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ABSTRACT

Meta-learning methods learn the meta-knowledge among various training tasks1

and aim to promote the learning of new tasks under the task similarity assumption.2

However, such meta-knowledge is often represented as a fixed distribution, which3

is too restrictive to capture various specific task information. In this work, we4

present a localized meta-learning framework based on the PAC-Bayes theory. In5

particular, we propose an LCC-based prior predictor that allows the meta learner to6

adaptively generate local meta-knowledge for specific tasks. We further develop7

a practical algorithm with deep neural network based on the bound. Empirical8

results on real-world datasets demonstrate the efficacy of the proposed method.9

1 INTRODUCTION10

Recent years have seen a resurgence of interest in the field of meta-learning, or learning-to-learn11

(Thrun & Pratt, 2012), especially for empowering deep neural networks the capability of fast adapt-12

ing to unseen tasks just as humans (Finn et al., 2017; Ravi & Larochelle, 2017). More concretely,13

the neural networks are trained from a sequence of datasets, associated with different learning tasks14

sampled from a meta-distribution (also called task environment (Baxter, 2000; Maurer, 2005)). The15

principal aim of meta learner is to extract transferable meta-knowledge from observed tasks and16

facilitate the learning of new tasks sampled from the same meta-distribution. The performance is17

measured by the generalization ability from a finite set of observed tasks, which is evaluated by18

learning related unseen tasks. For this reason, there has been considerable interest in theoretical19

bounds on the generalization in terms of the meta-learning algorithm (Denevi et al., 2018b;a).20

One typical line of work (Pentina & Lampert, 2014; Amit & Meir, 2018) use PAC-Bayes bound to21

analyze the generalization behavior of the meta learner and quantify the relation between the ex-22

pected loss on new tasks and the average loss on the observed tasks. In this setup, we formulate23

meta-learning as hierarchical Bayes. Accordingly, meta-knowledge is instantiated as a global dis-24

tribution over all possible priors, which we call hyperprior and is chosen before observing training25

tasks. Each prior is a distribution over a family of classifiers w.r.t. a particular task. To learn versa-26

tile meta-knowledge across tasks, the meta learner observes a sequence of training tasks and adjusts27

its hyperprior into a hyperposterior distribution over the set of priors. To solve a new task, the base28

learner produces a posterior distribution over a family of classifiers based on the associated sample29

set and the prior generated by the hyperposterior.30

However, such meta-knowledge is shared across tasks. The global hyperposterior is rather generic,31

typically not well-tailored to various specific tasks. Consequently, it leads to sub-optimal perfor-32

mance for any individual prediction task. As a motivational example, suppose we have two dif-33

ferent tasks: distinguishing motorcycle versus bicycle and distinguishing motorcycle versus car.34

Intuitively, each task uses distinct discriminative patterns and thus the desired meta-knowledge is35

required to extract these patterns simultaneously. This could be a challenging problem to represent36

it with a global hyperposterior since the most significant patterns in the first task could be irrelevant37

or even detrimental to the second task.38

Hence, we are motivated to pursue a meta-learning framework to effectively define the hyperpos-39

terior. The inspiration comes from the PAC-Bayes literature on data distribution dependent priors40

(Catoni, 2007; Parrado-Hernández et al., 2012; Dziugaite & Roy, 2018). The choice of posterior41

in each task is constrained by the need to minimize the relative entropy between prior and pos-42

terior since this divergence forms part of the bound and is typically large in standard PAC-Bayes43
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approaches (Lever et al., 2013). Thus, choosing an appropriate prior for each task which is close to44

the related posterior could yield improved generalization bounds.45

Inspired by this, we propose a Localized Meta-Learning (LML) framework. Instead of formulating46

meta-knowledge as a global hyperposterior, we learn a conditional hyperposterior given task data47

distribution that allows a meta learner to adaptively generate an appropriate prior for a new task.48

However, the task data distribution is unknown, and our only perception for it is via the associated49

sample set. Nevertheless, if the conditional hyperposterior is relatively stable to perturbations of the50

sample set, then the generated prior could still reflect the underlying task data distribution, resulting51

in a generalization bound that still holds with smaller probability. Following this intuition, the52

dependence of a conditional hyperposterior on the task data distribution is parameterized by a prior53

predictor using Local Coordinate Coding (LCC)(Yu et al., 2009). In particular, if the classifier in54

each task is specialized to a parametric model, including deep neural network, the proposed LCC-55

based prior predictor predicts the model parameters using the sample set by exploiting the local56

information on the latent manifold. LCC-based prior predictor is invariant under permutations of its57

inputs and could be further used for unseen tasks.58

The main contributions of this work include: (i) We present a localized meta-learning framework59

which provides a means to tighten the original PAC-Bayes meta-learning bound (Pentina & Lam-60

pert, 2014; Amit & Meir, 2018) by minimizing the task-complexity term by choosing data-dependent61

prior; (ii) We propose an LCC-based prior predictor, an implementation of conditional hyperposte-62

rior, to generate local meta-knowledge for specific task; (iii) We derive a practical localized meta-63

learning algorithm for deep neural networks by minimizing the bound; (iv) Experimental results64

demonstrate improved performance over meta-learning method in this field.65

2 PRELIMINARIES66

2.1 LOCAL COORDINATE CODING67

We first review some definitions of Local Coordinate Coding (LCC) (Yu et al., 2009) based on which68

we develop the proposed LCC-based prior predictor.69

Definition 1. (Lipschitz Smoothness (Yu et al., 2009).) A function f(x) on Rd is a (α, β)-Lipschitz70

smooth w.r.t. a norm ‖ ·‖ if ‖f(x)−f(x′)‖ ≤ α‖x−x′‖ and ‖f(x′)−f(x)−∇f(x)>(x′−x)‖ ≤71

β‖x− x′‖2.72

Definition 2. (Coordinate Coding (Yu et al., 2009).) A coordinate coding is a pair (γ, C), where73

C ⊂ Rd is a set of anchor points, and γ is a map of x ∈ Rd to [γu(x)]u∈C ∈ R|C| such74

that
∑

u γu(x) = 1. It induces the following physical approximation of x in Rd : γ(x) =75 ∑
u∈C γu(x)u.76

Definition 3. (Latent Manifold (Yu et al., 2009).) A subsetM ⊂ Rd is called a smooth manifold
with an intrinsic dimension d := dM if there exists a constant cM such that given any x ∈ M,
there exists d bases u1(x), . . . ,ud(x) ∈ Rd so that ∀x′ ∈M:

inf
γ∈R|C|

‖x′ − x−
d∑
j=1

γjuj(x)‖2 ≤ cM‖x′ − x‖22,

where γ = [γ1, . . . , γd]
> are the local codings w.r.t. the bases.77

Definition 4. (Covering Number (Yu et al., 2009).) The covering number N (ε,M) is the smallest
cardinality of an ε-ccover C ⊂M. That is,

sup
x∈M

inf
v∈C
‖x− v‖ ≤ ε.

Definition 2 and 3 imply that any point in Rd can be expressed as a linear combination of a set of78

anchor points. Later, we will use them to develop the prior predictor.79

2.2 PAC-BAYES META-LEARNING80

In order to present the advances proposed in this paper, we next recall some definitions in PAC-Bayes81

theory for single-task learning and meta-learning (Catoni, 2007; Baxter, 2000; Pentina & Lampert,82
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2014; Amit & Meir, 2018). In the context of classification, we assume all tasks share the same input83

space X , output space Y , space of classifiers (hypotheses) H ⊂ {h : X → Y} and loss function84

` : Y × Y → [0, 1]. The meta learner observes n tasks in the form of sample sets S1, . . . , Sn.85

The number of samples in task i is denoted by mi. Each observed task i consists of a set of i.i.d.86

samples Si = {(xj , yj)}mi
j=1, which is drawn from a data distribution Si ∼ Dmi

i . Following the87

meta-learning setup in (Baxter, 2000), we assume that each data distribution Di is generated i.i.d.88

from the same meta distribution τ . Let h(x) be the prediction of x, the goal of each task is to find89

a classifier h that minimizes the expected loss Ex∼D`(h(x), y). Since the underlying ‘true’ data90

distribution Di is unknown, the base learner receives a finite set of samples Si and produces an91

“optimal” classifier h = Ab(Si) with a deterministic learning algorithm Ab(·) that will be used to92

predict the labels of unseen inputs.93

PAC-Bayes theory studies the properties of randomized classifier, called Gibbs classifier. Let Q be94

a posterior distribution overH, to make a prediction, the Gibbs classifier samples a classifier h ∈ H95

according toQ and then predicts a label with the chosen h. The expected error under data distribution96

D and empirical error on the sample set S are then given by averaging over distribution Q, namely97

er(Q) = Eh∼QE(x,y)∼D`(h(x), y) and êr(Q) = Eh∼Q 1
m

∑m
j=1 `(h(xj), yj), respectively. Then,98

we can get the following PAC-Bayes generalization bound of Catoni (2007) in a simplified form99

suggested by Germain et al. (2009).100

Theorem 1. (Catoni’s bound) Let P be some prior distribution over H. Then for any δ ∈ (0, 1],
and any real number c > 0, the following inequality holds uniformly for all posteriors distribution
Q with probability at least 1− δ,

er(Q) ≤ c

1− e−c
[
êr(Q) +

KL(Q||P ) + log 1
δ

mc

]
. (1)

The PAC-Bayes bound holds uniformly for allQ, it also holds for the data dependentQ. By choosing101

the posteriorQ that minimizes the PAC-Bayes bound, we obtain an learning algorithm with general-102

ization guarantees. Note that the value c allows to control the trade-off between the empirical error103

and the complexity term.104

The goal of the meta learner is to extract meta-knowledge contained in the observed tasks that will
be used as prior knowledge for learning new tasks. The prior knowledge P is in the form of a
distribution over classifiers H. In each task, the base learner produces a posterior Q = Ab(S, P )
over H based on a sample set S and a prior P . All tasks are learned through the same learning
procedure. The meta learner treats the prior P itself as a random variable and assumes the meta-
knowledge is in the form of a distribution over all possible priors. Let hyperprior P be an initial
distribution over priors, meta learner uses the observed tasks to adjust its original hyperprior P into
hyperposteriorQ from the learning process. The quality of the hyperposteriorQ is measured by the
expected task error of learning new tasks using priors generated from it, which is formulated as:

er(Q) = EP∼QE(D,m)∼τ,S∼Dmer(Q = Ab(S, P )). (2)

Accordingly, the empirical counterpart of the above quantity is given by:

êr(Q) = EP∼Q
1

n

n∑
i=1

êr(Q = Ab(Si, P )). (3)

3 PAC-BAYES META-LEARNING BOUND WITH GAUSSIAN RANDOMIZATION105

Based on the above definition, Pentina & Lampert (2014) and Amit & Meir (2018) present meta-106

learning PAC-Bayes generalization bounds w.r.t. hyperposteriorQ by using McAllester’s single-task107

bound (McAllester, 1999). Here we present a new meta-learning generalization bound with Gaus-108

sian randomization by using Catoni’s bound in Eq. (1). In particular, the classifier h is parameterized109

as hw with w ∈ Rdw . The prior and posterior is a distribution over the set of all possible parameters110

w. We choose both the prior P and posterior Q to be spherical Gaussians, i.e. P = N (wP , σ2
wIdw)111

and Q = N (wQ, σ2
wIdw). The mean wP is a random variable distributed first according to the112

hyperprior P , which we formulate asN (0, σ2
wIdw), and later according to hyperposteriorQ, which113

we model as N (wQ, σ2
wIdw). When encountering a new task i, we first sample the mean of prior114
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wP
i from the hyperposterior N (wQ, σ2

wIdw), and then use it as a basis to learn the mean of poste-115

rior wQ
i = Ab(Si, P ), as shown in Figure 1(left). Then, we could derive the following PAC-Bayes116

meta-learning bound.117

Theorem 2. Consider the Meta-Learning (ML) framework, given the hyperprior P = N (0, σ2
vIdv),

then for any hyperposterior Q, any c1, c2 > 0 and any δ ∈ (0, 1] with probability ≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

+
c′1

2c1nσ2
w

)‖wQ‖2 +

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

‖ E
wP

wQ
i −wQ‖2

+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

(
1

2
+ log

2n

δ
) +

c′1
c1nσ2

w

log
2

δ
, (4)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

.118

Proof. See Appendix B.3 for the proof.119

Notice that the expected task generalization error is bounded by the empirical multi-task error plus120

two complexity terms. The first term demonstrates the environment-complexity which converges121

to zero if an infinite number of tasks are observed from the task environment (n → ∞), while the122

second is the task-complexity of the observed tasks which converges to zero when the sufficient123

samples in each task is observed (mi → ∞). Besides, the derived bound converges at the rate124

of O( 1
m ) instead of O( 1√

m
) in (Pentina & Lampert, 2014; Amit & Meir, 2018), due to the use of125

Catoni’s bound.126

4 PAC-BAYES LOCALIZED META-LEARNING127

4.1 OVERALL FRAMEWORK128

Our motivation stems from a core challenge in PAC-Bayes meta-learning bound in 41, wherein the129

complexity term
∑n
i=1

c′1c
′
2

2c2nmiσ2
w
‖EwQ

i − wQ‖2 is typically vital to the bound and so finding the130

tightest possible bound generally depends on minimizing this term. It is obvious that the optimal131

wQ is
∑n
i=1

c′1c
′
2Ew

Q
i

2c2nmiσ2
w

. However, if the learned posteriors for each task are mutually exclusive, i.e.,132

one learned posterior has a negative effect on another task, this term could be inevitably large.133

wQ is the mean of hyperposterior Q and this term naturally indicates the divergence between the134

mean of prior wP
i sampled from the hyperposterior Q and the mean of posterior wQ

i in each task.135

Therefore, we propose to adaptively choose the mean of prior wP
i according to task i. It is obvious136

that the complexity term vanishes if we set wP
i = wQ

i , but the prior Pi in each task has to be137

chosen independently of the sample set Si. Fortunately, the PAC-Bayes theorem allows us to choose138

prior upon the data distribution Di. Therefore, we propose a prior predictor Φ : Dm → wP which139

receives task data distribution Dm and outputs the mean of prior wP . In this way, the generated140

priors could focus locally on those regions of model parameters that are of particular interest in141

solving specific tasks.142

Particularly, the prior predictor is parameterized as Φv with v ∈ Rdv . We abuse notation P and143

Q and assume v as a random variable distributed first according to the hyperprior P , which we144

reformulate as N (0, σ2
vIdv), and later according to hyperposterior Q, which we reformulate as145

N (vQ, σ2
vIdv). Given a new task i, we first sample v from hyperposterior N (vQ, σ2

vIdv) and146

estimate the mean of prior wP
i by leveraging prior predictor wP

i = Φv(Dm
i ). Then, the base147

learner utilizes the sample set Si and the prior Pi = N (wP
i , σ

2
wIdw) to produce a mean posterior148

wQ
i = Ab(Si, Pi), as illustrated in Figure 1(right).149

4.2 LCC-BASED PRIOR PREDICTOR150

To make wP close to wQ in each task, the prior predictor is required to (i) uncover the tight relation-151

ship between the sample set and model parameter. Intuitively, features and parameters yield similar152

local and global structures in their respective spaces in the classification problem. Features in the153
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Meta Learner
(A global distribution 𝓠)

𝑺𝟏~𝑫𝟏
𝒎𝟏

Task 1

𝑺𝟐~𝑫𝟐
𝒎𝟐 𝑺𝒏~𝑫𝒏

𝒎𝒏

Task 2 Task n

Base Learner

𝑺~𝑫𝒎

Future Task·

Prior

𝒩(𝒘𝓠, 𝝈𝒘
𝟐 𝑰𝒅𝒘) 𝒘𝑷 𝒘𝑸

Meta Learner
(Prior Predictor 𝚽)

𝑺𝟏~𝑫𝟏
𝒎𝟏

Task 1

𝑺𝟐~𝑫𝟐
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Task 2 Task n

Base Learner

𝑺~𝑫𝒎

Future Task·

Prior

𝚽𝐯(𝐃
𝐦) 𝒘𝑷 𝒘𝑸

Figure 1: Comparison between meta-learning (left) and localized meta-learning (right). In regular
meta-learning, the mean of prior wP is sampled from a global hyperposterior distribution Q =
N (wQ, σ2

wIdw). In the localized meta-learning, wP is produced by a prior predictor Φv(Dm).

same category tend to be spatially clustered together while maintaining the separation between dif-154

ferent classes. Take linear classifiers as an example, let wk be the parameters w.r.t. category k, the155

separability between classes is implemented as x ·wk, which also explicitly encourages intra-class156

compactness. A reasonable choice of wk is to maximize the inner product distance with the input157

features in the same category and minimize the distance with the input features of the non-belonging158

categories. Besides, the prior predictor should be (ii) category-agnostic since it will be used contin-159

uously as new tasks and hence new categories become available. Lastly, it should be (iii) invariant160

under permutations of its inputs.161

To satisfy the above conditions, we follow the idea of nearest class mean classifier (Mensink et al.,
2013), which represents class parameter by averaging its feature embeddings. This idea has been
explored in transductive few-shot learning problem (Bertinetto et al., 2016; Yang et al., 2018). Snell
et al. (2017) learns a metric space across tasks such that when represented in this embedding, pro-
totype (centroid) of each class can be used for label prediction in the new task. Qiao et al. (2018)
directly predicts the classifier weights using the activations by exploiting the close relationship be-
tween the parameters and the activations in a neural network associated with the same category. In
summary, the classification problem of each task is transformed as a generic metric learning prob-
lem which is shared across tasks. Once this mapping has been learned on observed tasks, due to the
structure-preserving property, it could be easily generalized to new tasks. Formally, let each task
be a K-class classification problem. Then the parameter of the classifier in task i is represented as
wi = [wi[1], . . . ,wi[k], . . . ,wi[K]]. The prior predictor for class k could be defined as:

wP
i [k] = Φv(Dmik

ik ) = E
Sik∼D

mik
ik

1

mik

∑
xj∈Sik

φv(xj), (5)

where φv(·) : Rd → Rdw is the feature embedding function, mik is the number of samples belong-
ing to category k, Sik and Dik are the sample set and data distribution for category k in task i. We
call this function the expected prior predictor. Since data distribution Dik is considered unknown
and our only insight as to Dik is through the sample set Sik, we approximate the expected prior
predictor by its empirical counterpart, based on mik observed samples in the category k:

ŵP
i [k] = Φ̂v(Sik) =

1

mik

∑
xj∈Sik

φv(xj), (6)

which we call the empirical prior predictor. Although we can implement the embedding func-162

tion φv(·) with a multilayer perceptron (MLP), both input x and model parameter w are high-163

dimensional, making the empirical prior predictor Φ̂v(·) difficult to learn. According to Definition164

(3), any points on the latent manifold can be approximated by a linear combination of a set of anchor165

points. Inspired by this, if the anchor points are sufficiently localized, the empirical prior predic-166

tor Φ̂v(S) can also be approximated by a linear function w.r.t. a set of codings. Accordingly, we167

propose an LCC-based prior predictor, which is defined as:168

w̄P
i [k] = Φ̄v(Sik) =

1

mik

∑
xj∈Sik

∑
u∈C

γu(xj)Φv(u), (7)
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where Φv(u) ∈ Rdw is the feature embedding of base u ∈ Rd. As such, the pa-169

rameters of LCC-based prior predictor w.r.t. category k can be represented as vk =170

[Φvk
(u1),Φvk

(u2), . . . ,Φvk
(u|C|)]. Lemma 1 illustrates the approximation error.

X

Φ(x)

Manifold

Local linearity

Anchor Point

Figure 2: A geometric view of Local Coordinate Coding. Given a set of anchor points, if data lie
on a manifold, the empirical prior predictor Φ̂v(S) can be locally approximated by a linear function
w.r.t. the coding. Given all bases, Φ̂v(S) can be globally approximated.

171

Lemma 1. (Empirical Pior Predictor Approximation) Given the definition of ŵP
i [k] and w̄P

i [k] in
Eq. (6) and Eq. (7), let (γ,C) be an arbitrary coordinate coding on Rd and φ be an (α, β)-Lipschitz
smooth function. We have for all x ∈ Rd

‖ŵP
i [k]− w̄P

i [k]‖ ≤ 1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖+ β

∑
u∈C
‖x̄j − u‖2

)
= Oα,β(γ,C), (8)

where x̄j =
∑

u∈C γu(xj)u. Then given any ε > 0, there exists a coding (γ,C) such that

|C| ≤ (1 + dM)N (ε,M),

Oα,β(γ,C) ≤ [αcM + (1 + 5
√
dM)β]ε2. (9)

Proof. See appendix B.1 for the proof.172

The first inequality of Lemma 1 demonstrates that a good LCC-based prior predictor should make x173

close to its physical approximation x̄ and should be localized. The second and third inequality show174

that if a set of anchor points C has cardinality O(dMN (ε,M)), emprical prior predictor can be175

linearly approximated using LCC up to accuracy O(
√
dMε

2). The complexity of the LCC coding176

scheme depends only on the number of anchor points |C| instead of the input dimension. In fact, a177

small |C| is usually sufficient to achieve good approximation.178

Optimization of LCC. We minimize the first inequality in (8) to obtain a set of anchor points. As
with (Yu et al., 2009), we simplify the localization error term by assuming x̄ = x, and then we
optimize the following objective function:

arg min
γ,C

n∑
i=1

∑
xj∈Si

α‖xj − x̄j‖2 + β
∑
u∈C
‖xj − u‖2 s.t.

∑
u∈C

γu(x) = 1,∀x, (10)

where x̄ =
∑

u∈C γu(x)u. In practice, we update C and γ by alternately optimizing a LASSO179

problem and a least-square regression problem, respectively.180

4.3 PAC-BAYES LOCALIZED META-LEARNING BOUND WITH GAUSSIAN RANDOMIZATION181

In order to derive a PAC-Bayes generalization bound for localized meta-learning, we first bound the182

approximation error between expected prior predictor and LCC-based prior predictor.183

Lemma 2. Given the definition of wP and w̄P in Eq. (5) and (7), let X be a compact set with
radius R, i.e., ∀x,x′ ∈ X , ‖x− x′‖ ≤ R. For any δ ∈ (0, 1] with probability ≥ 1− δ, we have

‖wP − w̄P ‖2 ≤
K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2

. (11)

6



Under review as a conference paper at ICLR 2020

Proof. See appendix B.2 for the proof.184

Lemma 2 shows that the approximation error between expected prior predictor and LCC-based185

prior predictor depends on (i) the concentration of prior predictor and (ii) the quality of LCC coding186

scheme. The first term implies the number of samples for each category should be larger for better187

approximation. This is consistent with the results of estimating the center of mass (Cristianini &188

Shawe-Taylor, 2004). Based on Lemma 2, we have the following PAC-Bayes LML bound.189

Theorem 3. Consider the Localized Meta-Learning (LML) framework, give the hyperprior P =
N (0, σ2

vIdv), then for any hyperposterior Q, any c1, c2 > 0 and any δ ∈ (0, 1] with probability
≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2

+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

 1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

4n

δ
)) +Oα,β(γ,C)

)2

+ dwK(
σv
σw

)2


+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

log
4n

δ
+

c′1
2c1nσ2

v

log
2

δ
, (12)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. To get a better understanding, we further simplify the
notation and obtain that

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2

+ const(α, β,R, δ, n,mi). (13)

Proof. See appendix B.3 for the proof.190

Similarly with the PAC-Bayes meta-learning bound in Theorem 2 and the bounds in (Pentina &191

Lampert, 2014; Amit & Meir, 2018), the expected task error er(Q) is bounded by the empirical192

task error êr(Q) plus the task-complexity and environment-complexity terms. The main innovation193

here is to exploit the potential to choose the mean of prior wP based on task data S. Intuitively, if194

the selection of the LCC-based prior predictor is appropriate, it will narrow the divergence between195

the mean of prior wP
i sampled from the hyperposterior Q and the mean of posterior wQ

i in each196

task. Therefore, the bound can be tighter than the ones in the meta-learning framework. Our em-197

pirical study in Section 5 illustrates that the algorithms derived from this bound can achieve better198

performance than the methods derived from standard PAC-Bayes meta-learning bounds.199

When one is choosing the LCC-based prior predictor Φ̄v(·), the number of anchor points |C|, there200

is a balance between accuracy and simplicity. As we increase |C|, it will essentially increase the201

expressive power of Φ̄v(·) and reduce the complexity term ‖E
v
wQ − Φ̄vQ(S)‖2. However, at the202

same time, it will increase the complexity term ‖vQ‖2 and make the bound loose. If we set |C| to203

1, it is degraded to the regular meta-learning framework.204

4.4 LOCALIZED META-LEARNING ALGORITHM205

Since the bound in (27) holds uniformly w.r.t. Q, the guarantees of Theorem 3 also hold for the
resulting learned hyperposterior Q = N (vQ, σ2

vIdv), so the mean of prior wP sampled from the
learned hyperposterior work well for future tasks. The PAC-Bayes localized meta-learning bound in
(27) can be compactly written as

n∑
i=1

E
v
êri(Qi = Ab(Si, P )) + α1‖vQ‖2 +

n∑
i=1

α2

mi
‖E
v
wQ
i − Φ̄vQ(Si)‖2, (14)

where α1, α2 > 0 are hyperparameters. For task i, the learning algorithm Ab(·) can be formulated
as w?

i = arg min
wQ

i

E
v
êri(Qi = N (wQ

i , σ
2
wIdw)). Following Amit & Meir (2018), we jointly opti-

7
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mize the parameters of LCC-based prior predictor v and the parameters of classifiers in each task
w1,w2, . . . ,wn, which is formulated as

arg min
v,w1,...,wn

n∑
i=1

E
v
êri(wi) + α1‖vQ‖2 +

n∑
i=1

α2

mi
‖E
v
wQ
i − Φ̄vQ(Si)‖2. (15)

We can optimize v and w via mini-batch SGD. The details of algorithms for meta-training are206

given in Algorithms 1. The expectation over Gaussian distribution and its gradient can be efficiently

Algorithm 1 Localized Meta-Learning (LML) algorithm
Input: Data sets of observed tasks: S1, . . . , Sn.
Output: Learned prior predictor Φ̄ parameterized by v.
Initialize v ∈ Rdv and wi ∈ Rdw for i = 1 . . . , n.
Construct LCC scheme (γ,C) from the whole training data by optimizing Eq. (10).
while not converged do

for each task i ∈ {1, . . . , n} do
Sample a random mini-batch from the data S′i ⊂ Si.
Approximate E

v
êri(wi) using S′i.

end for
Compute the objective in (15), i.e. J ←

∑n
i=1 Ev êri(wi) + α1‖vQ‖2 +

∑n
i=1

α2

mi
‖E
v
wQ
i −

Φ̄vQ(Si)‖2.
Evaluate the gradient of J w.r.t. {v,w1, . . . ,wn} using backpropagation.
Take an optimization step.

end while
207

estimated by using the re-parameterization trick (Kingma & Welling, 2014; Rezende et al., 2014).208

For example, to sample w from the posterior Q = N (wQ, σ2
wIdw), we first draw ξ ∼ N (0, Idw)209

and then apply the deterministic function wQ + ξ � σ, where � is an element-wise multiplication.210

5 EXPERIMENTS211

1 3 5 7 9 11
Number of Tasks

40

50

60

70

80

90

Ac
cu

ra
cy

 o
n 

N
ew

 T
as

k(
%

) Caltech-256

LML
ML-A
ML-AM

ML-PL
MatchingNet
MAML

1 3 5 7 9 11
Number of Tasks

40

46

52

58

64

70

76

82

Ac
cu

ra
cy

 o
n 

N
ew

 T
as

k(
%

) CIFAR-100

LML
ML-A
ML-AM

ML-PL
MatchingNet
MAML

(a) With pre-trained feature extractor
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Figure 3: The average test accuracy of learning a new task for different number of training tasks
(|C| = 64).
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Figure 4: (a) The impact of the number of bases |C| in LCC. (b) The divergence value (normalized)
between the mean generated prior wP and the mean of learned posterior wQ.

5.1 DATASETS AND SETUP212

We use CIFAR-100 and Caltech-256 in our experiments. CIFAR-100 (Krizhevsky, 2009) contains213

60,000 images from 100 fine-grained categories and 20 coarse-level categories. As in (Zhou et al.,214

8
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2018), we use 64, 16, and 20 classes for meta-training, meta-validation, and meta-testing, respec-215

tively. Caltech-256 has 30,607 color images from 256 classes (Griffin et al., 2007). Similarly, we216

split the dataset into 150, 56 and 50 classes for meta-training, meta-validation, and meta-testing. We217

consider 5-way classification problem. Each task is generated by randomly sampling 5 categories218

and each category contains 50 samples. The base model uses the convolutional architecture in (Finn219

et al., 2017), which consists of 4 convolutional layers, each with 32 filters and a fully-connected220

layer mapping to the number of classes on top. High dimensional data often lies on some low di-221

mensional manifolds. We utilize an auto-encoder to extract the semantic information of image data222

and then construct the LCC scheme based on the embeddings. The parameters of prior predictor and223

base model are random perturbations in the form of Gaussian distribution. We design two different224

meta-learning environment setting to validate the efficacy of the proposed method. The first one uses225

the pre-trained base model as an initialization, which utilizes all the meta-training classes (64-class226

classification in CIFAR-100 case) to train the feature extractor. The second one uses the random227

initialization. We compare the proposed LML method with ML-PL method (Pentina & Lampert,228

2014), ML-AM method (Amit & Meir, 2018) and ML-A which is derived from Theorem 2. In these229

methods, we use their main theorems about the PAC-Bayes generalization bound to derive the objec-230

tive for the algorithm. We also compare with two typical meta-learning few-shot learning methods:231

MAML (Finn et al., 2017) and MatchingNet (Vinyals et al., 2016). To ensure a fair comparison, all232

approaches adopt the same network architecture and pre-trained feature extractor.233

5.2 RESULTS234

In Figure 3, we demonstrate the average test error of learning a new task based on the number of235

training tasks in different settings (with or without a pre-trained feature extractor). It is obvious236

that the performance continually increases as we increase the number of training tasks for all the237

methods. This is consistent with the generalization bounds that the complexity term converges to238

zero if large numbers of tasks are observed. ML-A consistently outperforms ML-PL and ML-AM239

since the bound w.r.t. ML-A in Theorem 2 converges at the rate of O( 1
m ) while the bounds w.r.t.240

ML-PL and ML-AM converge at the rate ofO( 1√
m

). This demonstrates the importance of using tight241

generalization bound. Our proposed LML significantly outperforms the baselines, which validates242

the effectiveness of the proposed LCC-based prior predictor. It is a more suitable representation for243

meta-knowledge than the traditional global hyperposterior in ML-A, ML-AM, and ML-PL.244

Moreover, we can find that all PAC-Bayes baselines outperform MAML and MatchingNet. Note245

that MAML and MatchingNet adopt the episodic training paradigm to solve the few-shot learn-246

ing problem. The meta-training process requires millions of tasks and each task contains limited247

samples, which is not the case in our experiment. Scarce tasks in meta-training leads to severely248

meta-overfitting. In our method, the learned prior serves both as an initialization of base model and249

as a regularizer which restricts the solution space while allowing variation based on specific task250

data. It yields a model with smaller error than its unbiased counterpart when applied to a similar251

task.252

Finally, we observe that if the pre-trained feature extractor is provided, all of these methods do better253

than meta-training with random initialization. This is because pre-trained feature extractor can be254

regarded as a data-dependent hyperpior. It is closer to the hyperposteior than the randomly initialized255

hyperprior. Therefore, it reduces the environment complexity term and improves the generalization256

performance.257

In Figure 4(b), we show the divergence between the mean of generated prior wP from meta model258

and the mean of learned posterior wQ for LML and ML-A. This further validates the effectiveness259

of the LCC-based prior predictor which could narrow the divergence term and thus tight the bound.260

In Figure 4(a), we vary the number of bases |C| in LCC scheme from 4 to 256, the optimal value is261

around 64 in both datasets. This indicates that LML is sensitive to the number of bases |C|, which262

further affects the quality of LCC-based prior predictor and the performance of LML.263

6 RELATED WORK264

Meta-Learning. Meta-learning literature commonly considers the empirical task error by directly265

optimizing a loss of meta learner across tasks in the training data. Recently, this has been success-266
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fully applied in a variety of models for few-shot learning (Ravi & Larochelle, 2017; Snell et al.,267

2017; Finn et al., 2017; Vinyals et al., 2016). Although Vuorio et al. (2018); Rusu et al. (2019);268

Zintgraf et al. (2019); Wang et al. (2019) consider task adaptation when using meta-knowledge for269

specific tasks, all of them are not based on generalization error bounds, which is the focus of our270

work. Meta-learning in the online setting has regained attention recently (Denevi et al., 2018b;a;271

2019; Balcan et al., 2019), in which online-to-batch conversion results could imply generalization272

bounds. Galanti et al. (2016) analyzes transfer learning in neural networks with PAC-Bayes tools.273

Most related to our work are (Pentina & Lampert, 2014; Amit & Meir, 2018) which provide a274

PAC-Bayes generalization bound for meta-learning framework. In contrast, neither work considers275

localized meta-knowledge for specific tasks.276

Localized PAC-Bayes Learning. There has been a prosperous line of research for learning priors277

to improve the PAC-Bayes bounds Catoni (2007); Guedj (2019). (Parrado-Hernández et al., 2012)278

showed that priors can be learned by splitting the available training data into two parts, one for279

learning the prior, one for learning the posterior. (Lever et al., 2013) derived an expression for the280

overall best prior, i.e. the distribution resulting in the smallest possible bound value and bounded281

the KL divergence by a term independent of data distribution. Recently, (Rivasplata et al., 2018)282

bounded the KL divergence by investigating the stability of the hypothesis. (Dziugaite & Roy, 2018)283

optimized the prior term in a differentially private way. In summary, theses methods construct some284

quantities that reflect the underlying data distribution, rather than the sample set, and then choose285

the prior P based on these quantities. These works, however, are only applicable for single-task286

problem and could not transfer knowledge across tasks in meta-learning setting.287

7 CONCLUSION288

This work contributes a novel localized meta-learning framework from a theoretical perspective. We289

propose a generalization bound based on PAC-Bayes theory with Gaussian randomization. Instead290

of formulating meta-knowledge as a global distribution, we propose an LCC-based prior predictor291

to output local meta-knowledge by using task information. We further develop a practical algorithm292

with deep neural network based on the bound. An interesting topic for future work would be to293

explore other principle to construct the prior predictor and apply the localized meta-learning frame-294

work to a more realistic scenario that tasks are sampled non-i.i.d. from an environment. Another295

challenging problem is to extend our techniques to derive localized meta-learning algorithms for296

regression and reinforcement learning problem.297
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This supplementary document contains the technical proofs of theoretical results and details of ex-397

periments. It is structured as follows: Appendix A present notations for prior predictor. Appendix B398

gives the proofs of the main results. Appendix B.1 and B.2 show the approximation error between399

LCC-based prior predictor and empirical prior predictor, expected prior predictor, respectvely. They400

are used in the proof of Theorem 3. Next, in Appendix B.3 and B.4 we show the PAC-Bayes gener-401

alization bound of localized meta-learning in Theorem 3 and also provides the PAC-Bayes general-402

ization bound of regular meta-learning in Theorem 2. Finally, details of experiments are presented403

in Appendix C.404

A NOTATIONS405

Let φv(·) : Rd → Rdw be the feature embedding function. mik denotes the number of samples
belonging to category k. Sik and Dik are the sample set and data distribution for category k in task
i, respectively. Then, the expected prior predictor w.r.t. class k in task i is defined as:

wP
i [k] = Φv(Dmik

ik ) = E
Sik∼D

mik
ik

1

mik

∑
xj∈Sik

φv(xj).

The empirical prior predictor w.r.t. class k in task i is defined as:

ŵP
i [k] = Φ̂v(Sik) =

1

mik

∑
xj∈Sik

φv(xj).

The LCC-based prior predictor w.r.t. class k in task i is defined as:

w̄P
i [k] = Φ̄v(Sik) =

1

mik

∑
xj∈Sik

∑
u∈C

γu(xj)Φv(u).

B THEORETICAL RESULTS406

B.1 PROOF OF LEMMA 1407

This lemma bounds the error between the empirical prior predictor ŵP
i [k] and the LCC-based prior408

predictor w̄P
i [k].409

Lemma 1 Given the definition of ŵP
i [k] and w̄P

i [k] in Eq. (6) and Eq. (7), let (γ,C) be an arbitrary
coordinate coding on Rdx and φ be an (α, β)-Lipschitz smooth function and . We have for all
x ∈ Rdx

‖ŵP
i [k]− w̄P

i [k]‖ ≤ 1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖+ β

∑
u∈C
‖x̄j − u‖2

)
= Oα,β(γ,C), (16)

where x̄j =
∑

u∈C γu(xj)u. Then given any ε > 0, there exists a coding (γ,C) such that

|C| ≤ (1 + dM)N (ε,M),

Oα,β(γ,C) ≤ [αcM + (1 + 5
√
dM)β]ε2. (17)
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Proof. Let x̄j =
∑

u∈C γu(xj)u. We have

‖Φ̂v(Sik)− Φ̄v(Sik)‖2

=
1

mik

∑
xj∈Sik

‖Φv(xj)−
∑
u∈C

γu(xj)Φv(u)‖2

≤ 1

mik

∑
xj∈Sik

(
‖Φv(xj)− Φv(x̄j)‖2 + ‖

∑
u∈C

γu(xj)(Φv(u)− Φv(x̄j)‖2
)

=
1

mik

∑
xj∈Sik

(
‖Φv(xj)− Φv(x̄j)‖2 + ‖

∑
u∈C

γu(xj)(Φv(u)− Φv(
∑
u∈C

γu(xj)u))−∇Φv(x̄j)(u− x̄j)‖2
)

≤ 1

mik

∑
xj∈Sik

(
‖Φv(xj)− Φv(x̄j)‖2 +

∑
u∈C
|γu(xj)|‖(Φv(u)− Φv(

∑
u∈C

γu(xj)u))−∇Φv(x̄j)(u− x̄j)‖2
)

≤ 1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖2 + β

∑
u∈C
‖x̄j − u‖22

)
= Oα,β(γ,C)

In the above derivation, the first inequality holds by the triangle inequality. The second equality410

holds since
∑

u∈C γu(xj) = 1 for all xj . The last inequality uses the assumption of (α, β)-Lipschitz411

smoothness of Φv(·).412

According to the Manifold Coding Theorem in (Yu et al., 2009), if the data points x lie on a compact
smooth manifoldM. Then given any ε > 0, there exists anchor points C ⊂ M and coding γ such
that

|C| ≤ (1 + dM)N (ε,M),

1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖2 + β

∑
u∈C
‖x̄j − u‖22

)
≤ [αcM + (1 + 5

√
dM)β]ε2. (18)

This implies the desired bound.413

The first inequality of this lemma demonstrates that the quality of LCC approximation is bounded414

by two terms: the first term ‖xj − x̄j‖2 indicates x should be close to its physical approximation415

x̄, the second term ‖x̄j − u‖ implies that the coding should be localized. The second and third416

inequality show that the approximation error of local coordinate coding depends on the intrinsic di-417

mension of the manifold instead of the dimension of input. If a set of anchor pointsC has cardinality418

O(dMN (ε,M)), emprical prior predictor can be linearly approximated using LCC up to accuracy419

O(
√
dMε

2).420

B.2 PROOF OF LEMMA 2421

In order to proof Lemma 2, we first introduce a relevant theorem.422

Theorem 4. (Vector-valued extension of McDiarmid’s inequality (Rivasplata et al., 2018)) Let
X1, . . . ,Xm ∈ X be independent random variables, and f : Xm → Rdw be a vector-valued
mapping function. If, for all i ∈ {1, . . . ,m}, and for all x1, . . . ,xm,x

′
i ∈ X , the function f

satisfies

sup
xi,x′i

‖f(x1:i−1,xi,xi+1:m)− f(x1:i−1,x
′
i,xi+1:m)‖ ≤ ci (19)

Then E‖f(X1:m) − E[f(X1:m)]‖ ≤
√∑m

i=1 c
2
i . For any δ ∈ (0, 1) with probability ≥ 1 − δ we

have

‖f(X1:m)− E[f(X1:m)]‖ ≤

√√√√ m∑
i=1

c2i +

√∑m
i=1 c

2
i

2
log(

1

δ
). (20)

The above theorem indicates that bounded differences in norm implies the concentration of f(X1:m)423

around its mean in norm, i.e., ‖f(X1:m)− E[f(X1:m)]‖ is small with high probability.424
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Then, we bound the error between expected prior predictor wP
i and the empirical prior predictor425

ŵP
i .426

Lemma 3. Given the definition of wP
i [k] and ŵP

i [k] in (5) and (6), let X be a compact set with
radius R, i.e., ∀x,x′ ∈ X , ‖x− x′‖ ≤ R. For any δ ∈ (0, 1] with probability ≥ 1− δ, we have

‖wP
i [k]− ŵP

i [k]‖ ≤ αR
√
mik

(1 +

√
1

2
log(

1

δ
)). (21)

Proof. According to the definition of Φ̂v(·) in (6), for all points x1, . . . ,xj−1,xj+1, . . . ,xmk
,x′j

in the sample set Sik, we have

sup
xi,x′i

‖Φ̂v(x1:j−1,xj ,xj+1:mk
)− Φ̂v(x1:j−1,x

′
j ,xj+1:mk

)‖

=
1

mik
sup
xj ,x′j

‖Φv(xj)− Φv(x′j)‖ ≤
1

mik
sup
xj ,x′j

α‖xj − x′j‖ ≤
αR

mik
, (22)

whereR denotes the domain of x, sayR = supx ‖x‖. The first inequality follows from the Lipschitz
smoothness condition of Φv(·) and the second inequality follows by the definition of domain X .
Utilizing Theorem 4, for any δ ∈ (0, 1] with probability ≥ 1− δ we have

‖wP
i [k]− ŵP

i [k]‖ = ‖Φ̂v(Sik)− E[Φ̂v(Sik)]‖ ≤ αR
√
mik

(1 +

√
1

2
log(

1

δ
)). (23)

This implies the bound.427

Lemma 3 shows that the bounded difference of function Φv(·) implies its concentration, which can428

be further used to bound the differences between empirical prior predictor w̄P
i [k] and expected prior429

predictor wP
i [k]. Now, we bound the error between expected prior predictor wP

i and the LCC-based430

prior predictor w̄P
i .431

Lemma 2 Given the definition of wP
i and w̄P

i in (5) and (7), let X be a compact set with radius R,
i.e., ∀x,x′ ∈ X , ‖x− x′‖ ≤ R. For any δ ∈ (0, 1] with probability ≥ 1− δ, we have

‖wP
i − w̄P

i ‖2 ≤
K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2

. (24)

Proof According to the definition of wP , w̄P and ŵP , we have

‖wP
i − w̄P

i ‖2

=
K∑
k=1

‖wP
i [k]− w̄P

i [k]‖2

=

K∑
k=1

‖E[Φ̂v(Sik)]− Φ̂v(Sik) + Φ̂v(Sik)− Φ̄v(Sik)‖2

=

K∑
k=1

(
‖E[Φ̂v(Sik)]− Φ̂v(Sik)‖2 + ‖Φ̂v(Sik)− Φ̄v(Sik)‖2 + 2(E[Φ̂v(Sik)]− Φ̂v(Sik))>(Φ̂v(Sik)− Φ̄v(Sik))

)
≤

K∑
k=1

(
‖E[Φ̂v(Sik)]− Φ̂v(Sik)‖2 + ‖Φ̂v(Sik)− Φ̄v(Sik)‖2 + 2‖E[Φ̂v(Sik)]− Φ̂v(Sik)‖‖Φ̂v(Sik)− Φ̄v(Sik)‖

)
.

(25)

Substitute Lemma 3 and Lemma 1 into the above inequality, we can derive

PSik∼D
mk
k

‖wP − w̄P ‖2 ≤
K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2
 ≥ 1− δ. (26)
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This gives the assertion.432

Lemma 2 shows that the approximation error between expected prior predictor and LCC-based prior433

predictor depends on the number of samples in each category and the quality of the LCC coding434

scheme.435

B.3 PROOF OF THEOREM 3436

Theorem 3 Let Q be the posterior of base learner Q = N (wQ, σ2
wIdw) and P be the prior

N (Φ̄v(S), σ2
wIdw). The mean of prior is produced by the LCC-based prior predictor Φ̄v(S) in

Eq. (7) and its parameter v is sampled from the hyperposterior of meta learnerQ = N (vQ, σ2
vIdv).

Give the hyperprior P = N (0, σ2
vIdv), then for any hyperposterior Q, any c1, c2 > 0 and any

δ ∈ (0, 1] with probability ≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2

+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

 1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

4n

δ
)) +Oα,β(γ,C)

)2

+ dwK(
σv
σw

)2


+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

log
4n

δ
+

c′1
2c1nσ2

v

log
2

δ
, (27)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. We can simplify the notation and obtain that

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2

+ const(α, β,R, δ, n,mi). (28)

Proof Our proof contains two steps. First, we bound the error within observed tasks due to ob-437

serving a limited number of samples. Then we bound the error on the task environment level due438

to observing a finite number of tasks. Both of the two steps utilize Catoni’s classical PAC-Bayes439

bound (Catoni, 2007) to measure the error. We give here a general statement of the Catoni’s classical440

PAC-Bayes bound.441

Theorem 5. (Classical PAC-Bayes bound, general notations) Let X be a sample space and X
be some distribution over X , and let F be a hypotheses space of functions over X . Define a loss
function g(f,X) : F × X → [0, 1], and let XG

1 , {X1, . . . , XG} be a sequence of K independent
random variables distributed according to X. Let π be some prior distribution over F (which must
not depend on the samples X1, . . . , Xk). For any δ ∈ (0, 1], the following bounds holds uniformly
for all posterior distribution ρ over F (even sample dependent),

PXK
1 ∼i.i.dX

{
E

X∼X
E
f∼ρ

g(f,X) ≤ c

1− e−c

[
1

G

G∑
g=1

E
f∼ρ

g(f,Xk) +
KL(ρ||π) + log 1

δ

K × c

]
,∀ρ

}
≥ 1− δ. (29)

First step We utilize Theorem 5 to bound the generalization error in each of the observed tasks.442

Let i ∈ 1, . . . , n be the index of task. For task i, we substitute the following definition into443

the Catoni’s PAC-Bayes Bound. Specifically, Xg , (xij , yij),K , mi denote the samples and444

X , Di denotes the data distribution. We instantiate the hypotheses with a hierarchical model445

f , (v,w), where v ∈ Rdv and w ∈ Rdw are the parameters of meta learner (prior predic-446

tor) Φv(·) and base learner h(·) respectively. The loss function only considers the base learner,447

which is defined as g(f,X) , `(hw(x), y). The prior over model parameter is represented448

as π , (P, P ) , (N (0, σ2
vIdv),N (wP , σ2

wIdw)), a Gaussian distribution (hyperprior of meta449
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learner) centered at 0 and a Gaussian distribution (prior of base learner) centered at wP , respec-450

tively. We set the posterior to ρ , (Q, Q) , (N (vQ, σ2
vIdv),N (wQ, σ2

wIdw)), a Gaussian dis-451

tribution (hyperposterior of meta learner) centered at vQ and a Gaussian distribution (posterior of452

base learner) centered at wQ. According to Theorem 5, the generalization bound holds for any453

posterior distribution including the one generated in our localized meta-learning framework. Specif-454

ically, we first sample v from hyperposterior N (vQ, σ2
vIdv) and estimate wP by leveraging ex-455

pected prior predictor wP = Φv(D). The base learner algorithm Ab(S, P ) utilizes the sample set456

S and the prior P = N (wP , σ2
wIdw) to produce a posterior Q = Ab(S, P ) = N (wQ, σ2

wIdw).457

Then we sample base learner parameter w from posterior N (wQ, σ2
wIdw) and compute the in-458

curred loss `(hw(x), y). On the whole, meta-learning algorithm Am(S1, . . . , Sn,P) observes459

a series of tasks S1, . . . , Sn and adjusts its hyperprior P = N (vP , σ2
vIdv) into hyperposterior460

Q = Am(S1, . . . , Sn,P) = N (vQ, σ2
vIdv).461

The KL divergence term between prior π and posterior ρ is computed as follows:

KL(ρ‖π) = E
f∼ρ

log
ρ(f)

π(f)
= E

v∼N (vQ,σ2
vIdv )

E
w∼N (wQ,σ2

wIdw )
log
N (vQ, σ2

vIdv)N (wQ, σ2
wIdw)

N (0, σ2
vIdv)N (wP , σ2

wIdw)

= E
v∼N (vQ,σ2

vIdv )
log
N (vQ, σ2

vIdv)

N (0, σ2
vIdv)

+ E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

log
N (wQ, σ2

wIdw)

N (wP , σ2
wIdw)

=
1

2σ2
v

‖vQ‖2 + E
v∼N (vQ,σ2

vIdv )

1

2σ2
w

‖wQ −wP ‖2. (30)

In our localized meta-learning framework, in order to make KL(Q||P ) small, the center of prior
distribution wP is generated by the expected prior predictor wP = Φv(D). However, the data
distribution D is considered unknown and our only insight as to Dik is through the sample set
Sik. In this work, we approximate the expected prior predictor Φv(D) with the LCC-based prior
predictor w̄P = Φ̄v(S). Denote the term E

v∼N (vQ,σ2
vIdv )

1
2σ2

w
‖wQ −wP ‖2 by E

v

1
2σ2

w
‖wQ −wP ‖2

for convenience, we have

E
v

1

2σ2
w

‖wQ −wP ‖2 =E
v

1

2σ2
w

‖wQ − w̄P + w̄P −wP ‖2

=E
v

1

2σ2
w

[‖wQ − w̄P ‖2 + ‖w̄P −wP ‖2 + 2(wQ − w̄P )>(w̄P −wP )]

≤E
v

1

2σ2
w

[‖wQ − w̄P ‖2 + ‖w̄P −wP ‖2 + 2‖wQ − w̄P ‖‖w̄P −wP ‖]

≤ 1

σ2
w

E
v
‖wQ − Φ̄v(S)‖2 +

1

σ2
w

E
v
‖w̄P −wP ‖2. (31)

Since w̄P
i = Φ̄v(Si) = [Φ̄v(Si1), . . . , Φ̄v(Sik), . . . , Φ̄v(SiK)], we have

E
v
‖wQ

i − Φ̄v(Si)‖2 =

K∑
k=1

E
v
‖wQ

i [k]− Φ̄v(Sik)‖2

=

K∑
k=1

(
E
v
‖wQ

i [k]‖2 − 2(E
v
wQ
i [k])>(Φ̄vQ(Sik)) + ‖Φ̄vQ(Sik)‖2 + V

v
[‖Φ̄v(Sik)‖]

)
=

K∑
k=1

(
‖E
v
wQ
i [k]− Φ̄vQ(Sik)‖2 +

dv
|C|

σ2
v

)
=‖E

v
wQ
i − Φ̄vQ(Si)‖2 + dwKσ

2
v, (32)
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where V
v

[‖Φ̄v(Sik)‖] denotes the variance of ‖Φ̄v(Sik)‖. The last equality uses the fact that dv =

|C|dw. Combining Lemma 2, for any δ′ ∈ (0, 1] with probability ≥ 1− δ′ we have

E
v

1

2σ2
w

‖wQ
i −wP

i ‖2

≤ 1

σ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2 + dwK(

σv
σw

)2 +
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2

(33)

Then, according to Theorem 5, we obtain that for any δi
2 > 0

PSi∼D
mi
i

{
E

(x,y)∼Di

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y)

≤ c2
1− e−c2

· 1

mi

mi∑
j=1

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(xj), yj)

+
1

(1− e−c2) ·mi

(
1

2σ2
v

‖vQ‖2 + E
v∼N (vQ,σ2

vIdv )

1

2σ2
w

‖wQ
i −wP

i ‖2 + log
2

δi

)
,∀Q

}
≥ 1− δi

2
,

(34)

for all observed tasks i = 1, . . . , n. Define δ′ = δi
2 and combine inequality (33), we obtain

PSi∼D
mi
i

{
E

(x,y)∼Di

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y)

≤ c2
1− e−c2

· 1

mi

mi∑
j=1

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(xj), yj)

+
1

(1− e−c2)mi
·
(

1

2σ2
v

‖vQ‖2 +
1

σ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2 + log

2

δi
+ dwK(

σv
σw

)2

+
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

2

δi
)) +Oα,β(γ,C)

)2
)
,∀Q

}
≥ 1− δi, (35)

Using the notations in Section 4, the above bound can be simplified as

PSi∼D
mi
i

{
E

v∼N (vQ,σ2
vIdv ),wP =Φv(D),Pi=N (wP ,σ2

wIdw )
er(Ab(Si, Pi))

≤ c2
1− e−c2

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

êr(Ab(Si, Pi))

+
1

(1− e−c2)mi

(
1

2σ2
v

‖vQ‖2 +
1

σ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2 + log

2

δi
+ dwK(

σv
σw

)2

+
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

2

δi
)) +Oα,β(γ,C)

)2
)
,∀Q

}
≥ 1− δi. (36)

Second step Next we bound the error due to observing a limited number of tasks from the envi-
ronment. We reuse Theorem 5 with the following substitutions. The samples are (Di,mi, Si), i =
1, . . . , n, where (Di,mi) are sampled from the same meta distribution τ and Si ∼ Dmi

i . The
hyposthesis is parameterized as Φv(D) with meta learner parameter v. The loss function is
g(f,X) , E

(x,y)∼D
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y), where wQ = Ab(Si, Pi). Let π , N (0, σ2
vIdv) be

18
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the prior over meta learner parameter, the following holds for any δ0 > 0,

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
E

(D,m)∼τ
E

S∼Dm
E

v∼N (vQ,σ2
vIdv )

E
w∼N (wQ,σ2

wIdw )
E

(x,y)∼Di

`(hw(x), y)

≤ c1
1− e−c1

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

E
(x,y)∼Di

`(hw(x), y)

+
1

(1− e−c1)n

(
1

2σ2
v

‖vQ‖2 + log
1

δ0

)
,∀Q

}
≥ 1− δ0. (37)

Using the term in Section 4, the above bound can be simplified as

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q)

≤ c1
1− e−c1

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

er(Ab(Si, Pi))

+
1

(1− e−c1)n

(
1

2σ2
v

‖vQ‖2 + log
1

δ0

)
,∀Q

}
≥ 1− δ0, (38)

Finally, by employing the union bound, we could bound the probability of the intersection of the
events in (36) and (38) For any δ > 0, set δ0 , δ

2 and δi , δ
2n for i = 1, . . . , n, we have

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q)

≤ c1c2
(1− e−c1)(1− e−c2)

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

êr(Ab(Si, Pi))

+
c1

1− e−c1
· 1

n

n∑
i=1

1

(1− e−c2)mi

(
1

2σ2
v

‖vQ‖2 +
1

σ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2 + log

4n

δ

+
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

4n

δ
)) +Oα,β(γ,C)

)2

+ dwK(
σv
σw

)2


+

1

(1− e−c1)n

(
1

2σ2
v

‖vQ‖2 + log
2

δ

)
,∀Q

}
≥ 1− δ. (39)

We can further simplify the notation and obtain that

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q) ≤ c′1c′2êr(Q)

+(

n∑
i=1

c′1c
′
2

2c2nmiσ2
v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′1c
′
2

c2nmiσ2
w

‖E
v
wQ
i − Φ̄vQ(Si)‖2

+const(α, β,R, δ, n,mi),∀Q

}
≥ 1− δ, (40)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. This completes the proof.462

B.4 PROOF OF THEOREM 2463

Theorem 2 Let Q be the posterior of base learner Q = N (wQ, σ2
wIdw) and P be the prior

N (wP , σ2
wIdw). The mean of prior is sampled from the hyperposterior of meta learner Q =

N (wQ, σ2
wIdw). Give the hyperprior P = N (0, σ2

wIdw), then for any hyperposterior Q, any

19



Under review as a conference paper at ICLR 2020

c1, c2 > 0 and any δ ∈ (0, 1] with probability ≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

+
c′1

2c1nσ2
w

)‖wQ‖2 +

n∑
i=1

c′1c
′
2

2c2nmiσ2
w

‖ E
wP

wQ
i −wQ‖2

+

n∑
i=1

c′1c
′
2

c2nmiσ2
w

(
1

2
+ log

2n

δ
) +

c′1
c1nσ2

w

log
2

δ
, (41)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

.464

Proof Instead of generating the mean of prior with a prior predictor, the vanilla meta-learning
framework directly produces the mean of prior wP by sampling from hyperposterior Q =
N (wQ, σ2

wIdw). Then the base learner algorithm Ab(S, P ) utilizes the sample set S and the prior
P = N (wP , σ2

wIdw) to produce a posterior Q = Ab(S, P ) = N (wQ, σ2
wIdw). Similarly with the

two-steps proof in Theorem 3, we first get an intra-task bound by using Theorem 5. For any δi > 0,
we have

PSi∼D
mi
i

{
E

(x,y)∼Di

E
wP∼N (wQ,σ2

wIdw )
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y)

≤ c2
1− e−c2

· 1

mi

mi∑
j=1

E
wP∼N (wQ,σ2

wIdw )
E

w∼N (wQ,σ2
wIdw )

`(hw(xj), yj)

+
1

(1− e−c2) ·mi

(
1

2σ2
w

‖wQ‖2 + E
wP

i ∼N (wQ,σ2
wIdw )

1

2σ2
w

‖wQ
i −wP

i ‖2 + log
1

δi

)
,∀Q

}
≥ 1− δi,

(42)

The term E
wP

i ∼N (wQ,σ2
wIdw )

1
2σ2

w
‖wQ

i −wP
i ‖2 can be simplified as

E
wP

i ∼N (wQ,σ2
wIdw )

1

2σ2
w

‖wQ
i −wP

i ‖2

=
1

2σ2
w

(
E
wP
‖wQ

i ‖
2 − 2( E

wP
wQ
i )>wQ + ‖wQ‖2 + V

wP
i

[‖wP
i ‖]
)

=
1

2σ2
w

(
‖ E
wP

wQ
i −wQ‖2 + σ2

w

)
, (43)

where V
wP

i

[‖wP
i ‖] denotes the variance of ‖wP

i ‖. Then we get an inter-task bound. For any δ0 > 0,

we have

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
E

(D,m)∼τ
E

S∼Dm
E

wP∼N (wQ,σ2
wIdw )

E
w∼N (wQ,σ2

wIdw )
E

(x,y)∼Di

`(hw(x), y)

≤ c1
1− e−c1

· 1

n

n∑
i=1

E
wP∼N (wQ,σ2

wIdw )
E

w∼N (wQ,σ2
wIdw )

E
(x,y)∼Di

`(hw(x), y)

+
1

(1− e−c1)n

(
1

2σ2
w

‖wQ‖2 + log
1

δ0

)
,∀Q

}
≥ 1− δ0. (44)
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For any δ > 0, set δ0 , δ
2 and δi , δ

2n for i = 1, . . . , n. Using the union bound, we finally get

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q)

≤ c1c2
(1− e−c1)(1− e−c2)

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

êr(Ab(Si, Pi))

+
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· 1
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≥ 1− δ. (45)

Similarly, we can further simplify the notation and obtain that

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q) ≤ c′1c′2êr(Q)

+(

n∑
i=1

c′1c
′
2

2c2nmiσ2
w
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c′1

2c1nσ2
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2

2c2nmiσ2
w

‖ E
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+const(δ, n,mi),∀Q

}
≥ 1− δ, (46)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. This completes the proof.465

C DETAILS OF EXPERIMENTS466

C.1 DATA PREPARATION467

We used the 5-way 50-shot classification setups, where each task instance involves classifying im-468

ages from 5 different categories sampled randomly from one of the meta-sets. We did not employ469

any data augmentation or feature averaging during meta-training, or any other data apart from the470

corresponding training and validation meta-sets.471

C.2 NETWORK ARCHITECHTURE472

Auto-Encoder for LCC For CIFAR100, the encoder is 7 layers with 16-32-64-64-128-128-256473

channels. Each convolutional layer is followed by a LeakyReLU activation and a batch normaliza-474

tion layer. The 1st, 3rd and 5th layer have stride 1 and kernel size (3, 3). The 2nd, 4th and 6th layer475

have stride 2 and kernel size (4, 4). The 7th layer has stride 1 and kernel size (4, 4). The decoder is476

the same as encoder except that the layers are in reverse order. The input is resized to 32× 32. For477

Caltech-256, the encoder is 5 layers with 32-64-128-256-256 channels. Each convolutional layer is478

followed by a LeakyReLU activation and a batch normalization layer. The first 4 layers have stride479

2 and kernel size (4, 4). The last layer has stride 1 and kernel size (6, 6). The decoder is the same480

as encoder except that the layers are in reverse order. The input is resized to 96× 96.481

Base Model The network architecture used for the classification task is a small CNN with 4 con-482

volutional layers, each with 32 filters, and a linear output layer, similar to (Finn et al., 2017). Each483

convolutional layer is followed by a Batch Normalization layer, a Leaky ReLU layer, and a max-484

pooling layer. For CIFAR100, the input is resized to 32 × 32. For Caltech-256, the input is resized485

to 96× 96.486

C.3 OPTIMIZATION487

Auto-Encoder for LCC As optimizer we used Adam(Kingma & Ba, 2015) with β1 = 0.9 and488

β2 = 0.999. The initial learning rate is 1 × 10−4. The number of epochs is 100. The batch size is489

512.490
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LCC Training We alternatively train the coefficients and bases of LCC with Adam with β1 = 0.9491

and β2 = 0.999. In specifics, for both datasets, we alternatively update the coefficients for 60 times492

and then update the bases for 60 times. The number of training epochs is 3.The number of bases is493

64. The batch size is 256.494

Pre-Training of Feature Extractor We use a 64-way classification in CIFAR-100 and 150-way495

classification in Caltech-256 to pre-train the feature embedding only on the meta-training dataset.496

For both CIFAR100 and Caltech-256, an L2 regularization term of 5e−4 was used. We used the497

Adam optimizer. The initial learning rate is 1 × 10−3, β1 is 0.9 and β2 is 0.999. The number of498

epochs is 50. The batch size is 512.499

Meta-Training We use the cross-entropy loss as in (Amit & Meir, 2018). Although this is inconsis-500

tent with the bounded loss setting in our theoretical framework, we can still have a guarantee on a501

variation of the loss which is clipped to [0, 1]. In practice, the loss is almost always smaller than one.502

For CIFAR100 and Caltech-256, the number of epochs of meta-training phase is 12; the number of503

epochs of meta-testing phase is 40. The batch size is 32 for both datasets. As optimizer we used504

Adam with β1 = 0.9 and β2 = 0.999. In the setting with a pre-trained base model, the learning rate505

is 1× 10−5 for convolutional layers and 5× 10−4 for the linear output layer. In the setting without506

a pre-trained base model, the learning rate is 1× 10−3 for convolutional layers and 5× 10−3 for the507

linear output layer. The confidence parameter is chosen to be δ = 0.1. The variance hyper-parameter508

for prior predictor and base model are σw = σv = 0.01. The hyperparameter α1, α2 in LML and509

ML-A are set to 0.01. For MAML (Finn et al., 2017) and MatchingNet (Vinyals et al., 2016). Both510

two methods use the Adam optimizer with initial learning rate 0.0001. In the meta-training phase,511

we randomly split the samples of each class into support set (5 samples) and query set (45 samples).512

The number of epochs is 100. For MAML, the learning rate of inner update is 0.01.513
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