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ABSTRACT

We propose a novel approach for image segmentation that combines Neural Or-
dinary Differential Equations (NODEs) and the Level Set method. Our approach
parametrizes the evolution of an initial contour with a NODE that implicitly learns
from data a forcing function describing the evolution. In cases where an initial
contour is not available or to alleviate the need for careful choice or design of
contour embedding functions, we propose using NODEs to directly evolve the
embedding of an input image into a pixel-wise dense semantic label. We evalu-
ate our methods on kidney segmentation (KiTS19) and on salient object detection
(PASCAL-S, ECSSD and HKU-IS). In addition to improving initial contours pro-
vided by deep learning models while using a fraction of their number of parame-
ters, our approach achieves Fβ scores that are higher than several state-of-the-art
deep learning algorithms.

1 INTRODUCTION

Figure 1: Transversal slices of CT scans. Leftmost image: initial contour provided by a UNet model.
Other images: intermediate steps of the evolution of the initial contour with our Neural ODE model.

Image segmentation is the task of delineating pixels belonging to semantic labels. The ability to
automatically segment objects is important because accurate labeling is expensive and hard (Vit-
tayakorn & Hays, 2011; Zhang et al., 2018). Automatic image segmentation can have large impact
in many domains, e.g. obstacle avoidance in autonomous driving and treatment planning in medical
imaging.

Accurate classification of pixels in close proximity to inter-class boundaries remains a challenging
task in image segmentation. Object boundaries can have high curvature contours or weak pixel
intensity that complicate separating the object from surrounding ones. In deep CNNs (Simonyan &
Zisserman, 2014; Zeiler & Fergus, 2014; Szegedy et al., 2015; He et al., 2016; Chen et al., 2017), the
object-of-interest and surrounding competing objects can provide equal context to a receptive field
of a boundary pixel, which can make accurate classification difficult. Humans also find it difficult to
accurately label pixels near object boundaries.

Level Set methods (Zhao et al., 1996; Brox et al., 2006) and Active Shapes (Paragios & Deriche,
2000; Chan & Vese, 2001) have been proposed to incorporate shape and image priors to mitigate
boundary ambiguities (Tsai et al., 2003; Rousson & Paragios, 2002). The Level Set method for
image segmentation evolves an initial contour of an object-of-interest along the normal direction
with a forcing function. A contour is represented by an embedding function, typically a signed
distance function, and its evolution amounts to solving a differential equation (Osher & Sethian,
1988).
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In this work, we extend the formulation of the level set method. Inspired by the recent progress in
Neural Ordinary Diferential Equations (NODEs) (Chen et al., 2018; Dupont et al., 2019; Gholami
et al., 2019), we propose to use NODEs to solve the level set formulation of the contour evolution,
thus learning the forcing function in an end-to-end data driven manner. Unlike earlier attempts in
combining the level set method with CNNs, we benefit from NODEs parametrization of the deriva-
tive of the contour because it allows us to incorporate external constraints that guide the contour
evolution, e.g. by adding a regularization penalty to the curvature of the front or exploiting images
at the evolving front by extracting appearance constraints in a non-supervised way.

Finally, similar to experiments in (Chen et al., 2018), to alleviate the need for careful choice or
design of contour embedding functions, we propose a NODE-based method that evolves an image
embedding into a dense per-pixel semantic label space.

To the best of our knowledge, this work is the first to apply Neural ODEs to real world problems. We
validate our methods on two 2D segmentation tasks: kidney segmentation in transversal slices of CT
scans and salient object segmentation. Given an initial estimate of kidney via existing algorithms,
our method effectively evolves the initial estimates and achieves improved kidney segmentation, as
we show in Figure 1. On real life salient objects, in addition to contour evolution, we use our method
to directly evolve the embedding of an input image into a pixel-wise dense semantic label.

Following (Hu et al., 2017), we compare against the results in (Wang et al., 2017; Li et al., 2016; Li
& Yu, 2015; Zhao et al., 2015; Lee et al., 2016; Wang et al., 2015; Hu et al., 2017) and achieve ω-Fβ
scores, PASCAL-S 0.668 and ECSSD 0.768, that are higher than several state-of-the art algorithms.
Our results suggest the potential of utilizing NODEs for solving the contour evolution of level set
methods or the direct evolution of image embeddings into segmentation maps. We hope our findings
will inspire future research in using NODEs for semantic segmentation tasks. We foresee that our
method would allow for intervention on intermediate states of the solution of the ODE, allowing for
injection of shape priors or other regularizing constraints.

In summary, our contributions are:

• We propose to use NODEs to solve the level set formulation of the contour evolution.

• We propose using NODEs to learn the forcing function in an end-to-end data driven way.

• We show NODEs can also evolve image embeddings directly into dense per-pixel semantic
label spaces, which may alleviate the need for careful choice or design of contour embed-
ding functions.

2 METHODS

Suppose I is a 2D image, S is the contour of an object we want to segment, and φ is a contour
embedding function, defined as a distance map, such that S = {(x, y)|φ(x, y) = 0}. We assume
an initial but rough contour of the object is given by a human operator or by an existing algorithm.
A level set segmentation (Osher & Sethian, 1988) solves a differential equation to evolve a contour
along its normal direction with a speed function F as:

dφ

dt
= |∇φ|F for t ∈ [0, 1], (1)

where the initial value φ0(x, y) is defined as a signed Euclidean distance from (x, y) to the closest
point on the initial contour S0. The speed function F is often modelled to be a function of the target
image I, the shape statistics of the object contour (derived from training shapes), or a regularizing
curvature term (∇ ∇φ

‖∇φ‖ ).

In Neural ODEs, we parametrize the derivative of the hidden state h using a neural network fθ
parametrized by θ:

dh

dt
= fθ(h, t). (2)

The relationship between Eq. 1 and Eq. 2 is immediate. In the next section, we propose two
approaches that adapt NODEs to the level set method for image segmentation.
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2.1 CONTOUR EVOLUTION WITH NODES

We propose to solve a more general form of Eq. 1 to evolve an initial contour estimate φ̂ for
image segmentation. We define the state of the NODE to be φ̂ augmented with the input image’s
embedding, h. We then advance the augmented state, γ = (φ̂, h), using NODEs, which can be
interpreted as estimating the speed function F described in Eq. 1. Mathematically,

γ = (φ̂, h),

dγ

dt
= fθ(γ, t) for t ∈ [0, 1],

γ(0) = (φ̂(0), h(0)),

φ̃ = φ̂(1) + ψ(γ(1)),

(3)

where t is the time step in the evolution, γ is the augmented state of the NODE, f is a neural network
parametrized by θ, φ̂(0) is the initial value of the distance map, h(0) is the initial value of the image
embedding, ψ is a learned function and φ̃ is the dense per-pixel distance map prediction. Figure 2a
schematically illustrates our initial contour evolution approach. Throughout this paper, we will refer
to this method as Contour Evolution.

2.2 IMAGE EVOLUTION WITH NODES

In our first approach, we obtain a final optimal contour by evolving an initial estimate. In our
second approach, inspired by Chen et al. (2018), we evolve an image embedding h and project it
into a dense per-pixel distance map φ̃, whose zero level set defines the final segmentation map,
S(t) = {(x, y)|φ(t)(x, y) = 0} . Mathematically,

dh

dt
= fθ(h, t) for t ∈ [0, 1],

h(0) = λ(I),

φ̃ = ψ(h(1)),

(4)

where t is the time step in the evolution, f is a neural network parametrized by θ, I is an image, λ is
a learned image embedding function and ψ is a learned function that maps an image embedding to a
distance map. Figure 2b schematically illustrates our direct image evolution approach. Throughout
this paper, we will refer to this method as Image Evolution.

3 IMPLEMENTATION

In the following subsections, we describe our design choices in loss function and their regularization
terms, architectures, strategies for emphasizing the evolution of the contour on a region of interest.
We also detail our model initialization strategies to prevent drifting from the sub-optimal initial
value, and choices of error tolerances and activation normalization.

3.1 LOSS FUNCTION AND REGULARIZATION TERMS

We optimize the parameters of our NODE models, described in Figures 2a and 2b, to minimize the
empirical risk computed as the Mean Squared Error (MSE) between the target (φ) and predicted (φ̃)
distance maps. We remind the reader that although our techniques can access intermediate NODE
states, which could allow injection of priors or other constraints, we do not explore this in our current
experiments, and relay it to future work.

3.2 NARROW BAND AND RE-INITIALIZATION

In the level set formulation, all levels that describe the propagating contour are tracked. Adalsteins-
son & Sethian (1995) proposed limiting the evolution to the subset of levels within a narrow band of
the zero level contour.
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Figure 2: Diagrams for the contour and image evolution methods described in sections 2.1 and 2.2.
Superscripts 0 and 1 represent initial value and numerical solution of the NODE respectively.

In our approach, we obtain the equivalent of a narrow band by applying a hyperbolic tangent non-
linearity on the evolved distance map. It effectively attenuates the contribution of levels in the
optimization process. This transformation is especially valuable in refinement setups because it
weights the gradients of the loss according to the proximity to the contour1.

Re-initialization of φ is another common practice in classical level set methods. It ensures the
states in the trajectory of the numerical solution remain valid distance maps. (Sussman et al., 1994;
Hartmann et al., 2010) propose to first extract a zero level set of an evolving state, and re-calculate
a distance map of that contour. In our experiments, we found that our optimization is not sensitive
to non valid distance maps, and we did not find it necessary to reinitialize φ.

3.3 PARAMETER INITIALIZATION AND LEARNING RATE RAMPUP

In tasks where the initial value is already close to the desired solution, not initializing the model
parameters to represent the identity function and not using learning rate ramp up can slow down the
optimization process as the model predictions can immediately drift away from the initial value.

In addition to using learning rate rampup, we prevent this issue by setting the weights and biases on
the last layer of the NODE and Postnet layers to zero. This approach has been successfully used in
normalizing flow models (Kingma & Dhariwal, 2018; Prenger et al., 2019).

3.4 ADAPTIVE SOLVERS AND ERROR TOLERANCES

In ordinary differential equations, adaptive step solvers vary the step size according to the error
estimate of the current step and the error tolerance. If the error estimate is larger than the threshold,
the step will be redone with a smaller size until the error is smaller than the error tolerance.

The error tolerance eitol given the current state i is the sum of the absolute error tolerance atol and
the infinity norm of the current state h weighted by the relative error tolerance rtol:

eitol = atol + rtol ∗
∥∥hi∥∥∞ . (5)

1For the hyperbolic tangent, the gradients decrease as it moves away from zero, which represents the contour
at the zero level set.
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Given that we do not know in advance the infinity norm of hi, which in our case contains the image
embedding as described in Equations 3 and 4, we set the contribution of the relative error tolerance
term to zero and adjust the absolute error tolerance.

3.5 ACTIVATION NORMALIZATION

When the batch size is too small for using batch size dependent normalization schemes like Batch-
Norm (Ioffe & Szegedy, 2015), researchers rely on dataparallel multi-processor training setups with
BatchNorm statistics reduced over all processes, for example SyncBatchNorm in the APEX library
(Sarofeen et al., 2019).

When training in multi-processor environments with data parallelism and NODEs with adaptive step
solvers, the number of NODE function evaluations on each processor can differ. Consequently, the
number of BatchNorm calls inside each NODE layer will be dependent on the number of function
evaluations, thus making reduction over processes complex.

In our setup, we circumvent this issue by using GroupNorm (Wu & He, 2018) in layers where no
convolution groups are used and LayerNorm (Ba et al., 2016) when convolution groups are used.

4 EXPERIMENTS

4.1 DATASETS AND TASKS

The KiTS19 Challenge Data (Heller et al., 2019) consists of CT scans from 210 patients with tumour
and kidney annotations. The MSRA10K dataset (Cheng et al., 2014) consists of 10000 images
with pixel-level saliency labeling from the MSRA dataset. The PASCAL-S dataset (Li et al., 2014)
consists of free-viewing fixations on a subset of 850 images from PASCAL VOC, the ECSSD dataset
(Yan et al., 2013) consists of 1000 semantically meaningful but structurally complex images and the
HKU-IS (Li & Yu, 2015) consists of 4447 including multiple disconnected salient objects.

For the kidney segmentation task, we prune images that do not contain a kidney and resize the data
to 200 by 200, without any loss of generality given that the original images are interpolated with the
same affine transformation for each patient. We divide the dataset between 7108 images from 168
patients for training and 1786 images from another 42 patients for validation.

For the salient object detection task, we train on the MSRA10K dataset and use 512 by 512 image
crops, padding where necessary and masking the loss accordingly. We use data augmentation pro-
cedures such as scale, horizontal flip and change in brightness. We use all images for training and
compute validations scores on the other salient object detection datasets.

4.2 EVALUATION METRICS

In our experiments we use three metrics: Intersection Over Union (IOU), adaptive Fβ (α-Fβ) and
weighted Fβ (ω-Fβ) described in (Margolin et al., 2014).

For computing IOUs, we rely on the definition from the PASCAL-VOC challenge (Everingham
et al., 2015) and compute it as TP /(TP +FP +FN ), where TP , FP , and FN represent true positive,
false positive and false negative pixels determined over the whole validation set.

The α-Fβ metric is computed as the weighted F1 score, F1 ∗ (1 + β2)/β2, where we set β2 = 0.3
(Hu et al., 2017) and compute F1 over the entire validation set . For computing the weighted Fβ ,
we use the MatLab code provided by (Margolin et al., 2014), compute scores per image and average
over all images. We understand these are the mechanism used to compute the scores reported in Hu
et al. (2017).

4.3 TRAINING SETUP

All our models are trained in PyTorch (Paszke et al., 2017). We use the Adam optimizer (Kingma
& Ba, 2014) with default params and learning rates between 1e-3 and 1e-4. We anneal the learning
rate once the loss curves start to plateau.
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We use the Runge-Kutta (RK-45) adaptive solver and the adjoint sensitivity method provided in
(Chen, 2019). We set the relative error tolerance to zero and explore absolute error tolerances be-
tween 1e-3 and 1e-5.

The model architectures we evaluate include the UNet (Ronneberger et al., 2015), NODEs
parametrized by UNets (NodeUnet), and an architecture inspired by DeepLabV3 (Chen et al., 2017),
in which we stack NODEs (NodeStack) with Squeeze and Excitation modules (Hu et al., 2018) fol-
lowed by an Atrous Spatial Pyramid Pooling Layer (Chen et al., 2017).

The kidney segmentation experiments were conducted on a single NVIDIA DGX-1 with 8 GPUs.
The salient object detection experiments on UNet and NodeUNet were conducted on a single
NVIDIA DGX-1 with 8 GPUs, and the experiments on NodeStack were conducted on 4 NVIDIA
DGX-1 nodes with 32 GPUs total. We used the largest possible batch size given memory constraints.

The code for replicating our experiments and pre-trained weights will be made available on github.

4.4 RESULTS

In this section, we provide comparative results between our methods (contour evolution and image
evolution) and other methods over multiple datasets. In our experiments, our contour evolution
method focuses on using a NODE to refine suboptimal contours obtained from a regression model
trained to predict distance maps from an image; our image evolution method focuses on using a
NODE to learn to evolve an image embedding into a distance map. We first provide results on
kidney segmentation and then provide results on salient object detection.

4.4.1 KIDNEY SEGMENTATION

In this task we compare three setups: the first trains a UNet regression model that maps an image
to a distance map; the second uses our contour evolution method to refine the prediction of the
aforementioned UNet model with a NODE parametrized by a UNet (NodeUNet); the third uses our
image evolution method to train a NodeUnet that evolves an image into a distance map.

We chose the UNet model checkpoint used in the contour evolution experiment by selecting the
checkpoint with the lowest validation loss on the first 8 samples of the validation set right before the
UNet starts overfitting the training data and the validation loss starts going up.

We use the same training and validation setup for all models and provide results over the validation
set below on Table 1. The UNet models provide the worse IOU scores. Our image evolution method
produces goods results, showing evidence that it is possible to use NODEs to evolve an image into
a distance map.

Lastly, our contour evolution method is able to improve the suboptimal initial contour provided by
the UNet model and represents our best results in this experiment. These promising results show
evidence that our method could generally be used to improve suboptimal models that underfit or
overfit the training data. This is specially valuable for domains with scarcity of data. We provide
results of the NodeUNet model trained with the contour evolution method in Figure 3.

Model Method Parameters IOU
UNet Regression 5M 0.8762

UNet Regression 15M . 0.8494

NodeUNet Image Evolution 5M 0.8832
NodeUNet Contour Evolution 5M 0.8866

Table 1: Validation IOU scores from three methods using similar model architectures with simi-
lar and different number of parameters. Image Evolution represents evolution from an image to a
distance map and Contour Evolution represents refinement of an initial contour.
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Figure 3: Kidney segmentation results. Black and orange contours are ground truth and model
prediction, respectively. Blue, white and orange images are narrow band distance map prediction.

4.4.2 SALIENT OBJECT DETECTION

In this task we replicate the training setup described in Hu et al. (2017): we train our models on the
MSRA10K dataset and compute their validation Fβ scores on PASCAL-S, ECSSD and HKU-IS.

We first evaluate the effect of different methods and model architectures on Fβ scores. We compare
results from a regression model trained using the UNet architecture, a contour evolution model
using the NodeUNet architecture and an image evolution model using the NodeStack architecture.
We choose the UNet model for contour evolution by repeating the procedure described in 4.4.1.

We provide results over the validation set below on Table 2, wherein the UNet model provides the
baseline Fβ scores. In all experiments, our refinement method provides 5% relative improvement
over our UNet baseline, which has 3x more paremeters than our NodeUNet (5M vs 15M). We foresee
that this trend will continue and models with more parameters will yield better refinement results.

UNet 15M NodeUNet 5M NodeStack 41M
Dataset Metrics Regression Contour Evolution Image Evolution

PASCAL-S α− Fβ 0.745 0.762 0.780
PASCAL-S ω − Fβ 0.696 0.704 0.698

ECSSD α− Fβ 0.736 0.771 0.848
ECSSD ω − Fβ 0.719 0.745 0.768
HKU-IS ω − Fβ 0.672 0.701 0.734

Table 2: Scores for different methods and models with 15, 5 and 41 million parameters. All scores
are computed on binary maps produced by thresholding the ground truth saliency maps at 0.

Finally, we compare our best model against a contrast based model DRFI (Wang et al., 2017) and
recent deep learning based models such as MTDS (Li et al., 2016), MDF (Li & Yu, 2015), MCDL
(Zhao et al., 2015), ELD (Lee et al., 2016), LEGS (Wang et al., 2015). We also compare against
DLS (Hu et al., 2017), a deep learning model based on level sets.

Whenever possible, we use the original code provided by the authors for computing scores or collect
the scores from their publications. We reproduce the setup in Hu et al. (2017) by computing our
PASCAL-S scores on binary maps produced by thresholding the ground truth saliency maps at 0.5.
Figure 4 below illustrate our model performance on PASCAL-S, ECCSD and HKU-IS.

Table 3 below shows that the NodeStack model (Ours) achieves the best results on all but one metric.

Dataset Metrics DRFI MCDL LEGS MTDS MDF ELD DLS Ours
PASCAL-S α− Fβ ∼ 0.6 ∼ 0.7 ∼ 0.7 ∼ 0.7 ∼ 0.7 ∼ 0.7 ∼ 0.7 0.740
PASCAL-S ω − Fβ 0.514 0.573 0.596 0.537 0.582 0.658 0.651 0.668

ECSSD α− Fβ ∼ 0.7 ∼ 0.8 ∼ 0.8 ∼ 0.8 ∼ 0.8 ∼ 0.8 ∼ 0.8 0.848
ECSSD ω − Fβ 0.0 0.679 0.682 0.663 0.692 0.756 0.766 0.768
HKU-IS ω − Fβ 0.514 0.634 0.607 0.711 0.567 0.718 0.748 0.734

Table 3: Fβ Scores. PASCAL-S scores are computed on binary maps produced by thresholding the
ground truth saliency maps at 0.5.
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Figure 4: Salient object results. Black and orange contours are ground truth and model prediction,
respectively. Blue, white and orange images are narrow band distance map prediction.

5 DISCUSSION

In this paper, we extend the level set segmentation method to use NODEs to solve the contour evolu-
tion problem. We learn a forcing function in an end-to-end data driven manner. We demonstrate that
our techniques can effectively evolve rough estimates of contours into final segmentation of objects.
Our techniques can also evolve input image’s embedding into a pixel-wise dense semantic label.

Experimental results on several benchmark datasets suggest using NODEs for image segmenta-
tion task is viable. Compared to state-of-the-art methods, our proposed techniques also produce
favourable segmentation results.

Although we benefit from NODEs’ parametrization of the derivative of the contour, in this paper we
do not explore the incorporation of external constraints to guide the contour evolution and that is an
area for future exploration. We also foresee that our method can generalize to 3D images.

Finally, in some cases during our hyperparameter search we found that training the same model
architecture with different learning rates and error tolerances yielded similar losses but largely dif-
ferent number of NODE function evaluations, prohibitively increasing wall clock time. This hyper-
parameter search can be replaced with automated approaches such as the Gated Info CNF described
in Nguyen et al. (2019) , where the error tolerances are estimated by the model.
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