
Under review as a conference paper at ICLR 2019

FILTER TRAINING AND MAXIMUM RESPONSE: CLASSI-
FICATION VIA DISCERNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This report introduces a training and recognition scheme, in which classification
is realized via class-wise discerning. Trained with datasets whose labels are ran-
domly shuffled except for one class of interest, a neural network learns class-wise
parameter values, and remolds itself from a feature sorter into feature filters, each
of which discerns objects belonging to one of the classes only. Classification of
an input can be inferred from the maximum response of the filters. A multiple
check with multiple versions of filters can diminish fluctuation and yields better
performance. This scheme of discerning, maximum response and multiple check
is a method of general viability to improve performance of feedforward networks,
and the filter training itself is a promising feature abstraction procedure. In con-
trast to the direct sorting, the scheme mimics the classification process mediated
by a series of one component picking.

1 INTRODUCTION

Suppose given a task of sorting a bunch of colored balls, we can usually do it in two ways. One is to
randomly pick up a ball and deposit it to one of the groups according to its color. Or we can collect
balls of the same color at a time until the last two colors are separated. Standard neural networks
for classification tasks work in the former manner, for which it is an implied principle that every
class should be on an equal footing and biases are harmful. This is the reason why the training data
contain subsets of identical sample number or close in size for each class. The scheme introduced
in this work is an analogue of the latter, in which the networks do not respond equally to features of
different classes. Rather, they function more like filters, and ascription of an object is inferred from
how strong their responses are.

The filter networks are obtained by filter training, from which we have a group of networks or
more specifically a batch of parameter values, number of which is equal to the number of classes.
Ensemblization appears to be a built-in trait of this recognition scheme. Since a prediction should
not refer to a preassigned label, a quantitative evaluation of how each filter responds to an input
should be defined on an equal footing. As long as one of the alternative filters scores higher than
the correct one, the prediction is wrong. Fluctuation makes the correct filter the weaker in this
one to many contest. To do it a favour we introduce another hierarchy of ensemblization that is
a batch of versions for the filters, in the hope that the correct filter could be the overall winner in
this tournament. These three steps constitute a classification procedure of discerning, maximum
response, and multiple check (DMM).

The DMM scheme can improve accuracy of mediocre networks, networks already having high ac-
curacy, and those trained with small-scale data. Fundamental reason for the increase is that in the
filter training a multiclass problem is reduced to a pseudo binary classification, the class of interest
and the others. Intuitively, we have the feeling that telling a component from a mixture is easier
than sorting all the ingredients. The pseudo reduction mitigates workload. Depending on capacity
of networks and amount of training samples, the increase of accuracy varies. Nevertheless, as per-
formance improvement due to the mitigation is almost sure, the scheme can be a general route to
enhance feedforward networks. Moreover, since a filter is specifically trained for one class, the filter
training is a feature abstraction procedure in itself.

In the following, we first investigate the mechanism of filter training and how it works through a
toy model. From this classification of points in a 2D plane, we can clearly view how the decision

1



Under review as a conference paper at ICLR 2019

boundaries are reshaped. Then, we give a probabilistic argument why the maximum response is
a proper criterion to infer classification. After remarking on its relation with related works, we
experiment MMD on the CIFAR-10 and MNIST datasets.

2 FILTER TRAINING

The training dataset of our toy model consists of randomly scattered points around four centers
at (0, 0), (0, 3), (3, 0), (3, 3), with a quota of 100, 70, 30, 100 points, respectively. All directions
are equally probable, and the radiuses obey a normal distribution with standard deviation of 2.0.
Points around (0, 0) is labelled red, green for (0, 3), (3, 0), and blue for (3, 3), so that each class
has 100 points. This simple classification is handled by a network made of an input and an output
layer, which are fully connected layers. Size of the input layer is set as 128 nodes, and the ReLU
activation is used. The Adam optimizer with a learning rate of 10−4 and random shuffling of samples
are adopted for all the trainings in this work. The ordinary training is run for 104 iterations with batch
size of 100 to build the original classification network.

By filter training we want to make features pertaining to a specified class stand out and those related
to the others suppressed. The most direct attempt is to train/retrain the network with the sub dataset
of the class. The resulting model, however, is a nearly constant mapping to that class label, no
matter what the real ascription is. In Fig. 1 are results of retraining the network with the blue
subset. Fig. 1(a) is the portion of samples assigned to their original class (training accuracy), and
Fig. 1(b) shows portion of the red and green data points that are assigned to blue (misassignment).
In Fig. 1(c) the light blue background fully covers the dataset, indicating that no decision boundary
remains. Indeed, this retrain procedure leads to a constant mapping, which blurs all the features, and
the model totally loses recognition capacity.

Figure 1: (a) Training accuracy for the targeted class (blue) approach 1.0, but (b) the red and green
are also assigned to blue, mistakenly. (c) No decision boundary exists.

The above results are conceptually reasonable, since filtering makes no sense without unwanted
components as reference. The lesson is that for filter training the targeted class along is not enough
and the alternative classes should be taken into account. Accordingly, we found two viable ways to
prepare the training dataset: 1) perform a random label shuffling among samples in the unspecified
classes; 2) each sample, except those in the specified class, is assigned labels of all the other un-
specified classes beside its own. If the random sample shuffling is used during training and the label
shuffling in preparation-1 is redone at each epoch, the two are equivalent.

Datasets for training a filter of the blue are illustrated in Fig. 2. An obvious advantage of preparation-
1 is smaller data size, which is equal to that of the original. For our toy model, there are only two
alternative classes, so the data size is only doubled in Fig. 2(c). Size enlargement with preparation-2
is much severe when the number of classes increases. For a training set having Nc classes, under
each label of the alternative classes all the samples except those of the specified class should be
included, so every subclass dataset is augmented by a factor of Nc − 1. So is the total training
dataset, if Nc− 2 copies of the specified class is included to keep its sample density, as what is done
for the toy model. For this reason, we use the equivalent reshuffling to implement preparation-2 in
our experiments. Preparation-2 has its advantage that the data are better randomized by multiple
labelling while preparation-1 is a dataset with definite labelling.

2



Under review as a conference paper at ICLR 2019

Figure 2: (a) The original training dataset. To train a filter for the blue, we can (b) randomly
exchange the labels among the red and green points, as denoted by the edge color, or (c) add greenly
labeled red, redly labeled green, and double the blue to keep the sample density.

Fig. 3 shows results of two independent filter trainings using preparation-1 and -2, respectively. Both
the preparation procedures lead to increased accuracy of the targeted class, while accuracy for the
alternative classes are decreased. More importantly, the filter training does not suffer from decision
boundary destruction. A point of possible use is the similarity in the two trainings using preparation-
2, where both the training accuracies and trained decision boundaries follow a similar pattern. This
implies that we can use the filter training to abstract features and construct innate metrics.

Figure 3: Training accuracy and decision boundary in two indenpendent filter trainings for the blue
with (a) preparation-1 and (b) preparation-2. Stable behavor in (b) implies that filter training can
reflect innate pattern of the dataset.

To see more clearly the effect of filter training, we trained a filter for the red using preparation-2 and
plot in Fig. 4 snapshots of decision boundary reshaping. From comparison with Fig. 1, although the
accuracy for the targeted class is less close to 100%, considerable increase results. In contrast to
Fig. 1(b), filter training only add a little misassignment, and this small increase is understandable,
since boundary expansion as well as other adaptations is a reasonable strategy for the specified
class to increase its accuracy. Difference between the increase of accuracy (≈ 0.2) and that of
misassignment (≈ 0.1) indicates that the drawings-in of data are purposeful and selective.

From the dynamics of decision boundary construction, we can understand how and why the filter
training works. As is known, in each training step the boundary is adjusted a little bit according to
the gradients to lower the cost. The gradients can be imagined as instructions encoding direction
and strength of forces acting on the decision boundary. When a training batch is fed, each involved
sample exerts a pull or push force on the boundary, based on its own location in the configuration
space, its label, and the boundary position. Since the cost function is a mean value, forces from
the samples in the unspecified classes are diminished by the random labelling, and the samples in
the specified class is dominant. Still owing to the randomness, small movements by the unspecified
samples in different training steps result in mutual cancelling other than increment. So only the class

3



Under review as a conference paper at ICLR 2019

Figure 4: Snapshots of decision boundaries during fitler training for the red. Misassigment in (b) is
kept relatively low. Boundary for the red is purposefully expanded to increase accuracy.

of interest accounts for effective movement of the decision boundary and adapts the boundary to a
shape that well divides itself from the others.

3 MAXIMUM RESPONSE

Because every filter gives a softmax evaluation, we must define a selection rule to infer classification.
In the ideal case, we expect only one filter has a strong response at the corresponding element, while
responses of the other elements and of the other filters are suppressed. For an input belonging to the
first class, for instance, it is the ideal output for the first filter that its first digit is close to 1.0 and
consequently the other digits are minimal, and meanwhile for the other filters the softmax slightly
fluctuates around 1/Nc. In reality, however, this is hardly the case.

When more than one filters give positive indication, i.e., the corresponding digit is the biggest, we
choose the one having the strongest response. This criterion seems good, since it always yields a
result. Nevertheless, our choice is faced with a dilemma of superiority, when outputs have a pattern
as shown in Fig. 5(a), where r12 > r11 > r22 > r21(r23). The first filter has the strongest response
at the corresponding digit (r11 > r22) but the indication is negative (r11 < r12), while the second
filter makes a positive indication (r22 > r21(r23)). Which is superior, the maximum response (MR)
or the positive indication (PI)?

Since switch statements can not be generalized to a batch of inputs, instead of using them, we
compute a prediction under the positive indication superiority by defining a score vector

s = p + p ∗m + m, (1)
p = agrmax(R) == agrmax(I), (2)

m =
1

Nc

∑
j

(R ∗ I)ij , (3)

where the multiplications are elementwise. Here, R is the matrix whose rows are the softmax
evaluations, and I is an Nc × Nc unit matrix whose nonzeros mark the corresponding digits. The
argmax operates on the rows, so p is a vector recording the indications with 1 and 0, and m records
softmax values at the corresponding digits. The second term p∗m facilitates the maximum response
criterion in the case of multiple positive indications. The multiplication nulls the value of filters that
give negative indications and only positive indications matter, so the superiority is untouched. The
third term is added to ensure a result when no positive indication is made (p = 0). Since any positive
indication scores 1 in p and m < 1.0, it does not alter the superiority. If only the third term presents,
the maximum element of s dictates the classification, which is nothing but the maximum response
criterion. It can be readily checked by substitution that only the pattern in Fig, 5(a) can trigger the
difference between the two criteria.

4



Under review as a conference paper at ICLR 2019

Figure 5: (a) The output pattern that causes the superiority dilimma. Multiple check results with
MR (blue) and PI (red) up to 10 fitler versions for (b) preparation-1 and (c) preparation-2, where the
black point denotes accuracy of the orginal network. (d) An instance of rights (circled) and wrongs
(dotted) with respect to the original results: the improvements can be undertood from the view of
economic brain power deployment.

Beside the maximum response, there can be other ways to solve the problem of multiple positive
indications. When we are indecisive, we may consult an expert. Similarly, we can train such ex-
pert networks with only subclass datasets that are concerned, and refer to the corresponding one
according to the positive indications. Another resort is the peer review like checking. Similarity in
background and diversity in specialty may compensate the weakness and bias. Since this multiple
check procedure is more pertinent to filtering in the sense that it can suppress fluctuations, we focus
our study on it. Here two types of fluctuations should be distinguished. One is fluctuation in the
softmax evaluations, which is harmful in that it can cause false positive indications. When they oc-
curs, however, it is desirable that distribution of the false positive indications fluctuates in different
filter versions. With the latter, incremental status of the real positive indication could be built up.
This is the mechanism of the multiple check, and the motivation of introducing randomness.

As randomness has already been there in the training process and data preparation, in the multiple
check we just retrain the network to build new versions, and scores of different versions are averaged.
For the toy model, we use the training data also as test data and plot in Fig. 5 the test accuracy up
to 10 filter versions. Better performance for preparation-2 (Fig. 5(c)) suggests that fluctuation is
indeed harmful. Stronger fluctuations are also the cause for the bigger difference in Fig. 5(b), since
we can see from Fig. 5(a) that occurrence of the pattern requires strong fluctuations. In both results,
the maximum response is superior to the positive indication. There could be a reason.

Let us consider a point located near the decision boundary, where improvements are actually made
by DMM (see Fig. 5(d)). As the softmax is unitary, we assume the Dirichlet distribution for output
of every filter, when randomness are introduced into filter versions by the stochastic operations such
as the stochastic gradient descent, the random shuffling of training samples, and the random label
assignment in filter training. Note that the fixated point as input is unchanged while the outputs in
different versions are stochastic due to the randomness. For a point exactly at the ideal boundary
separating class-1 and class-2,

D0
1 = Dir(α, β, β, · · · , β), (4)

D0
2 = Dir(β, α, β, · · · , β), (5)
· · · · · · · · · · · · · · · · · · , (6)

D0
Nc

= · · · · · · · · · · · · , (7)

is a proper assumption by symmetry argument. The less relevant distributions are denoted in ellipsis,
for which the probability at the corresponding digit is a little bit biased, since filter training tends to
expand the decision boundary enclosing the class of interest. Compared to other r1j(j 6= 1), r12 is
not endowed with specialty, because in the filter training for class-1, these classes (j 6= 1) are treated
equally. It is the same for r21.

5



Under review as a conference paper at ICLR 2019

When the point shifts away form class-2 and into class-1, a bias is raised between the two filters.
The probability density peak of filter-1 should move toward the high end of r11, and vice versa for
filter-2, so we can expect

D1 = Dir(α+ ∆, β, β, · · · , β), D2 = Dir(β, α−∆, β, · · · , β) (8)

with ∆ > 0, and for shift into class-2 the sign is reversed, ∆ → −∆. Here, we do not alter β and
parameters of the remaining distributions (so Dn = D0

n, n > 2), which implies that we attribute
variation of distribution on these digits to secondary effect of varied α. This is plausible, since
∆ is a function of the direction and distance the point away from the boundary, and meanwhile
labels for the alternative classes are randomly shuffled, which diminishes dependence on position
and direction. Of course, weak dependence could remain, since the training data themselves are not
evenly distributed in the configuration space.

For clarity and without loss of generality, we can assume rik > rij for k > j, beside r12 > r11 >
r22 > r21. Then, incidence of the pattern is given by integral P =

∫
D1D2 · · ·DNc

dR over the
assumed region subject to unity

∑
j rij = 1. Now, the problem is a Bayesian like inference—shift

into which class yields higher incidence. As what really matters is the trend, we can avoid tedious
calculation for an analytic formulation by taking the derivative with respect to ∆. At the boundary
∆ = 0, and presence of both ∆ and −∆ cancels the derivatives of the normalization factors. The
resulting derivative reads

dP

d∆

∣∣∣
∆=0

=

∫
ln

(
r11

r22

)
D0

1D
0
2 · · ·D0

Nc
dR, (9)

which is positive due to r11 > r22. So a positive ∆, corresponding to shift into class-1, increases
the incidence. This means that an input having the output in Fig. 5(a) should be ascribed to class-1
and hence maximum response is superior to positive indication.

Conceptually, the enhancement by DMM is due to the mitigation of workload, so that more delicate
decision boundaries can be constructed. With the wrongs and rights with respect to the original
results as shown in Fig. 5(d), we can go to more details. Near where DMM makes a mistake, a cor-
rection is made to compensate, which ensures an accuracy not going lower. The three close points
around (−0.5,−1.5) is an instance that one wrong is traded for two rights and has one net gain. The
closeness of the points implies that high expense of capacity is required to make a delicate discrim-
ination. It is like that a person needs to spend considerable brain power to obtain relatively small
gain, which is uneconomic if the brain power is not abundant. This economic consideration also
shows up in the sparse regions, where DMM adds rights but no wrongs. Due to the sparsity, a gain
requires paying more attention to adapt the decision boundary more, which is also an uneconomic
deployment without the release of brain power.

4 RELATED WORKS

Basically, DMM is an ensemble learning scheme (Dasarathy & Sheela, 1979; Hansen & Salamon,
1990; Wolpert, 1992) with specialties in several aspects. An obvious distinction is that one filter can
not do classification but a class specified evaluation of pertinence. While each sub network in the
main stream ensemble learning schemes is a classifier, only a full batch of filters constitutes one.
The maximum response use the classifier selection approach (Jacobs et al., 1991; Jordan & Jacobs,
1994; Woods et al., 1997; Alpaydin & Jordan, 1996; Giacinto & Roli, 2001), and the multiple check
is a classifier fusion approach (Cho & Kim, 1995; Kuncheva et al., 2001), so DMM integrates the
two ensemble learning fashions. As the random label shuffling can be performed on any labelled
dataset, one can incorporate DMM into other schemes as an additional ensemblization hierarchy.

Owing to difference between the random label shuffling and the usually used random (Breiman,
1996) and/or refining (Schapire, 1990; Freund & Schapire, 1997; Ho, 1998) resampling, in filter
training the task simplification is not due to partition of the data but realized by making most of
them irrelevant. Interplay between the label randomization and these resampling strategies may
bring mutual benefits. Resampling can be helpful in that they are ways to provide diversity and
realize feature splitting, which could yields more specific filters and diverse versions. Reciprocally,
the filter training can be a tool to guide the resampling, since a filter is specified for one class but
still give full softmax output, which is a measure of pertinence. In other words, by filter training we

6



Under review as a conference paper at ICLR 2019

can construct metrics of the dataset that is more specific for each class and more comprehensive in
the sense that we have measures from perspectives of every class.

5 EXPERIMENTS

All the experiments are implemented with a CNN made of two convolutional layers followed by two
fully connected layers. The convolutional layers have respectively 32 and 64 filters of size 5 × 5
and stride 2. The hidden fully connected layer has 128 nodes. The ReLU activation is applied to
every layer (except the output one). The original network is trained for 100 epochs with batch size
of 100. To exclude the possibility that the improvement is due to unfulfilled training, we check
this by refining the output layer with additional 104 iterations, which does not lead to improvement.
All the filter trainings in the experiments also run for 104 iterations. The training accuracy and
misassignment are evaluated with the training batch to be fed. As fine tuning the last layers of a
pretrained model can usually adapt it to a new task, in filter training we only retrain the output layer.
This is not necessarily a standard, since filter training can be performed on the whole network or
any part of it.

For CIFAR-10, at first we directly performed filter training to the output layer, and the results are
shown in Fig. 6(a). The increasing accuracy for the specified class, the falling accuracy for an
alternative class, and the low misassignment all suggest that the filter training works well. But
the multiple check results with 10 independent implementations of preparation-1 does not lead to
an increment. When the training samples are abundant, the random label shuffling is not random
enough to disperse the distribution of false positive indications, so that the different filter versions
tend to make similar mistakes. Similar accuracies for the two criteria are an indication of small
fluctuation in the softmax outputs, since, as we have noted, fluctuation facilitates the outputs that
cause the difference.

Figure 6: Upper: typical training accuracies for the specified class (blue) and for an alternative class
(green), and misassignment (red) on CIFAR-10, with (a) preparation-1, (b) class-wise label permu-
tation and preparation-1, and (c) class-wise label permutation and preparation-2. Down: mutiple
check results with MR (blue) and PI (red), and the original test accuracy is marked for comparison.

We tried to facilitate diversity in different filter versions by randomly permuting the class labels
and retraining the last two layers with 104 iterations, and then remolded the output layer to filters.
We note that this permutation and the random shuffling in preparation-1 are utterly different in that
the former is class-wise while the latter is sample-wise. From multiple check results in Fig. 6(b),
the strategy successfully builds up an increment. Start of the training accuracy for the specified
class is low, because the label permutation is purposefully misleading. In Fig. 6(c), we changed
preparation-1 to preparation-2, which does not improve the accuracy further. The takeaway is that
more randomization among filter versions is needed when the data size is large, and since the sample

7



Under review as a conference paper at ICLR 2019

abundance has largely diminished randomness within a softmax evaluation, preparation-2 adds little
benefit. We used preparation-1 in the remaining experiments.

We experimented small size training data by using the first 500 samples for each class and present
the results in Fig. 7(a). Here, the single version result is worse than the original. The reason could
be overfitting caused by the filter training, which is corrected by the multiple check. In Fig. 7(b),
we divided the full CIFAR-10 dataset into 10 partitions and trained 10 filter versions, with which
the accuracy is further increased. We turned off the class-wise label permutation in Fig. 7(c), which
does not worsen the performance. This implies the possibility that the diversity can result from
modification of the dataset itself, such as augmentation or randomization with noise.

Figure 7: Mutiple check results for reduced CIFAR-10 with (a) a single partition (b) full partitions
and the class-wise label permutation, and (c) full partitions without the label permutation.

From results for MNIST in Fig. 8, both the training accuracy for the specified class and the test
accuracies are increased, despite small room for improvement. Moreover, the single version im-
provement is the biggest in all the experiments. We can expect networks that already have high
accuracy to work quite well with DMM, since there is no reason for worse performance, when the
capacity is relatively strong and the task becomes easier.

Figure 8: Results for the MNIST dataset with preparation-1 and the class-wise label permutation.
Notations are the same as the above.

6 CONCLUSION

Motivated by the classification process via one component discerning, we propose the filter training
and maximum response. The multiple check can build up an increment of performance if the fluctu-
ation in the responses are properly distributed among filter versions. How to deal with the two types
of fluctuations is the major concern for it to work well. DMM constitutes a special ensemble learning
scheme, which itself can be incorporated into other schemes as an additional hierarchy of ensem-
blization. It is beneficial if similar mechanism can be integrated into other network architectures,
since task simplification is a common strategy in intellegence activities.

REFERENCES

Ethem Alpaydin and Michael I. Jordan. Local linear perceptrons for classification. IEEE Transac-
tions on Neural Networks, 7(3):788–792, 1996.

8



Under review as a conference paper at ICLR 2019

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Sung-Bae Cho and J.H. Kim. Combining multiple neural networks by fuzzy integral for robust
classification. IEEE Transactions on Systems, Man and Cybernetics, 25(2):380–384, 1995.

Belur V. Dasarathy and B.V. Sheela. Composite classifier system design: concepts and methodology.
Proceedings of the IEEE, 67(5):708–713, 1979.

Yoav Freund and Robert E. Schapire. Decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Giorgio Giacinto and Fabio Roli. Approach to the automatic design of multiple classifier systems.
Pattern Recognition Letters, 22(1):25–33, 2001.

Lars K. Hansen and Peter Salamon. Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10):993–1001, 1990.

Tin Kam Ho. Random subspace method for constructing decision forests. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991.

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural Computation, 6(2):181–214, 1994.

Ludmila I. Kuncheva, James C. Bezdek, and Robert P.W. Duin. Decision templates for multiple
classifier fu-sion: an experimental comparison. Pattern Recognition, 34(2):299–314, 2001.

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

Kevin Woods, Jr. Kegelmeyer, W. Philip, and Kevin Bowyer. Combination of multiple classifiers
using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(4):405–410, 1997.

9


	Introduction
	Filter training
	Maximum response
	Related works
	Experiments
	Conclusion

