriminative settings (Li et al., 2016; Sainath
& Li, 2016), which motivates our use of an entirely recurrent architecture.

Similar to Gated PixelCNN (van den Oord et al., 2016b), the network has multiple stacks of computa-
tion. These stacks extract features from different segments of the input to collectively summarize the
full context x<ij :

• The time-delayed stack computes features which aggregate information from all previous
frames x<i,∗.
• The frequency-delayed stack utilizes all preceding elements within a frame, xi,<j , as well

as the outputs of the time-delayed stack, to summarize the full context x<ij .

The stacks are connected at each layer of the network, meaning that the features generated by layer l
of the time-delayed stack are used as input to layer l of the frequency-delayed stack. To facilitate the
training of deeper networks, both stacks use residual connections (He et al., 2016). The outputs of the
final layer of the frequency-delayed stack are used to compute the unconstrained parameters θ̂.

4.1 TIME-DELAYED STACK

The time-delayed stack utilizes multiple layers of multidimensional RNNs to extract features from
x<i,∗, the two-dimensional region consisting of all frames preceding xij . Each multidimensional
RNN is composed of three one-dimensional RNNs: one which runs forwards along the frequency
axis, one which runs backwards along the frequency axis, and one which runs forwards along the
time axis. Each RNN runs along each slice of a given axis, as shown in Figure 2. The output of each
layer of the time-delayed stack is the concatenation of the three RNN hidden states.

We denote the function computed at layer l of the time-delayed stack (three RNNs followed by con-
catenation) as F tl . At each layer, the time-delayed stack uses the feature map from the previous layer,
ht[l−1], to compute the subsequent feature mapF tl

(
ht[l−1]

)
which consists of the three concatenated

RNN hidden states. When using residual connections, the computation of ht[l] from ht[l−1] becomes

htij [l] =W t
l F tl

(
ht[l − 1]

)
ij
+ htij [l − 1]. (6)

To ensure the output htij [l] is only a function of frames which lie in the context x<ij , the inputs to
the time-delayed stack are shifted backwards one step in time: htij [0] =W t

0xi−1,j .

4.2 FREQUENCY-DELAYED STACK

The frequency-delayed stack is a one-dimensional RNN which runs forward along the frequency axis.
Much like existing one-dimensional autoregressive models (language models, waveform models, etc.),
the frequency-delayed stack operates on a one-dimensional sequence (a single frame) and estimates
the distribution for each element conditioned on all preceding elements. The primary difference
is that it is also conditioned upon the outputs of the time-delayed stack, allowing it to use the full
two-dimensional context x<ij .

We denote the function computed by the frequency-delayed stack as Ffl . At each layer, the frequency-
delayed stack takes two inputs: the the previous-layer outputs of the frequency-delayed stack, hfij [l−1],
and the current-layer outputs of the time-delayed stack htij [l]. These inputs are summed and used
as input to a one-dimensional RNN to produce the output feature map Ffl

(
hf [l − 1], ht[l]

)
which

consists of the RNN hidden state:

hfij [l] =W f
l F

f
l

(
hf [l − 1], ht[l]

)
ij
+ hfij [l − 1]. (7)
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Figure 3: Computation graph for a single
layer of the network. F tl and Ffl are the
functions computed by the time-delayed
stack and frequency-delayed stack, respec-
tively. The outputs of these functions are
projected (by the matrices W t

l and W f
l )

and summed with the layer inputs to form
residual blocks.

To ensure that hfij [l] is computed using only elements in the context x<ij , the inputs to the frequency-
delayed stack are shifted backwards one step along the frequency axis: hfij [0] =W f

0 xi,j−1. At the
final layer, layer L, a linear map is applied to the output of the frequency-delayed stack to produce
the unconstrained Gaussian mixture model parameters, i.e. θ̂ij =Wθh

f
ij [L].

4.3 CONDITIONING

To incorporate conditioning information into the model, conditioning features z are simply projected
onto the input layer along with the inputs x:

htij [0] =W t
0xi−1,j +W t

zzij (8)

hfij [0] =W f
0 xi,j−1 +W f

z zij . (9)

Reshaping, upsampling, and broadcasting can be used as necessary to ensure the conditioning features
have the same time and frequency shape as the input spectrogram, e.g. a one-hot vector representation
for speaker ID would first be broadcast along both the time and frequency axes.

5 MULTISCALE MODELLING

To improve audio fidelity, we generate high-resolution spectrograms which have the same
dimensionality as their corresponding time-domain representations. Under this regime, a single
training example has several hundreds of thousands of dimensions. Capturing global structure in such
high-dimensional distributions is challenging for autoregressive models, which are biased towards
capturing local dependencies. To counteract this, we utilize a multiscale approach which effectively
permutes the autoregressive ordering so that a spectrogram is generated in a coarse-to-fine order.

The elements of a spectrogram x are partitioned into G tiers x1, . . . , xG, such that each successive
tier contains higher-resolution information. We define x<g as the union of all tiers which precede xg ,
i.e. x<g = (x1, . . . , xg−1). The distribution is factorized over tiers:

p(x; ψ) =
∏
g

p(xg | x<g; ψg), (10)

and the distribution of each tier is further factorized element-by-element as described in Section 3.
We explicitly include the parameterization by ψ = (ψ1, . . . , ψG) to indicate that each tier is modelled
by a separate network.
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(a) Tier 1 (32× 50) (b) Tiers 1–3 (64× 100) (c) Tiers 1–6 (256× 200)

Figure 4: A sampled spectrogram viewed at different stages of the multiscale generation procedure.
The initial tier dictates high-level structure and subsequent tiers add fine-grained details. Each
upsampling tier doubles the resolution of the spectrogram.
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(d) p(x4 | x1, x2, x3; ψ4)

Figure 5: Schematic showing how tiers of the multiscale model are interleaved and used to condition
the distribution for the subsequent tier. a) The initial tier is generated unconditionally. b) The second
tier is generated conditionally given the the initial tier. c) The outputs of tiers 1 and 2 are interleaved
along the frequency axis and used to condition the generation of tier 3. d) Tier 3 is interleaved along
the time axis with all preceding tiers and used to condition the generation of tier 4.

5.1 TRAINING

During training, the tiers are generated by recursively partitioning a spectrogram into alternating rows
along either the time or frequency axis. We define a function split which partitions an input into
even and odd rows along a given axis. The initial step of the recursion applies the split function to
a spectrogram x, or equivalently x<G+1, so that the even-numbered rows are assigned to xG and the
odd-numbered rows are assigned to x<G. Subsequent tiers are defined similarly in a recursive manner:

xg, x<g = split(x<g+1). (11)

At each step of the recursion, we model the distribution p(xg | x<g; ψg). The final step of the
recursion models the unconditional distribution over the initial tier p(x1; ψ1).

To model the conditional distribution p(xg | x<g; ψg), the network at each tier needs a mechanism
to incorporate information from the preceding tiers x<g. To this end, we add a feature extraction
network which computes features from x<g which are used condition the generation of xg . We use a
multidimensional RNN consisting of four one-dimensional RNNs which run bidirectionally along
slices of both axes of the context x<g. A layer of the feature extraction network is similar to a layer
of the time-delayed stack, but since the feature extraction network is not causal, we include an RNN
which runs backwards along the time axis and do not shift the inputs. The hidden states of the RNNs
in the feature extraction network are used to condition the generation of xg . As each tier doubles the
resolution, the features extracted from x<g have the same time and frequency shape as xg , allowing
the conditioning mechanism described in section 4.3 to be used straightforwardly.

5.2 SAMPLING

To sample from the multiscale model we iteratively sample a value for xg conditioned on x<g using
the learned distributions defined by the estimated network parameters ψ̂ = (ψ̂1, . . . , ψ̂G). The initial
tier, x1, is generated unconditionally by sampling from p(x1; ψ̂1) and subsequent tiers are sampled
from p(xg | x<g; ψ̂g). At each tier, the sampled xg is interleaved with the context x<g:

x<g+1 = interleave(xg, x<g). (12)

The interleave function is simply the inverse of the split function. Sampling terminates once
a full spectrogram, x<G+1, has been generated. A spectrogram generated by a multiscale model is
shown in Figure 4 and the sampling procedure is visualized schematically in Figure 5.
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6 EXPERIMENTS

To demonstrate the MelNet is broadly applicable as a generative model for audio, we train the model
on a diverse set of audio generation tasks (single-speaker speech generation, multi-speaker speech
generation, and music generation) using three publicly available datasets. Generated audio samples
for each task are available on the accompanying web page https://audio-samples.github.io. We include
samples generated using the priming and biasing procedures described by Graves (2013). Biasing
lowers the temperature of the predictive distribution and priming seeds the model state with a given
sequence of audio prior to sampling. Hyperparameters for all experiments are available in Appendix A.

Speech and music have rich hierarchies of latent structure. Speech has complex linguistic structure
(phonemes, words, syntax, semantics, etc.) and music has highly compositional musical structure
(notes, chords, melody and rhythm, etc.). The presence of these latent structures in generated samples
can be used as a proxy for how well a generative model has learned dependencies at various
timescales. As such, a qualitative analysis of unconditional samples is an insightful method of
evaluating generative models of audio. To facilitate such a qualitative evaluation, we train MelNet
on each of the three unconditional generation tasks and include samples on the accompanying web
page. For completeness, we briefly provide some of our own qualitative observations regarding the
generated samples (Sections 6.1, 6.2, and 6.3). In addition to qualitative analysis, we conduct a
human evaluation experiment to quantitatively compare how well WaveNet and MelNet capture
high-level structure (Section 6.4). Lastly, we ablate the impact of the multiscale generation procedure
on MelNet’s ability model long-range dependencies (Section 6.5).

6.1 SINGLE-SPEAKER SPEECH

To test MelNet’s ability to model a single speaker in a controlled environment, we utilize the Blizzard
2013 dataset (King, 2011), which consists of audiobook narration performed in a highly animated
manner by a professional speaker. We find that MelNet frequently generates samples that contain
coherent words and phrases. Even when the model generates incoherent speech, the intonation,
prosody, and speaking style remain consistent throughout the duration of the sample. Furthermore,
the model learns to produce speech using a variety of character voices and learns to generate samples
which contain elements of narration and dialogue. Biased samples tend to contain longer strings of
comprehensible words but are read in a less expressive fashion. When primed with a real sequence of
audio, MelNet is able to continue sampling speech which has consistent speaking style and intonation.

6.2 MULTI-SPEAKER SPEECH

Audiobook data is recorded in a highly controlled environment. To demonstrate MelNet’s capacity
to model distributions with significantly more variation, we utilize the VoxCeleb2 dataset (Chung
et al., 2018). The VoxCeleb2 dataset consists of over 2,000 hours of speech data captured with real
world noise including laughter, cross-talk, channel effects, music and other sounds. The dataset is
also multilingual, with speech from speakers of 145 different nationalities, covering a wide range of
accents, ages, ethnicities and languages. When trained on the VoxCeleb2 dataset, we find that MelNet
is able to generate unconditional samples with significant variation in both speaker characteristics
(accent, language, prosody, speaking style) as well as acoustic conditions (background noise and
recording quality). While the generated speech is often not comprehensible, samples can often
be identified as belonging to a specific language, indicating that the model has learned distinct
modalities for different languages. Furthermore, it is difficult to distinguish real and fake samples
which are spoken in foreign languages. For foreign languages, semantic structures are not understood
by the listener and cannot be used to discriminate between real and fake. Consequently, the listener
must rely largely on phonetic structure, which MelNet is able to realistically model.

6.3 MUSIC

To show that MelNet can model audio modalities other than speech, we apply the model to the task of
unconditional music generation. We utilize the MAESTRO dataset (Hawthorne et al., 2018), which
consists of over 172 hours of solo piano performances. The samples demonstrate that MelNet learns
musical structures such as melody and harmony. Furthermore, generated samples often maintain
consistent tempo and contain interesting variation in volume, timbre, and rhythm.
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WaveNet MelNet

Blizzard 0.0% 100.0%
VoxCeleb2 0.0% 100.0%
MAESTRO 4.2% 95.8%

(a) Comparison between MelNet and
WaveNet. Both models are trained in an en-
tirely unsupervised manner.

Wave2Midi2Wave MelNet

MAESTRO 37.7% 62.3%

(b) Comparison between MelNet and Wave2Midi2Wave.
Wave2Midi2Wave is a two-stage model consisting of a
Music Transformer trained on labelled MIDI followed by
a conditional WaveNet model. The MelNet model, on the
other hand, is trained without any intermediate supervision.

Table 1: Selection rates of human evaluators when asked to identify which model generates samples
with longer-term structure. Results show that MelNet captures long-range structure better than
WaveNet. Furthermore, MelNet outperforms a two-stage model which conditions WaveNet on
generated MIDI.

6.4 HUMAN EVALUATION

Making quantitative comparisons with existing generative models such as WaveNet is difficult for
various reasons and previous works have ultimately relied on largely empirical evaluations by the
reader (Dieleman et al., 2018). To allow the reader to make these judgements for themselves, we
provide samples from both WaveNet and MelNet for each of the tasks described in the previous
sections. Furthermore, in an effort to provide quantitative metrics to support the claim that MelNet
generates samples with improved long-range structure in comparison to WaveNet, we conduct a
human experiment whereby participants are presented anonymized samples from both models and
asked to select which sample exhibits longer-term structure. We resort to such evaluations since
standard metrics for evaluation of generative models such as density estimates cannot be used to
compare WaveNet and MelNet as that these models operate on different representations.

The methodology for this experiment is as follows. For each of the three unconditional audio
generation tasks, we generated 50 samples from WaveNet and 50 samples from MelNet. Participants
were shown an anonymized, randomly-drawn sample from each model and instructed to “select the
sample which has more coherent long-term structure.” We collected 50 evaluations for each task.
Results, shown in Table 1a, show that evaluators overwhelmingly agreed that samples generated
by MelNet had more coherent long-range structure than samples from WaveNet across all tasks.

In addition to comparing MelNet to an unconditional WaveNet model for music generation, we also
compare to a two-stage Wave2Midi2Wave model (Hawthorne et al., 2018) which conditions WaveNet
on MIDI generated by a separately-trained Music Transformer (Huang et al., 2018). The two-stage
Wave2Midi2Wave model has the advantage of directly modelling labelled musical notes which distill
much of the salient, high-level structure in music into a compact symbolic representation. Despite
this, as shown by the results in Table 1b, the two-stage model does not capture long-range structure
as well as a MelNet model that is trained without access to any intermediate representations.

6.5 ABLATION: MULTISCALE MODELLING

To isolate the impact of multiscale modelling procedure described in Section 5, we train models with
varying numbers of tiers and evaluate the long-term coherence of their respective samples. As noted
before, long-term coherence is difficult to quantify and we provide samples on the accompanying web
page so that the reader can make their own judgements. We believe the samples clearly demonstrate
that increasing the number of tiers results in samples with more coherent high-level structure. We
note that our experiment varies the number of tiers from two to five. Training a single-tier model
on full-resolution spectrograms was prohibitively expensive in terms of memory consumption. This
highlights another benefit of multiscale modelling—large, deep networks can be allocated to learning
complex distributional structure in the initial tiers while shallower networks can be used for modelling
the relatively simple, low-entropy distributions in the upsampling tiers. This allows multiscale models
to effectively allocate network capacity in proportion to the complexity of the modelling task.
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7 RELATED WORK

The predominant line of research regarding generative models for audio has been directed towards
modelling time-domain waveforms with autoregressive models (van den Oord et al., 2016a; Mehri
et al., 2016; Kalchbrenner et al., 2018). WaveNet is a competitive baseline for audio generation, and
as such, is used for comparison in many of our experiments. However, we note that the contribution of
our work is in many ways complementary to that of WaveNet. MelNet is more proficient at capturing
high-level structure, whereas WaveNet is capable of producing higher-fidelity audio. Several works
have demonstrated that time-domain models can be used to invert spectral representations to high-
fidelity audio (Shen et al., 2018; Prenger et al., 2019; Arık et al., 2019), suggesting that MelNet could
be used in concert with time-domain models such as WaveNet.

Dieleman et al. (2018) and van den Oord et al. (2017) capture long-range dependencies in waveforms
by utilizing a hierarchy of autoencoders. This approach requires multiple stages of models which
must be trained sequentially, whereas the multiscale approach in this work can be parallelized over
tiers. Additionally, these approaches do not directly optimize the data likelihood, nor do they admit
tractable marginalization over the latent codes. We also note that the modelling techniques devised in
these works can be broadly applied to autoregressive models such as ours, making their contributions
largely complementary to ours.

Recent works have used generative adversarial networks (GANs) (Goodfellow et al., 2014) to model
both waveforms and spectral representations (Donahue et al., 2018; Engel et al., 2018). As with image
generation, it remains unclear whether GANs capture all modes of the data distribution. Furthermore,
these approaches are restricted to generating fixed-duration segments of audio, which precludes their
usage in many audio generation tasks.

Generating spectral representations is common practice for end-to-end text-to-speech models (Ping
et al., 2017; Sotelo et al., 2017; Wang et al., 2017; Taigman et al., 2018). However, these models
use probabilistic models which are much less expressive than the fine-grained autoregressive model
used by MelNet. Consequently, these models are unsuitable for modelling high-entropy, multimodal
distributions such as those involved in tasks like unconditional music generation.

The network architecture used for MelNet is heavily influenced by recent advancements in deep
autoregressive models for images. Theis & Bethge (2015) introduced an LSTM architecture for
autoregressive modelling of 2D images and van den Oord et al. (2016c) introduced PixelRNN
and PixelCNN and scaled up the models to handle the modelling of natural images. Subsequent
works in autoregressive image modelling have steadily improved state-of-the-art for image density
estimation (van den Oord et al., 2016b; Salimans et al., 2017; Parmar et al., 2018; Chen et al., 2017;
Child et al., 2019). We draw inspiration from many of these models, and ultimately design a recurrent
architecture of our own which is suitable for modelling spectrograms rather than images. We note that
our choice of architecture is not a fundamental contribution of this work. While we have designed the
architecture particularly for modelling spectrograms, we did not experimentally validate whether it
outperforms existing architectures and make no such claims to this effect.

We use a multidimensional recurrence in both the time-delayed stack and the upsampling tiers
to extract features from two-dimensional inputs. Our multidimensional recurrence is effectively
‘factorized’ as it independently applies one-dimensional RNNs across each dimension. This approach
differs from the tightly coupled multidimensional recurrences used by MDRNNs (Graves et al.,
2007; Graves & Schmidhuber, 2009) and GridLSTMs (Kalchbrenner et al., 2015) and more closely
resembles the approach taken by ReNet (Visin et al., 2015). Our approach allows for efficient training
as we can extract features from an M ×N grid in max(M,N) sequential recurrent steps rather than
the M + N sequential steps required for tightly coupled recurrences. Additionally, our approach
enables the use of highly optimized one-dimensional RNN implementations.

Various approaches to image generation have succeeded in generating high-resolution, globally
coherent images with hundreds of thousands of dimensions (Karras et al., 2017; Reed et al., 2017;
Kingma & Dhariwal, 2018). The methods introduced in these works are not directly transferable to
waveform generation, as they exploit spatial properties of images which are absent in one-dimensional
audio signals. However, these methods are more straightforwardly applicable to two-dimensional
representations such as spectrograms. Of particular relevance to our work are approaches which
combine autoregressive models with multiscale modelling (van den Oord et al., 2016c; Dahl et al.,
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2017; Reed et al., 2017; Menick & Kalchbrenner, 2018). Our work demonstrates that the benefits of
a multiscale autoregressive model extend beyond the task of image generation, and can be used to
generate high-resolution, globally coherent spectrograms.

8 CONCLUSION & FUTURE WORK

We have introduced MelNet, a generative model for spectral representations of audio. MelNet
combines a highly expressive autoregressive model with a multiscale modelling scheme to generate
high-resolution spectrograms with realistic structure on both local and global scales. In comparison
to previous works which model time-domain signals directly, MelNet is particularly well-suited to
model long-range temporal dependencies. Experiments show promising results across a diverse set of
audio generation tasks.

Furthermore, we believe MelNet provides a foundation for various directions of future work. Two
particularly promising directions are text-to-speech synthesis and representation learning:

• Text-to-Speech Synthesis: MelNet utilizes a more flexible probabilistic model than existing
end-to-end text-to-speech models, making it well-suited to model expressive, multi-modal
speech data.
• Representation Learning: MelNet is able to uncover salient structure from large quantities

of unlabelled audio. Large-scale, pre-trained autoregressive models for language modelling
have demonstrated significant benefits when fine-tuned for downstream tasks. Likewise,
representations learned by MelNet could potentially aid downstream tasks such as speech
recognition.
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A APPENDIX

A.1 HYPERPARAMETERS & TRAINING DETAILS

All RNNs use LSTM cells (Hochreiter & Schmidhuber, 1997). All models are trained with
RMSProp (Tieleman & Hinton, 2012) with a learning rate of 10−4 and momentum of 0.9. The
initial values for all recurrent states are trainable parameters. A single hyperparameter controls the
width of the network—all hidden sizes (RNN state size, residual connections, etc.) are defined by a
single value, denoted hidden size in table 2.

Table 2: MelNet hyperparameters.

Blizzard MAESTRO VoxCeleb2

Tiers 6 4 5
Layers (Initial Tier) 12 16 16
Layers (Upsampling Tiers) 5-4-3-2-2 6-5-4 6-5-4-3
Hidden Size 512 512 512
GMM Mixture Components 10 10 10
Batch Size 32 16 128
Sample Rate (Hz) 22,050 22,050 16,000
Max Sample Duration (s) 10 6 6
Mel Channels 256 256 180
STFT Hop Size 256 256 180
STFT Window Size 6 · 256 6 · 256 6 · 180

A.2 WAVENET BASELINE

The human evaluation experiments require samples from a baseline WaveNet model. For the Blizzard
and VoxCeleb2 datasets, we use our own reimplementation. Our WaveNet model uses 8-bit µ-law
encoding and models each sample with a discrete distribution. Each model is trained for 150,000
steps. We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 and batch size
of 32. Additional hyperparameters are reported in Table 3.

Table 3: WaveNet hyperparameters.

Blizzard VoxCeleb2

Sample Rate (Hz) 22,050 16,000
Layers 50 60
Kernel Size 3 3
Dilation (at layer i) 2i mod 10 2i mod 10

Residual Channels 512 512
Skip Channels 512 512
Receptive Field (samples) 10,240 12,288
Receptive Field (ms) 464 768
Max Sample Duration (s) 2 2

We do not use our WaveNet implementation for human evaluation on the MAESTRO dataset. The
authors that introduce this dataset provide roughly 2 minutes of audio samples on their website for
both unconditional WaveNet and Wave2Midi2Wave models. We generate 50 random 10 second slices
from these 2 minutes and directly use them for the human evaluations.
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