
Published as a conference paper at ICLR 2019

GENERALIZED TENSOR MODELS FOR RECURRENT
NEURAL NETWORKS

Valentin Khrulkov1, Oleksii Hrinchuk1,2 & Ivan Oseledets1,3

{valentin.khrulkov, oleksii.hrinchuk, i.oseledets}@skoltech.ru
1Skolkovo Institute of Science and Technology, Moscow, Russia
2Moscow Institute of Physics and Technology, Moscow, Russia
3Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia

ABSTRACT

Recurrent Neural Networks (RNNs) are very successful at solving challenging
problems with sequential data. However, this observed efficiency is not yet entirely
explained by theory. It is known that a certain class of multiplicative RNNs enjoys
the property of depth efficiency — a shallow network of exponentially large width
is necessary to realize the same score function as computed by such an RNN.
Such networks, however, are not very often applied to real life tasks. In this
work, we attempt to reduce the gap between theory and practice by extending the
theoretical analysis to RNNs which employ various nonlinearities, such as Rectified
Linear Unit (ReLU), and show that they also benefit from properties of universality
and depth efficiency. Our theoretical results are verified by a series of extensive
computational experiments.

1 INTRODUCTION

Recurrent Neural Networks are firmly established to be one of the best deep learning techniques
when the task at hand requires processing sequential data, such as text, audio, or video (Graves et al.,
2013; Mikolov et al., 2011; Gers et al., 1999). The ability of these neural networks to efficiently
represent a rich class of functions with a relatively small number of parameters is often referred to as
depth efficiency, and the theory behind this phenomenon is not yet fully understood. A recent line of
work (Cohen & Shashua, 2016; Cohen et al., 2016; Khrulkov et al., 2018; Cohen et al., 2018) focuses
on comparing various deep learning architectures in terms of their expressive power.

It was shown in (Cohen et al., 2016) that ConvNets with product pooling are exponentially more
expressive than shallow networks, that is there exist functions realized by ConvNets which require an
exponentially large number of parameters in order to be realized by shallow nets. A similar result
also holds for RNNs with multiplicative recurrent cells (Khrulkov et al., 2018). We aim to extend this
analysis to RNNs with rectifier nonlinearities which are often used in practice. The main challenge
of such analysis is that the tools used for analyzing multiplicative networks, namely, properties of
standard tensor decompositions and ideas from algebraic geometry, can not be applied in this case,
and thus some other approach is required. Our objective is to apply the machinery of generalized
tensor decompositions, and show universality and existence of depth efficiency in such RNNs.

2 RELATED WORK

Tensor methods have a rich history of successful application in machine learning. (Vasilescu &
Terzopoulos, 2002), in their framework of TensorFaces, proposed to treat facial image data as
multidimensional arrays and analyze them with tensor decompositions, which led to significant boost
in face recognition accuracy. (Bailey & Aeron, 2017) employed higher-order co-occurence data and
tensor factorization techniques to improve on word embeddings models. Tensor methods also allow
to produce more accurate and robust recommender systems by taking into account a multifaceted
nature of real environments (Frolov & Oseledets, 2017).

1

Published as a conference paper at ICLR 2019

In recent years a great deal of work was done in applications of tensor calculus to both theoretical
and practical aspects of deep learning algorithms. (Lebedev et al., 2015) represented filters in a con-
volutional network with CP decomposition (Harshman, 1970; Carroll & Chang, 1970) which allowed
for much faster inference at the cost of a negligible drop in performance. (Novikov et al., 2015)
proposed to use Tensor Train (TT) decomposition (Oseledets, 2011) to compress fully–connected
layers of large neural networks while preserving their expressive power. Later on, TT was exploited
to reduce the number of parameters and improve the performance of recurrent networks in long–term
forecasting (Yu et al., 2017) and video classification (Yang et al., 2017) problems.

In addition to the practical benefits, tensor decompositions were used to analyze theoretical aspects of
deep neural nets. (Cohen et al., 2016) investigated a connection between various network architectures
and tensor decompositions, which made possible to compare their expressive power. Specifically, it
was shown that CP and Hierarchial Tucker (Grasedyck, 2010) decompositions correspond to shallow
networks and convolutional networks respectively. Recently, this analysis was extended by (Khrulkov
et al., 2018) who showed that TT decomposition can be represented as a recurrent network with
multiplicative connections. This specific form of RNNs was also empirically proved to provide a
substantial performance boost over standard RNN models (Wu et al., 2016).

First results on the connection between tensor decompositions and neural networks were obtained for
rather simple architectures, however, later on, they were extended in order to analyze more practical
deep neural nets. It was shown that theoretical results can be generalized to a large class of CNNs
with ReLU nonlinearities (Cohen & Shashua, 2016) and dilated convolutions (Cohen et al., 2018),
providing valuable insights on how they can be improved. However, there is a missing piece in the
whole picture as theoretical properties of more complex nonlinear RNNs have yet to be analyzed. In
this paper, we elaborate on this problem and present new tools for conducting a theoretical analysis
of such RNNs, specifically when rectifier nonlinearities are used.

3 ARCHITECTURES INSPIRED BY TENSOR DECOMPOSITIONS

Let us now recall the known results about the connection of tensor decompositions and multiplicative
architectures, and then show how they are generalized in order to include networks with ReLU
nonlinearities.

3.1 SCORE FUNCTIONS AND FEATURE TENSOR

Suppose that we are given a dataset of objects with a sequential structure, i.e. every object in the
dataset can be written as

X =
(
x(1),x(2), . . . ,x(T)

)
, x(t) ∈ RN . (1)

We also introduce a parametric feature map fθ : RN → RM which essentially preprocesses the data
before it is fed into the network. Assumption 1 holds for many types of data, e.g. in the case of
natural images we can cut them into rectangular patches which are then arranged into vectors x(t). A
typical choice for the feature map fθ in this particular case is an affine map followed by a nonlinear
activation: fθ(x) = σ(Ax + b). To draw the connection between tensor decompositions and feature
tensors we consider the following score functions (logits1):

`(X) = 〈W ,Φ(X)〉 = (vecW)
>

vec Φ(X), (2)

where W ∈ RM×M×···×M is a trainable T–way weight tensor and Φ(X) ∈ RM×M×···×M is a
rank 1 feature tensor, defined as

Φ(X) = fθ(x
(1))⊗ fθ(x(2)) · · · ⊗ fθ(x(T)), (3)

where we have used the operation of outer product ⊗, which is important in tensor calculus. For a
tensor A of order N and a tensor B of order M their outer product C = A⊗B is a tensor of order
N +M defined as:

Ci1i2...iN j1j2...jM = Ai1i2···iNBj1j2···jM . (4)

1By logits we mean immediate outputs of the last hidden layer before applying nonlinearity. This term is
adopted from classification tasks where neural network usually outputs logits and following softmax nonlinearity
transforms them into valid probabilities.

2

Published as a conference paper at ICLR 2019

It is known that equation 2 possesses the universal approximation property (it can approximate
any function with any prescribed precision given sufficiently large M) under mild assumptions on
fθ (Cohen et al., 2016; Girosi & Poggio, 1990).

3.2 TENSOR DECOMPOSITIONS

Working the entire weight tensor W in eq. (2) is impractical for large M and T , since it requires
exponential in T number of parameters. Thus, we compactly represent it using tensor decom-
positions, which will further lead to different neural network architectures, referred to as tensor
networks (Cichocki et al., 2017).

CP-decomposition The most basic decomposition is the so-called Canonical (CP) decomposi-
tion (Harshman, 1970; Carroll & Chang, 1970) which is defined as follows

W =

R∑
r=1

λrv
(1)
r ⊗ v(2)

r · · · ⊗ v(T)
r , (5)

where v
(t)
r ∈ RM and minimal value of R such that decomposition equation 5 exists is called

canonical rank of a tensor (CP–rank). By substituting eq. (5) into eq. (2) we find that

`(X) =

R∑
r=1

λr

[
〈fθ(x(1)),v(1)

r 〉 ⊗ · · · ⊗ 〈fθ(x(T)),v(T)
r 〉

]
=

R∑
r=1

λr

T∏
t=1

〈fθ(x(t)),v(t)
r 〉. (6)

In the equation above, outer products ⊗ are taken between scalars and coincide with the ordinary
products between two numbers. However, we would like to keep this notation as it will come in
handy later, when we generalize tensor decompositions to include various nonlinearities.

TT-decomposition Another tensor decomposition is Tensor Train (TT) decomposition (Oseledets,
2011) which is defined as follows

W =

R1∑
r1=1

· · ·
RT−1∑
rT−1=1

g(1)
r0r1 ⊗ g(2)

r1r2 ⊗ · · · ⊗ g(T)
rT−1rT , (7)

where g
(t)
rt−1rt ∈ RM and r0 = rT = 1 by definition. If we gather vectors g

(t)
rt−1rt for all corre-

sponding indices rt−1 ∈ {1, . . . , Rt−1} and rt ∈ {1, . . . , Rt} we will obtain three–dimensional
tensors G(t) ∈ RM×Rt−1×Rt (for t = 1 and t = T we will get matrices G(1) ∈ RM×1×R1 and
G(T) ∈ RM×RT−1×1). The set of all such tensors {G(t)}Tt=1 is called TT–cores and minimal values
of {Rt}T−1t=1 such that decomposition equation 7 exists are called TT–ranks. In the case of TT
decomposition, the score function has the following form:

`(X) =

R1∑
r1=1

· · ·
RT−1∑
rT−1=1

T∏
t=1

〈fθ(x(t)),g(t)
rt−1rt〉. (8)

3.3 CONNECTION BETWEEN TT AND RNN

Now we want to show that the score function for Tensor Train decomposition exhibits particular
recurrent structure similar to that of RNN. We define the following hidden states:

h(1) ∈ RR1 : h(1)
r1 = 〈fθ(x(1)),g(1)

r0r1〉,

h(t) ∈ RRt : h(t)
rt =

Rt−1∑
rt−1=1

〈fθ(x(t)),g(t)
rt−1rt〉h

(t−1)
rt−1

t = 2, . . . , T.
(9)

Such definition of hidden states allows for more compact form of the score function.
Lemma 3.1. Under the notation introduced in eq. (9), the score function can be written as

`(X) = h(T) ∈ R1.

3

Published as a conference paper at ICLR 2019

Proof of Lemma 3.1 as well as the proofs of our main results from Section 5 were moved to Ap-
pendix A due to limited space.

Note that with a help of TT–cores we can rewrite eq. (9) in a more convenient index form:

h
(t)
k =

∑
i,j

G(t)
ijk fθ(x

(t))i h
(t−1)
j =

∑
i,j

G(t)
ijk

[
fθ(x

(t))⊗ h(t−1)
]
ij
, k = 1, . . . , Rt, (10)

where the operation of tensor contraction is used. Combining all weights from G(t) and fθ(·) into a
single variable Θ

(t)
G and denoting the composition of feature map, outer product, and contraction as

g : RRt−1 × RN × RN×Rt−1×Rt → RRt we arrive at the following vector form:

h(t) = g(h(t−1),x(t); Θ
(t)
G), h(t) ∈ RRt . (11)

This equation can be considered as a generalization of hidden state equation for Recurrent Neural
Networks as here all hidden states h(t) may in general have different dimensionalities and weight
tensors Θ

(t)
G depend on the time step. However, if we set R = R1 = · · · = RT−1 and G = G(2) =

· · · = G(T−1) we will get simplified hidden state equation used in standard recurrent architectures:

h(t) = g(h(t−1),x(t); ΘG), h(t) ∈ RR, t = 2, . . . , T − 1. (12)

Note that this equation is applicable to all hidden states except for the first h(1) = G(1)fθ(x
(1))

and for the last h(T) = f>θ (x(T))G(T)h(T−1), due to two–dimensional nature of the corresponding
TT–cores. However, we can always pad the input sequence with two auxiliary vectors x(0) and
x(T+1) to get full compliance with the standard RNN structure. Figure 1 depicts tensor network
induced by TT decomposition with cores {G(t)}Tt=1.

Figure 1: Neural network architecture which corresponds to recurrent TT–Network.

4 GENERALIZED TENSOR NETWORKS

4.1 GENERALIZED OUTER PRODUCT

In the previous section we showed that tensor decompositions correspond to neural networks of
specific structure, which are simplified versions of those used in practice as they contain multiplicative
nonlinearities only. One possible way to introduce more practical nonlinearities is to replace outer
product ⊗ in eq. (6) and eq. (10) with a generalized operator ⊗ξ in analogy to kernel methods when
scalar product is replaced by nonlinear kernel function. Let ξ : R × R → R be an associative
and commutative binary operator (∀x, y, z ∈ R : ξ(ξ(x, y), z) = ξ(x, ξ(y, z)) and ∀x, y ∈ R :
ξ(x, y) = ξ(y, x)). Note that this operator easily generalizes to the arbitrary number of operands due
to associativity. For a tensor A of order N and a tensor B of order M we define their generalized
outer product C = A⊗ξ B as an (N +M) order tensor with entries given by:

Ci1...iN j1...jM = ξ (Ai1...iN ,Bj1...jM) . (13)

Now we can replace ⊗ in eqs. (6) and (10) with ⊗ξ and get networks with various nonlinearities. For
example, if we take ξ(x, y) = max(x, y, 0) we will get an RNN with rectifier nonlinearities; if we
take ξ(x, y) = ln(ex + ey) we will get an RNN with softplus nonlinearities; if we take ξ(x, y) = xy
we will get a simple RNN defined in the previous section. Concretely, we will analyze the following
networks.

4

Published as a conference paper at ICLR 2019

Generalized shallow network with ξ–nonlinearity

• Score function:

`(X) =

R∑
r=1

λr

[
〈fθ(x(1)),v(1)

r 〉 ⊗ξ · · · ⊗ξ 〈fθ(x(T)),v(T)
r 〉

]
=

R∑
r=1

λrξ
(
〈fθ(x(1)),v(1)

r 〉, . . . , 〈fθ(x(T)),v(T)
r 〉

) (14)

• Parameters of the network:

Θ =
(
{λr}Rr=1 ∈ R, {v(t)

r }
R,T
r=1,t=1 ∈ RM

)
(15)

Generalized RNN with ξ–nonlinearity

• Score function:

h
(t)
k =

∑
i,j

G(t)
ijk

[
C(t)fθ(x

(t))⊗ξ h(t−1)
]
ij

=
∑
i,j

G(t)
ijk ξ

(
[C(t)fθ(x

(t))]i,h
(t−1)
j

)
`(X) = h(T)

(16)
• Parameters of the network:

Θ =
(
{C(t)}Tt=1 ∈ RL×M , {G(t)}Tt=1 ∈ RL×Rt−1×Rt

)
(17)

Note that in eq. (16) we have introduced the matrices C(t) acting on the input states. The purpose of
this modification is to obtain the plausible property of generalized shallow networks being able to be
represented as generalized RNNs of width 1 (i.e., with all Ri = 1) for an arbitrary nonlinearity ξ. In
the case of ξ(x, y) = xy, the matrices C(t) were not necessary, since they can be simply absorbed by
G(t) via tensor contraction (see Appendix A for further clarification on these points).

Initial hidden state Note that generalized RNNs require some choice of the initial hidden state
h(0). We find that it is convenient both for theoretical analysis and in practice to initialize h(0) as unit
of the operator ξ, i.e. such an element u that ξ(x, y, u) = ξ(x, y) ∀x, y ∈ R. Henceforth, we will
assume that such an element exists (e.g., for ξ(x, y) = max(x, y, 0) we take u = 0, for ξ(x, y) = xy
we take u = 1), and set h(0) = u. For example, in eq. (9) it was implicitly assumed that h(0) = 1.

4.2 GRID TENSORS

Introduction of generalized outer product allows us to investigate RNNs with wide class of nonlinear
activation functions, especially ReLU. While this change looks appealing from the practical viewpoint,
it complicates following theoretical analysis, as the transition from obtained networks back to tensors
is not straightforward.

In the discussion above, every tensor network had corresponding weight tensor W and we could
compare expressivity of associated score functions by comparing some properties of this tensors, such
as ranks (Khrulkov et al., 2018; Cohen et al., 2016). This method enabled comprehensive analysis of
score functions, as it allows us to calculate and compare their values for all possible input sequences
X =

(
x(1), . . . ,x(T)

)
. Unfortunately, we can not apply it in case of generalized tensor networks,

as the replacement of standard outer product ⊗ with its generalized version ⊗ξ leads to the loss
of conformity between tensor networks and weight tensors. Specifically, not for every generalized
tensor network with corresponding score function `(X) now exists a weight tensor W such that
`(X) = 〈W ,Φ(X)〉. Also, such properties as universality no longer hold automatically and we have
to prove them separately. Indeed as it was noticed in (Cohen & Shashua, 2016) shallow networks with
ξ(x, y) = max(x, 0) + max(y, 0) no longer have the universal approximation property. In order to
conduct proper theoretical analysis, we adopt the apparatus of so-called grid tensors, first introduced
in (Cohen & Shashua, 2016).

5

Published as a conference paper at ICLR 2019

Given a set of fixed vectors X =
{
x(1), . . . ,x(M)

}
referred to as templates, the grid tensor of X is

defined to be the tensor of order T and dimension M in each mode, with entries given by:

Γ`(X)i1i2...iT = ` (X) , X =
(
x(i1),x(i2), . . . ,x(iT)

)
, (18)

where each index it can take values from {1, . . . ,M}, i.e. we evaluate the score function on every
possible input assembled from the template vectors {x(i)}Mi=1. To put it simply, we previously
considered the equality of score functions represented by tensor decomposition and tensor network
on set of all possible input sequences X =

(
x(1), . . . ,x(T)

)
, x(t) ∈ RN , and now we restricted this

set to exponentially large but finite grid of sequences consisting of template vectors only.

Define the matrix F ∈ RM×M which holds the values taken by the representation function
fθ : RN → RM on the selected templates X:

F ,
[
fθ(x

(1)) fθ(x
(2)) . . . fθ(x

(M))
]>
. (19)

Using the matrix F we note that the grid tensor of generalized shallow network has the following
form (see Appendix A for derivation):

Γ`(X) =

R∑
r=1

λr

(
Fv(1)

r

)
⊗ξ
(
Fv(2)

r

)
⊗ξ · · · ⊗ξ

(
Fv(T)

r

)
. (20)

Construction of the grid tensor for generalized RNN is a bit more involved. We find that its grid tensor
Γ`(X) can be computed recursively, similar to the hidden state in the case of a single input sequence.
The exact formulas turned out to be rather cumbersome and we moved them to Appendix A.

5 MAIN RESULTS

With grid tensors at hand we are ready to compare the expressive power of generalized RNNs and
generalized shallow networks. In the further analysis, we will assume that ξ(x, y) = max(x, y, 0),
i.e., we analyze RNNs and shallow networks with rectifier nonlinearity. However, we need to
make two additional assumptions. First of all, similarly to (Cohen & Shashua, 2016) we fix some
templates X such that values of the score function outside of the grid generated by X are irrelevant
for classification and call them covering templates. It was argued that for image data values of M
of order 100 are sufficient (corresponding covering template vectors may represent Gabor filters).
Secondly, we assume that the feature matrix F is invertible, which is a reasonable assumption and in
the case of fθ(x) = σ(Ax + b) for any distinct template vectors X the parameters A and b can be
chosen in such a way that the matrix F is invertible.

5.1 UNIVERSALITY

As was discussed in section 4.2 we can no longer use standard algebraic techniques to verify
universality of tensor based networks. Thus, our first result states that generalized RNNs with
ξ(x, y) = max(x, y, 0) are universal in a sense that any tensor of order T and size of each mode
beingm can be realized as a grid tensor of such RNN (and similarly of a generalized shallow network).

Theorem 5.1 (Universality). Let H ∈ RM×M×···×M be an arbitrary tensor of order T . Then
there exist a generalized shallow network and a generalized RNN with rectifier nonlinearity
ξ(x, y) = max(x, y, 0) such that grid tensor of each of the networks coincides with H.

Part of Theorem 5.1 which corresponds to generalized shallow networks readily follows from (Cohen
& Shashua, 2016, Claim 4). In order to prove the statement for the RNNs the following two lemmas
are used.

Lemma 5.1. Given two generalized RNNs with grid tensors Γ`A(X), Γ`B (X), and arbitrary
ξ-nonlinearity, there exists a generalized RNN with grid tensor Γ`C (X) satisfying

Γ`C (X) = aΓ`A(X) + bΓ`B (X), ∀a, b ∈ R.

6

Published as a conference paper at ICLR 2019

This lemma essentially states that the collection of grid tensors of generalized RNNs with any
nonlinearity is closed under taking arbitrary linear combinations. Note that the same result clearly
holds for generalized shallow networks because they are linear combinations of rank 1 shallow
networks by definition.

Lemma 5.2. Let E(j1j2...jT) be an arbitrary one–hot tensor, defined as

E(j1j2...jT)
i1i2...iT

=

{
1, jt = it ∀t ∈ {1, . . . , T},
0, otherwise.

Then there exists a generalized RNN with rectifier nonlinearities such that its grid tensor satisfies

Γ`(X) = E(j1j2...jT).

This lemma states that in the special case of rectifier nonlinearity ξ(x, y) = max(x, y, 0) any basis
tensor can be realized by some generalized RNN.

Proof of Theorem 5.1. By Lemma 5.2 for each one–hot tensor E(i1i2...iT) there exists a general-
ized RNN with rectifier nonlinearities, such that its grid tensor coincides with this tensor. Thus,
by Lemma 5.1 we can construct an RNN with

Γ`(X) =
∑

i1,i2,...,iT

Hi1i2...idE
(i1i2...iT) = H.

For generalized shallow networks with rectifier nonlinearities see the proof of (Cohen & Shashua,
2016, Claim 4).

The same result regarding networks with product nonlinearities considered in (Khrulkov et al., 2018)
directly follows from the well–known properties of tensor decompositions (see Appendix A).

We see that at least with such nonlinearities as ξ(x, y) = max(x, y, 0) and ξ(x, y) = xy all the
networks under consideration are universal and can represent any possible grid tensor. Now let us
head to a discussion of expressivity of these networks.

5.2 EXPRESSIVITY

As was discussed in the introduction, expressivity refers to the ability of some class of networks to
represent the same functions as some other class much more compactly. In our case the parameters
defining size of networks are ranks of the decomposition, i.e. in the case of generalized RNNs
ranks determine the size of the hidden state, and in the case of generalized shallow networks rank
determines the width of a network. It was proven in (Cohen et al., 2016; Khrulkov et al., 2018)
that ConvNets and RNNs with multiplicative nonlinearities are exponentially more expressive than
the equivalent shallow networks: shallow networks of exponentially large width are required to
realize the same score functions as computed by these deep architectures. Similarly to the case of
ConvNets (Cohen & Shashua, 2016), we find that expressivity of generalized RNNs with rectifier
nonlinearity holds only partially, as discussed in the following two theorems. For simplicity, we
assume that T is even.
Theorem 5.2 (Expressivity 1). For every value of R there exists a generalized RNN with ranks
≤ R and rectifier nonlinearity which is exponentially more efficient than shallow networks, i.e., the
corresponding grid tensor may be realized only by a shallow network with rectifier nonlinearity of
width at least 2

MT min(M,R)
T/2.

This result states that at least for some subset of generalized RNNs expressivity holds: exponentially
wide shallow networks are required to realize the same grid tensor. Proof of the theorem is rather
straightforward: we explicitly construct an example of such RNN which satisfies the following descrip-
tion. Given an arbitrary input sequenceX =

(
x(1), . . .x(T)

)
assembled from the templates, these net-

works (ifM = R) produce 0 ifX has the property that x(1) = x(2),x(3) = x(4), . . . ,x(T−1) = x(T),
and 1 in every other case, i.e. they measure pairwise similarity of the input vectors. A precise proof
is given in Appendix A.
In the case of multiplicative RNNs (Khrulkov et al., 2018) almost every network possessed this
property. This is not the case, however, for generalized RNNs with rectifier nonlinearities.

7

Published as a conference paper at ICLR 2019

Theorem 5.3 (Expressivity 2). For every value of R there exists an open set (which thus has positive
measure) of generalized RNNs with rectifier nonlinearity ξ(x, y) = max(x, y, 0), such that for each
RNN in this open set the corresponding grid tensor can be realized by a rank 1 shallow network with
rectifier nonlinearity.

In other words, for every rank R we can find a set of generalized RNNs of positive measure such
that the property of expressivity does not hold. In the numerical experiments in Section 6 and
Appendix A we validate whether this can be observed in practice, and find that the probability of
obtaining CP–ranks of polynomial size becomes negligible with large T and R. Proof of Theorem 5.3
is provided in Appendix A.

Shared case Note that all the RNNs used in practice have shared weights, which allows them to
process sequences of arbitrary length. So far in the analysis we have not made such assumptions
about RNNs (i.e., G(2) = · · · = G(T−1)). By imposing this constraint, we lose the property of
universality; however, we believe that the statements of Theorems 5.2 and 5.3 still hold (without
requiring that shallow networks also have shared weights). Note that the example constructed in the
proof of Theorem 5.3 already has this property, and for Theorem 5.2 we provide numerical evidence
in Appendix A.

6 EXPERIMENTS

In this section, we study if our theoretical findings are supported by experimental data. In particular,
we investigate whether generalized tensor networks can be used in practical settings, especially
in problems typically solved by RNNs (such as natural language processing problems). Secondly,
according to Theorem 5.3 for some subset of RNNs the equivalent shallow network may have a
low rank. To get a grasp of how strong this effect might be in practice we numerically compute an
estimate for this rank in various settings.

Performance For the first experiment, we use two computer vision datasets MNIST (LeCun et al.,
1990) and CIFAR–10 (Krizhevsky & Hinton, 2009), and natural language processing dataset for
sentiment analysis IMDB (Maas et al., 2011). For the first two datasets, we cut natural images into
rectangular patches which are then arranged into vectors x(t) (similar to (Khrulkov et al., 2018)) and
for IMDB dataset the input data already has the desired sequential structure.

Figure 2 depicts test accuracy on IMDB dataset for generalized shallow networks and RNNs with
rectifier nonlinearity. We see that generalized shallow network of much higher rank is required to get
the level of performance close to that achievable by generalized RNN. Due to limited space, we have
moved the results of the experiments on the visual datasets to Appendix B.

Figure 2: Test accuracy on IMDB dataset for gen-
eralized RNNs and generalized shallow networks
with respect to the total number of parameters
(M = 50, T = 100, ξ(x, y) = max(x, y, 0)).

Figure 3: Distribution of lower bounds on the
rank of generalized shallow networks equiva-
lent to randomly generated generalized RNNs of
ranks 1, 2, 4, 8 (M = 10, T = 6).

8

Published as a conference paper at ICLR 2019

Expressivity For the second experiment we generate a number of generalized RNNs with different
values of TT-rank r and calculate a lower bound on the rank of shallow network necessary to realize
the same grid tensor (to estimate the rank we use the same technique as in the proof of Theorem 5.2).
Figure 3 shows that for different values of R and generalized RNNs of the corresponding rank there
exist shallow networks of rank 1 realizing the same grid tensor, which agrees well with Theorem 5.3.
This result looks discouraging, however, there is also a positive observation. While increasing
rank of generalized RNNs, more and more corresponding shallow networks will necessarily have
exponentially higher rank. In practice we usually deal with RNNs of R = 102 − 103 (dimension of
hidden states), thus we may expect that effectively any function besides negligible set realized by
generalized RNNs can be implemented only by exponentially wider shallow networks. The numerical
results for the case of shared cores and other nonlinearities are given in Appendix B.

7 CONCLUSION

In this paper, we sought a more complete picture of the connection between Recurrent Neural
Networks and Tensor Train decomposition, one that involves various nonlinearities applied to hidden
states. We showed how these nonlinearities could be incorporated into network architectures and
provided complete theoretical analysis on the particular case of rectifier nonlinearity, elaborating on
points of generality and expressive power. We believe our results will be useful to advance theoretical
understanding of RNNs. In future work, we would like to extend the theoretical analysis to most
competitive in practice architectures for processing sequential data such as LSTMs and attention
mechanisms.

ACKNOWLEDGEMENTS

We would like to thank Andrzej Cichocki for constructive discussions during the preparation of the
manuscript and anonymous reviewers for their valuable feedback. This work was supported by the
Ministry of Education and Science of the Russian Federation (grant 14.756.31.0001).

REFERENCES

Eric Bailey and Shuchin Aeron. Word embeddings via tensor factorization. arXiv preprint
arXiv:1704.02686, 2017.

J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling
via an N-way generalization of Eckart-Young decomposition. Psychometrika, 1970.

Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee, Ivan Oseledets, Masashi Sugiyama,
Danilo P Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimization:
Part 2 applications and future perspectives. Foundations and Trends® in Machine Learning, 9(6):
431–673, 2017.

Nadav Cohen and Amnon Shashua. Convolutional rectifier networks as generalized tensor decompo-
sitions. In International Conference on Machine Learning, pp. 955–963, 2016.

Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor
analysis. In Conference on Learning Theory, pp. 698–728, 2016.

Nadav Cohen, Ronen Tamari, and Amnon Shashua. Boosting dilated convolutional networks with
mixed tensor decompositions. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=S1JHhv6TW.

Evgeny Frolov and Ivan Oseledets. Tensor methods and recommender systems. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 7(3):e1201, 2017.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with LSTM. 1999.

Federico Girosi and Tomaso Poggio. Networks and the best approximation property. Biological
cybernetics, 63(3):169–176, 1990.

9

https://openreview.net/forum?id=S1JHhv6TW

Published as a conference paper at ICLR 2019

Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix
Analysis and Applications, 31(4):2029–2054, 2010.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international
conference on, pp. 6645–6649. IEEE, 2013.

Richard A Harshman. Foundations of the PARAFAC procedure: Models and conditions for an
”explanatory” multimodal factor analysis. 1970.

Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets. Expressive power of recurrent neural
networks. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=S1WRibb0Z.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding-
up convolutional neural networks using fine-tuned cp-decomposition. International Conference on
Learning Representations, 2015.

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne E
Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a back-propagation network.
In Advances in neural information processing systems, pp. 396–404, 1990.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Extensions
of recurrent neural network language model. In Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, pp. 5528–5531. IEEE, 2011.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In Advances in Neural Information Processing Systems, pp. 442–450, 2015.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295–2317, 2011.

M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces.
In European Conference on Computer Vision, pp. 447–460. Springer, 2002.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan R Salakhutdinov. On
multiplicative integration with recurrent neural networks. In Advances in Neural Information
Processing Systems, pp. 2856–2864, 2016.

Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural networks for video
classification. arXiv preprint arXiv:1707.01786, 2017.

Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. Long-term forecasting using
tensor-train RNNs. arXiv preprint arXiv:1711.00073, 2017.

10

https://openreview.net/forum?id=S1WRibb0Z
https://openreview.net/forum?id=S1WRibb0Z
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Published as a conference paper at ICLR 2019

A PROOFS

Lemma 3.1. Under the notation introduced in eq. (9), the score function can be written as

`(X) = h(T) ∈ R1.

Proof.

l(X) =

R1∑
r1=1

· · ·
RT−1∑
rT−1=1

T∏
t=1

〈fθ(x(t)),g(t)
rt−1rt〉

=

R1∑
r1=1

· · ·
RT−1∑
rT−1=1

T∏
t=2

〈fθ(x(t)),g(t)
rt−1rt〉 〈fθ(x

(1)),g(1)
r0r1〉︸ ︷︷ ︸

h
(1)
r1

=

RT−1∑
rT−1=1

· · ·
R1∑
r1=1

T∏
t=2

〈fθ(x(t)),g(t)
rt−1rt〉h

(1)
r1

=

RT−1∑
rT−1=1

· · ·
R2∑
r2=1

T∏
t=3

〈fθ(x(t)),g(t)
rt−1rt〉

r1∑
r1=1

〈fθ(x(2)),g(2)
r1r2〉h

(1)
r1︸ ︷︷ ︸

h
(2)
r2

=

RT−1∑
rT−1=1

· · ·
R2∑
r2=1

T∏
t=3

〈fθ(x(t)),g(t)
rt−1rt〉h

(2)
r2

= . . .

=

RT−1∑
rT−1=1

〈fθ(x(T)),g(T)
rT−1rT 〉h

(T−1)
rT−1

= h(T)
rT = h(T).

Proposition A.1. If we replace the generalized outer product ⊗ξ in eq. (16) with the standard outer
product ⊗, we can subsume matrices C(t) into tensors G(t) without loss of generality.

Proof. Let us rewrite hidden state equation eq. (16) after transition from ⊗ξ to ⊗:

h
(t)
k =

∑
i,j

G(t)
ijk

[
C(t)fθ(x

(t))⊗ h(t−1)
]
ij

=
∑
i,j

G(t)
ijk

∑
l

C
(t)
il fθ(x

(t))lh
(t−1)
j

{
G̃(t)

ljk =
∑
i

G(t)
ijkC

(t)
il

}

=
∑
l,j

G̃(t)

ljkfθ(x
(t))lh

(t−1)
j

=
∑
l,j

G̃(t)

ljk

[
fθ(x

(t))⊗ h(t−1)
]
lj
.

We see that the obtained expression resembles those presented in eq. (10) with TT-cores G(t) replaced

by G̃(t)
and thus all the reasoning applied in the absence of matrices C(t) holds valid.

Proposition A.2. Grid tensor of generalized shallow network has the following form (eq. (20)):

Γ`(X) =

R∑
r=1

λr

(
Fv(1)

r

)
⊗ξ
(
Fv(2)

r

)
⊗ξ · · · ⊗ξ

(
Fv(T)

r

)
.

11

Published as a conference paper at ICLR 2019

Proof. Let X =
(
x(i1),x(i2), . . . ,x(iT)

)
denote an arbitrary sequence of templates. Corresponding

element of the grid tensor defined in eq. (20) has the following form:

Γ`(X)i1i2...iT =

R∑
r=1

λr

[(
Fv(1)

r

)
⊗ξ
(
Fv(2)

r

)
⊗ξ · · · ⊗ξ

(
Fv(T)

r

)]
i1i2...iT

=

R∑
r=1

λr

(
Fv(1)

r

)
i1
⊗ξ
(
Fv(2)

r

)
i2
⊗ξ · · · ⊗ξ

(
Fv(T)

r

)
iT

=

R∑
r=1

λrξ
(
〈fθ(x(i1)),v(1)

r 〉, . . . , 〈fθ(x(iT)),v(T)
r 〉

)
= `(X).

Proposition A.3. Grid tensor of a generalized RNN has the following form:

Γ`,0(X) = h(0) ∈ R1,

Γ`,1(X)km1 =
∑
i,j

G(1)
ijk

(
C(1)F> ⊗ξ Γ`,0

)
im1j

∈ RR1×M ,

Γ`,2(X)km1m2 =
∑
i,j

G(2)
ijk

(
C(2)F> ⊗ξ Γ`,1

)
im2jm1

∈ RR2×M×M ,

· · ·

Γ`,T (X)km1m2...mT
=
∑
i,j

G(T)
ijk

(
C(T)F> ⊗ξ Γ`,T−1

)
imT jm1...mT−1

∈ R1×M×M×···×M ,

Γ`(X) = Γ`,T (X)1,:,:,...,:

(21)

Proof. Proof is similar to that of Proposition A.2 and uses eq. (16) to compute the elements of the
grid tensor.

Lemma 5.1. Given two generalized RNNs with grid tensors Γ`A(X), Γ`B (X), and arbitrary
ξ-nonlinearity, there exists a generalized RNN with grid tensor Γ`C (X) satisfying

Γ`C (X) = aΓ`A(X) + bΓ`B (X), ∀a, b ∈ R.

Proof. Let these RNNs be defined by the weight parameters

ΘA =
(
{C(t)

A }
T
t=1 ∈ RLA×M , {G(t)

A }
T
t=1 ∈ RLA×Rt−1,A×Rt,A

)
,

and

ΘB =
(
{C(t)

B }
T
t=1 ∈ RLB×M , {G(t)

B }
T
t=1 ∈ RLB×Rt−1,B×Rt,B

)
.

12

Published as a conference paper at ICLR 2019

We claim that the desired grid tensor is given by the RNN with the following weight settings.

C
(t)
C ∈ R(LA+LB)×M

C
(t)
C =

[
C

(t)
A

C
(t)
B

]
G(1)
C ∈ R(LA+LB)×1×(Rt,A+Rt,B)

[G(1)
C]i,:,: =

[
[G(1)
A]i,:,: 0

]
, i ∈ {1, . . . , LA}[

0 [G(1)
B](i−LA),:,:

]
, i ∈ {LA + 1, . . . , LA + LB}

G(t)
C ∈ R(LA+LB)×(Rt−1,A+Rt−1,B)×(Rt,A+Rt,B), 1 < t < T

[G(t)
C]i,:,: =

[
[G(t)
A]i,:,: 0

0 0

]
, i ∈ {1, . . . , LA}

[
0 0

0 [G(t)
B](i−LA),:,:

]
, i ∈ {LA + 1, . . . , LA + LB}

G(T)
C ∈ R(LA+LB)×(Rt−1,A+Rt−1,B)×1

[G(T)
C]i,:,: =

[
a[G(T)

A]i,:,:
0

]
, i ∈ {1, . . . , LA}

[
0

b[G(T)
B](i−LA),:,:

]
, i ∈ {LA + 1, . . . , LA + LB}.

It is straightforward to verify that the network defined by these weights possesses the following
property:

h
(t)
C =

[
h
(t)
A

h
(t)
B

]
, 0 < t < T,

and

h
(T)
C = ah

(T)
A + bh

(T)
B ,

concluding the proof. We also note that these formulas generalize the well–known formulas for
addition of two tensors in the Tensor Train format (Oseledets, 2011).

Proposition A.4. For any associative and commutative binary operator ξ, an arbitrary generalized
rank 1 shallow network with ξ–nonlinearity can be represented in a form of generalized RNN with
unit ranks (R1 = · · · = RT−1 = 1) and ξ–nonlinearity.

Proof. Let Θ =
(
λ, {v(t)}Tt=1

)
be the parameters specifying the given generalized shallow network.

Then the following weight settings provide the equivalent generalized RNN (with h(0) being the
unity of the operator ξ).

C(t) =
(
v(t)

)>
∈ R1×M ,

G(t) = 1, t < T,

G(T) = λ.

Indeed, in the notation defined above, hidden states of generalized RNN have the following form:

13

Published as a conference paper at ICLR 2019

h(t) = G(t)ξ
(

[C(t)fθ(x
(t))],h(t−1)

)
= ξ

(
〈fθ(x(t)),v(t)〉,h(t−1)

)
, t = 1, . . . , T − 1

h(T) = λξ
(
〈fθ(x(T)),v(T)〉,h(T−1)

)
.

The score function of generalized RNN is given by eq. (16):

`(X) = h(T) = λξ
(
〈fθ(x(T)),v(T)〉,h(T−1)

)
= λξ

(
〈fθ(x(T)),v(T)〉, 〈fθ(x(T−1)),v(T−1)〉,h(T−2)

)
. . .

= λξ
(
〈fθ(x(T)),v(T)〉, . . . , 〈fθ(x(1)),v(1)〉

)
,

which coincides with the score function of rank 1 shallow network defined by parameters Θ.

Lemma 5.2. Let E(j1j2...jT) be an arbitrary one–hot tensor, defined as

E(j1j2...jT)
i1i2...iT

=

{
1, jt = it ∀t ∈ {1, . . . , T},
0, otherwise.

Then there exists a generalized RNN with rectifier nonlinearities such that its grid tensor satisfies

Γ`(X) = E(j1j2...jT).

Proof. It is known that the statement of the lemma holds for generalized shallow networks with
rectifier nonlinearities (see (Cohen & Shashua, 2016, Claim 4)). Based on Proposition A.4 and
Lemma 5.1 we can conclude that it also holds for generalized RNNs with rectifier nonlinearities.

Proposition A.5. Statement of Theorem 5.1 holds with ξ(x, y) = xy.

Proof. By assumption the matrix F is invertible. Consider the following tensor Ĥ :

Ĥi1i2...iT =
∑

j1,...,jT

Hj1,...,jT F−1j1i1 . . .F
−1
jT iT

,

and the score function in the form of eq. (2):

`(X) = 〈Ĥ,Φ(X)〉.

Note that by construction for any input assembled from the template vectors we obtain
`
(
(x(i1), . . . ,x(iT))

)
= Hi1...iT . By taking the standard TT and CP decompositions of Ĥ which

always exist (Oseledets, 2011; Kolda & Bader, 2009), and using Lemma 3.1 and eq. (6) we conclude
that universality holds.

Theorem 5.2 (Expressivity 1). For every value of R there exists a generalized RNN with ranks
≤ R and rectifier nonlinearity which is exponentially more efficient than shallow networks, i.e., the
corresponding grid tensor may be realized only by a shallow network with rectifier nonlinearity of
width at least 2

MT min(M,R)
T/2.

In order to prove the theorem we will use the standard technique of matricizations. Simply put, by
matricizing a tensor we reshape it into a matrix by splitting the indices of a tensor into two collections,
and converting each one of them into one long index. I.e., for a tensor A of order T with mode sizes
being m, we split the set {1, . . . , T} into two non–overlapping ordered subsets s and t, and define
the matricization A(s,t) ∈ RM |s|×M |t| by simply reshaping (and possibly transposing) the tensor A
according to s and t. We will consider the matricization obtained by taking sodd = (1, 3, . . . , T − 1),

14

Published as a conference paper at ICLR 2019

teven = (2, 4, . . . , T), i.e., we split out even and odd modes. A typical application of matricization
is the following: suppose that we can upper and lower bound the ordinary matrix rank of a certain
matricization using the parameters specifying each of the architectures being analyzed. Then under
the assumption that both architectures realize the same grid tensor (and thus ranks of the matricization
coincide) we can compare the sizes of corresponding architectures. In the case of generalized shallow
networks with rectifier nonlinearity we will use the following result (Cohen & Shashua, 2016, Claim
9).

Lemma A.1. Let Γ`(X) be a grid tensor generated by a generalized shallow network of rank R and
ξ(x, y) = max(x, y, 0). Then

rank
[
Γ`(X)

](sodd,teven) ≤ RTM
2
,

where the ordinary matrix rank is assumed.

This result is a generalization of a well–known property of the standard CP-decomposition (i.e. if
ξ(x, y) = xy), which states that for a rank R decomposition, the matrix rank of every matricization
is bounded by R.

In order to prove Theorem 5.2 we will construct an example of a generalized RNN with exponentially
large matrix rank of the matricization of grid tensor, from which and Lemma A.1 the statement of the
theorem will follow.

Lemma A.2. Without loss of generality assume that xi = ei (which can be achieved since F is
invertible). Let 1(p,q) denote the matrix of size p×q with each entry being 1, I(p,q) denote the matrix of
size p×q with I

(p,q)
ij = δij (δ being the Kronecker symbol), and b = [1−min(M,R),0>R−1] ∈ R1×R.

Consider the following weight setting for a generalized RNN with ξ(x, y) = max(x, y, 0).

C(t) =

{
1M,M − IM,M , t odd,
1M+1,M − IM+1,M , t even.

G(t) =

IM,R ∈ RM×1×R, t odd,[
IM,R

b

]
∈ R(M+1)×R×1, t even.

Then grid tensor Γ`(X) of this RNN satisfies

rank
[
Γ`(X)

](sodd,teven) ≥ min(M,R)
T/2,

where the ordinary matrix rank is assumed.

Proof. Informal description of the network defined by weights in the statement in the lemma is
the following. Given some input vector ei it is first transformed into its bitwise negative ei, and
its first R components are saved into the hidden state. The next block then measures whether the
first min(R,M) components of the current input coincide with the hidden state (after again taking
bitwise negative). If this is the case, the hidden state is set 0 and the process continues. Otherwise,
the hidden state is set to 1 which then flows to the output independently of the other inputs. In other
words, for all the inputs of the form X = (xi1 ,xi1 , . . . ,xiT/2

,xiT/2
) with i1 ≤ R, . . . , iT/2 ≤ R

we obtain that `(X) = 0, and in every other case `(X) = 1. Thus, we obtain that
[
Γ`(X)

](sodd,teven)

is a matrix with all the entries equal to 1, except for min(M,R)
T/2 entries on the diagonal, which are

equal to 0. Rank of such a matrix is RT/2 + 1 if R < M and MT/2 otherwise, and the statement of
the lemma follows.

Based on these two lemmas we immediately obtain Theorem 5.2.

Proof of Theorem 5.2. Consider the example constructed in the proof of Lemma A.2. By
Lemma A.1 the rank of the shallow network with rectifier nonlinearity which is able to represent the
same grid tensor is at least 2

TM min(M,R)
T/2.

15

Published as a conference paper at ICLR 2019

Theorem 5.3 (Expressivity 2). For every value of R there exists an open set (which thus has positive
measure) of generalized RNNs with rectifier nonlinearity ξ(x, y) = max(x, y, 0), such that for each
RNN in this open set the corresponding grid tensor can be realized by a rank 1 shallow network with
rectifier nonlinearity.

Proof. As before, let us denote by I(p,q) a matrix of size p × q such that I
(p,q)
ij = δij , and by

a(p1,p2,...pd) we denote a tensor of size p1 × · · · × pd with each entry being a (sometimes we will
omit the dimensions when they can be inferred from the context). Consider the following weight
settings for a generalized RNN.

C(t) =
(
F>
)−1

,

G(t) =

2(M,1,R), t = 1

1(M,R,R), t = 2, . . . , T − 1

1(M,R,1), t = T

The RNN defined by these weights has the property that Γ`(X) is a constant tensor with each entry
being 2(MR)T−1, which can be trivially represented by a rank 1 generalized shallow network. We
will show that this property holds under a small perturbation of C(t),G(t) and F. Let us denote each
of these perturbation (and every tensor appearing size of which can be assumed indefinitely small)
collectively by ε. Applying eq. (21) we obtain (with ξ(x, y) = max(x, y, 0)).

Γ`,0(X) = 0 ∈ R1,

Γ`,1(X)km1
=
∑
i,j

G(1)
ijk

(
(I(M,M) + ε)⊗ξ 0

)
im1j

= 1⊗ (2 + ε),

Γ`,2(X)km1m2
=
∑
i,j

G(2)
ijk

(
(I(M,M) + ε)⊗ξ Γ`,1(X)

)
im2jm1

= 1⊗ (2MR + ε)⊗ 1,

· · ·
Γ`,T (X)km1m2...mT

= 1⊗ (2(MR)T−1 + ε)⊗ 1 · · · ⊗ 1,

Γ`(X) = Γ`,T (X)1,:,:,...,: = (2(MR)T−1 + ε)⊗ 1 · · · ⊗ 1,

where we have used a simple property connecting ⊗ξ with ξ(x, y) = max(x, y, 0) and ordinary ⊗: if
for tensors A and B each entry of A is greater than each entry of B, A⊗ξB = A⊗1. The obtained
grid tensors can be represented using rank 1 generalized shallow networks with the following weight
settings.

λ = 1,

vt =

{
F−1ε (2(MR)T−1 + ε), t = 1,

0, t > 1,

where Fε is the feature matrix of the corresponding perturbed network.

B ADDITIONAL EXPERIMENTS

In this section we provide the results additional computational experiments, aimed to provide more
thorough and complete analysis of generalized RNNs.

Different ξ-nonlinearities In this paper we presented theoretical analysis of rectifier nonlinearity
which corresponds to ξ(x, y) = max(x, y, 0). However, there is a number of other associative binary
operators ξ which can be incorporated in generalized tensor networks. Strictly speaking, every one of
them has to be carefully explored theoretically in order to speak about their generality and expressive
power, but for now we can compare them empirically.

Table 1 shows the performance (accuracy on test data) of different nonlinearities on MNIST,
CIFAR—10, and IMDB datasets for classification. Although these problems are not considered hard
to solve, we see that the right choice of nonlinearity can lead to a significant boost in performance.
For the experiments on the visual datasets we used T = 16,m = 32, R = 64 and for the experiments
on the IMDB dataset we had T = 100,m = 50, R = 50. Parameters of all networks were optimized
using Adam (learning rate α = 10−4) and batch size 250.

16

Published as a conference paper at ICLR 2019

ξ(x, y) xy max(x, y, 0) ln (ex + ey) x+ y
√
x2 + y2

MNIST 97.39 97.45 97.68 96.28 96.44
CIFAR-10 43.08 48.09 55.37 57.18 49.04

IMDB 83.33 84.35 82.25 81.28 79.76

Table 1: Performance of generalized RNN with various nonlinearities.

Expressivity in the case of shared cores We repeat the expressivity experiments from Section 6
in the case of equal TT–cores (G(2) = · · · = G(T−1)). We observe that similar to the case of different
cores, there always exist rank 1 generalized shallow networks which realize the same score function
as generalized RNN of higher rank, however, this situation seems too unlikely for big values of R.

Figure 4: Distribution of lower bounds on the
rank of generalized shallow networks equiva-
lent to randomly generated generalized RNNs of
ranks (M = 6, T = 6, ξ(x, y) = max(x, y, 0)).

Figure 5: Distribution of lower bounds on the
rank of generalized shallow networks equiva-
lent to randomly generated generalized RNNs of
ranks (M = 6, T = 6, ξ(x, y) =

√
x2 + y2).

17

	Introduction
	Related work
	Architectures inspired by tensor decompositions
	Score functions and feature tensor
	Tensor Decompositions
	Connection between TT and RNN

	Generalized tensor networks
	Generalized outer product
	Grid tensors

	Main results
	Universality
	Expressivity

	Experiments
	Conclusion
	Proofs
	Additional experiments

