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ABSTRACT

Recently convolutional neural networks (CNNs) achieve great accuracy in visual
recognition tasks. DenseNet becomes one of the most popular CNN models due
to its effectiveness in feature-reuse. However, like other CNN models, DenseNets
also face overfitting problem if not severer. Existing dropout method can be ap-
plied but not as effective due to the introduced nonlinear connections. In partic-
ular, the property of feature-reuse in DenseNet will be impeded, and the dropout
effect will be weakened by the spatial correlation inside feature maps. To address
these problems, we craft the design of a specialized dropout method from three as-
pects, dropout location, dropout granularity, and dropout probability. The insights
attained here could potentially be applied as a general approach for boosting the
accuracy of other CNN models with similar nonlinear connections. Experimental
results show that DenseNets with our specialized dropout method yield better ac-
curacy compared to vanilla DenseNet and state-of-the-art CNN models, and such
accuracy boost increases with the model depth.

1 INTRODUCTION

Recent years have seen a rapid development of deep neural network in the computer vision area, es-
pecially for visual object recognition tasks. From AlexNet, the winner of ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) (Krizhevsky et al., 2012), to later VGG network (Simonyan
& Zisserman, 2014) and GoogLeNet (Szegedy et al., 2015), CNNs have shown significant success
with its shocking improvement of accuracy.

Researchers gradually realized that the depth of the network always plays an important role in the
final accuracy of one model due to increased expressiveness (Håstad, 1987; Håstad & Goldmann,
1991; Szegedy et al., 2015). However, simply increasing the depth does not always help due to
the induced vanishing gradient problem (Glorot & Bengio, 2010). ResNet (He et al., 2016a) has
been proposed to promote the flow of information across layers without attenuation by introducing
identity skip-connections, which sums together the input and the output of several convolutional
layers. In 2016, Densely connected network (DenseNet) (Huang et al., 2016a) came out, which
replaces the simple summation in ResNet with concatenation after realizing the summation may
also impede the information flow.

Despite the improved information flow, DenseNet still suffers from the overfitting problem, es-
pecially when the network goes deeper. Standard dropout (Srivastava et al., 2014) has been used
to combat such problem, but can not work effectively on DenseNet. The reasons are twofold: 1)
Feature-reuse will be weakened by standard dropout as it could make features dropped at previous
layers no longer be used at later layers. 2) Standard dropout method does not interact well with
convolutional layers because of the spatial correlation inside feature maps (Tompson et al., 2015).
Since dense connectivity increases the number of feature maps tremendously — especially at deep
layers — the effectiveness of standard dropout would further be reduced.

In this paper, we design a specialized dropout method to resolve these problems. In particular, three
aspects of dropout design are addressed: 1) Where to put dropout layers in the network? 2) What
is the best dropout granularity? 3) How to assign appropriate dropout (or survival) probabilities
for different layers? Meanwhile, we show that the idea to re-design the dropout method from the
three aspects also applies to other CNN models like ResNet. The contributions of the paper can be
summarized as follows:

• First, we propose a new structure named pre-dropout to solve the possible feature-reuse
obstruction when applying standard dropout method on DenseNet.
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• Second, we are the first to show that channel-wise dropout (compared to layer-wise and
unit-wise) fit best for CNN through both detailed analysis and experimental results.
• Third, we propose three distinct probability schedules, and via experiments we find out the

best one for DenseNet.
• Last, we provide a good insight for future practitioners, inspiring them regarding what

should be considered and which is the best option when applying the dropout method on a
CNN model.

Experiments in our paper suggest that DenseNets with our proposed specialized dropout method
outperforms other comparable DenseNet and state-of-art CNN models in terms of accuracy, and fol-
lowing the same idea dropout methods designed for other CNN models could also achieve consistent
improvements over the standard dropout method.

2 RELATED WORK

In this section, first we will review some basic ideas behind DenseNet, which is also the foundation
of our method. Then the standard dropout method along with some of its variants will be introduced
as a counterpart of our proposed dropout approach.
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(a) One dense block in the DenseNet
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Dropout
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(b) DenseNet with standard dropout

Figure 1: Examples of the dense block and the DenseNet with standard dropout method. White
spots denote dropped neurons. The right figure shows that the same feature maps (orange color)
after dropout layer will be directly sent to later layers, which makes the dropped features always
unavailable to later layers.

2.1 DENSENET

DenseNet was first proposed by (Huang et al., 2016a), which features a special structure—dense
blocks. Figure 1a gives an example of the dense block. One dense block consists of several convolu-
tional layers, each of which output k feature maps, where k is referred to as the growth rate in the
network. The most important property of DenseNet is that for each convolutional layer inside the
dense block, the input is the concatenation of all feature maps from the preceding layers within the
same block, which is also known as the dense connectivity. With dense connectivity previous output
features could be reused at later layers.

X` = L`([X0,X1, · · · ,X`−1]) (1)

Equation 1 shows such kind of relationship clearly. Here Xi represents the output at layer i. [, ]
denotes concatenation operation. L is a composite function of batch normalization (BN) (Ioffe &
Szegedy, 2015), rectified linear unit (ReLU) (Glorot et al., 2011) and a 3× 3 convolutional layer.

With the help of feature-reuse, DenseNet achieves a better performance and turns out to be more
robust (Huang et al., 2017). However, dense connectivity will cost a large amount of parameters.
To ease the consumption of parameters, a variant structure, named DenseNet-BC, came out. In this
structure, a 1× 1 layer is added before each 3× 3 layer to reduce the depth of input to 4k.

2.2 DROPOUT

Standard dropout method (Hinton et al., 2012; Srivastava et al., 2014) discourages co-adaptation
between units by randomly dropping out unit values. Stochastic depth (Huang et al., 2016b) extends
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it to layer level by randomly dropping out whole layers. Other alternative examples include Drop-
Connect (Wan et al., 2013), which generalizes dropout by dropping individual connections instead
of units (i.e., dropping several connections together), and Swapout (Singh et al., 2016) which skips
layers randomly at a unit level.

These previous works mainly focus on one aspect of dropout method, i.e., the dropout granularity.
We are the first who gives a thorough study of the dropout design from all three aspects: dropout
location, dropout granularity and dropout probability. In our evaluation, we will not only give the
overall accuracy improvement, but also the breakdown along all these three aspects. Meanwhile,
all these methods above will impede the feature-reuse in DenseNet since dropped features in previ-
ous layers will never be available to later layers. Figure 1b shows an example of the feature-reuse
obstruction when applying standard dropout method on DenseNet.

3 MODEL DESCRIPTION

As previously mentioned, standard dropout method will have some limitations on DenseNet: 1. it
could impede feature-reuse; 2. The effect of dropout will be weakened by the spatial correlation.

To solve these problems and further improve model generalization ability, we propose the following
structures.
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Figure 2: Examples illustrating data flow in one dense block of standard dropout method and pre-
dropout method. The blue boxes represent dropout layers, while the yellow boxes represent com-
posite functions. X0, X1 and X1 are the data tensors. W stands for the output of the dense block.

3.1 PRE-DROPOUT STRUCTURE

Pre-dropout structure aims at solving the possible feature-reuse obstruction when applying standard
dropout to DenseNet. As mentioned in Section 2.2, due to the dense connectivity, standard dropout
will make features dropped at previous layers no longer be used at later layers, which will weaken
the effect of feature-reuse in DenseNet. To retain the feature-reuse, we come up with a simple yet
novel idea named pre-dropout, which instead places dropout layers before the composite functions
so that complete outputs from previous convolutional layers can be transferred directly to later layers
before the dropout method is applied. Meanwhile one extra benefit from pre-dropout is that we can
stimulate much more feature-reuse patterns in the network because of different dropout patterns
applied before different layers. Figure 2 illustrates the differences between standard dropout and
pre-dropout. In the following, we will explain these two benefits in details.

Suppose the input to Figure 2a is Xstandard
0 , then it would also be used as the input to the dropout

layer B1. The calculation of B1 could be regarded as element-wisely multiplying Xstandard
1 with

Θ1, a tensor of random variables following Bernoulli(p1). Thus we can get

X
standard

1 = Θ1 �Xstandard
1 = Θ1 � L1(Xstandard

0 ) (2)

where � represents element-wise multiplication. Then Xstandard
0 and X

standard

1 will be concate-
nated together as the input to L2, i.e., Xstandard

0 ⊕ X
standard

1 , here ⊕ denotes concatenation. So on
and so forth. Finally, the output of the dense block can be written as

Wstandard = Xstandard
0 ⊕X

standard

1 ⊕ · · · ⊕X
standard

n (3)

Similarly we can get the mathematical representations from Figure 2b, which shows the data flow in
a dense block with pre-dropout method,
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X
pre

1 = Θ1,2 �Xpre
1 = Θ1,2 � L1(Θ0,1 �Xpre

0 ) (4)
Wpre =(Θ0,n+1 �Xpre

0 )⊕ (Θ1,n+1 �Xpre
1 )⊕ · · · ⊕ (Θn,n+1 �Xpre

n ) (5)
where Θi,j represents the tensor of dropout layer connecting from the output of layer i to the input
of layer j, in which random variables follow Bernoulli(pi,j).

Comparing Equations 2 with 4, we can notice that pre-dropout method will allow better feature-reuse
than standard dropout method. For instance, the outputs of standard dropout would become zero and
remains the same as inputs to all following layers when Θ1 equals to zero. However pre-dropout
solves this problem. In pre-dropout method, Xpre

1 would be multiplied by different independent
tensors Θ1,2,Θ1,3, · · · ,Θ1,n+1, such that for any specific Xpre

1ijk even if Θ1,2 makes Xpre
1ijk be zero

at L2, we still have a chance to reuse this feature at later layers.

Meanwhile we could also find that pre-dropout method could stimulate much more feature-reuse
patterns in the network. For example, in Figure 2a, once Xstandard

1 goes through dropout layer B1,
the same output will always be reused. Whereas in pre-dropout method, every time before Xpre

1 is
utilized as the input to the next layer, it would be multiplied by a different tensor. In Figure 2b, the
contributions of Xpre

1 are actually two distinct features, since Θ1,2 and Θ1,n+1 are independent.

Note that similar feature-reuse obstruction also exists when applying standard dropout on other CNN
models with shortcut connections, such as ResNet (He et al., 2016a), Wide-ResNet (Zagoruyko &
Komodakis, 2016) and RoR (Zhang et al., 2017). Thus pre-dropout method could work for those
networks as well.

3.2 CHANNEL-WISE DROPOUT

When designing our specialized dropout method, dropout granularity is also an important aspect to
be considered. Figure 3 shows three different granularity: unit-wise, channel-wise and layer-wise.

(a) Original input (b) Unit-wise dropout (c) Channel-wise dropout (d) Layer-wise dropout

Figure 3: Different dropout granularity, white color represents dropout.

Standard dropout is one kind of unit-wise method, which has been proved useful when applied
on fully connected layers (Srivastava et al., 2014). It helps improve the generalization capability
by breaking the strong dependence between neurons from different layers.However when applying
the same method on convolutional layers, the effectiveness of standard unit-wise method will be
hampered due to the strong spatial correlation between neurons within a feature map — although
dropping one neuron can stop other neurons from replying on that particular one, they will still be
able to learn from the correlated neurons in the same feature map.

To cope with the spatial correlation, we need dropout at better granularity. Layer-wise method drops
the entire layers, whcih refer to the outputs from previous layers, inside the input tensor. However,
layer-wise dropout is prone to discard too many useful features. Channel-wise method, which will
drop a entire feature map at a given probability, strikes a nice trade-off between the two granularity
above. Our experiments also confirmed that channel-wise works the best for regularizing DenseNet.

Meanwhile since the spatial correlation exists in all types of convolutional layers, our analysis above
should also work for other CNN models whenever a dropout method is applied.

3.3 PROBABILITY SCHEDULE

Channel-wise dropout can still be improved when applied on DenseNet. Notice that naive channel-
wise dropout cannot add various degrees of noise to different layers due to the deterministic survival
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Figure 4: Different probability schedules. The numbers besides blue boxes represent survival proba-
bilities. Left figure shows the linearly decaying schedule v1 which applies linearly decaying proba-
bilities on different layers of DenseNet. Right figure shows v3 schedule which applies various prob-
abilities on different portions of the input to a convolutional layer depending on distances between
layers generating those portions and the input layer.

probability, and since in DenseNet dense connectivity makes the sizes of inputs at different layers
quite different, such variation seems to be helpful. We believe the model would benefit from such
kind of noise. Thus, in our design, to further promote model generalization ability, besides pre-
dropout and channel-wise dropout, we also apply stochastic probability method to introduce various
degrees of noise to different layers in DenseNet. In experiment part we compare the stochastic prob-
ability method with the deterministic probability method, and results show that stochastic method
could get a better accuracy on DenseNet. Since in CNNs the degree of feature correlation and the
importance of features are generally different at different layer depths, such probability schedule
would always be desired.

Once we adopt the stochastic method, one natural question arises: how can we assign probabilities
for different convolutional layers in order to achieve the best accuracy? Actually it is hard to find
out the best specific probability for each layer. However, based on some observations we are still
able to design some useful probability schedules. Figure 4 gives examples on the different schedules
below. Same as before, we’ve done some experiments on them and adopt the best one in our design.

One observation is that in the shallow layers of DenseNet, the number of feature maps used as input
is quite limited and as the layers go deeper the number will become larger. Meanwhile in CNN high-
level features are prone to be repeated. Thus intuitively we propose a linearly decaying probability
schedule. We refer to it as v1. For this probability schedule, in each dense block, the starting survival
probability at the first convolutional layer is 1.0 while the last one is 0.5. Recall that in Section 3.1
we use Θi,j to represent the tensor of dropout layer connecting from the output of layer i to the
input of layer j, in which random variables follow Bernoulli(pi,j). So schedule v1 will have the
following properties,

1. For fixed j and ∀i, pi,j = C, C is a constant. Particularly, pi,1 = 1.0 and pi,n+1 = 0.5;
2. For fixed i, pi,j is monotonically decreasing with j.

To the best of our knowledge, dropout will add per neuron different levels of stochasticity depending
on the survival probability and maximum randomness is reached when probability is 0.5. Mean-
while the sizes of inputs in DenseNet will gradually increase. So to reduce the total randomness in
the model, we design another schedule v2, which is also a reverse version of v1, i.e., the starting
probability for the first layer is 0.5 whereas the last one is 1.0. Similarly, in this schedule, we will
have,

1. For fixed j and ∀i, pi,j = C, C is a constant. Particularly, pi,1 = 0.5 and pi,n+1 = 1.0;
2. For fixed i, pi,j is monotonically increasing with j.

Additionally, we observe that in DenseNet deeper layers tend to rely on high-level features more
than low-level features, such phenomenon is also mentioned in (Huang et al., 2016a). Based on that,
schedule v3 is proposed. For this schedule, we decide survival probabilities for different layers’ out-
puts based on their distances to the convolutional layer, i.e., the most recent output from previous
layers will be assigned with the highest probability while the earliest one gets the lowest. In our
implementation, for the input to the last layer in one dense block we assign the most recent output in
it with probability 1.0 and the least with 0.5. Then based on the number of previous layers concate-
nated, we can calculate the probability difference between two adjacent layers’ outputs to decide
probabilities for other portions of the input. The corresponding properties of v3 can be summarized
as,

5



Under review as a conference paper at ICLR 2019

1. pi,j ∝ 1
d(i,j) , where d(i, j) denotes the distance between layer i and j;

2. For fixed j, pi,j is monotonically increasing with i. Particularly, when i = j−1, pi,j = 1.0,
and p0,n+1 = 0.5;

3. For fixed i, pi,j is monotonically decreasing with j. Particularly, when j = i+1, pi,j = 1.0.

In conclusion, by using v3 for inputs to deep layers in DenseNet low-level features from shallow
layers will always be dropped with higher probabilities whereas high-level features can be kept with
a good chance. Meanwhile, survival probabilities for the output of one layer will become smaller as
layers go deeper, which is also intuitive as outputs from earlier layers have been used for more times
so there exists higher probability that such outputs will not be used again later.

Also notice that the idea to apply different dropout probability at different layers can also be applied
to other networks since the variation of inputs at different layers are quite common CNN models.

Table 1: Test errors (%) of various network structures and methods

Structure and method Depth Params C10 C100

FitNet (Romero et al., 2014) 19 - 8.39 35.04
Deeply Supervised Net (Lee et al., 2015) - - 7.97 34.57
Highway Network (Srivastava et al., 2015) - - 7.72 32.39

ResNet v1 with Stochastic Depth (Huang et al., 2016b) 110 1.7M 5.23 24.58
ResNet v2 (He et al., 2016b) 164 1.7M 5.46 24.33
ResNet v2 (He et al., 2016b) 1001 10.2M 4.92 22.71

Swapout v2 W × 2 (Singh et al., 2016) 20 1.09M 5.68 25.86
Swapout v2 W × 4 (Singh et al., 2016) 32 7.46M 4.76 22.72

DenseNet-BC 76 0.5M 5.21 24.09
DenseNet-BC(standard dropout) 76 0.5M 5.56 24.75
DenseNet-BC(our specialized dropout) 76 0.5M 4.94 23.90

DenseNet-BC 100 0.8M 4.73 23.22
DenseNet-BC(standard dropout) 100 0.8M 5.01 23.80
DenseNet-BC(our specialized dropout) 100 0.8M 4.51 22.33

DenseNet-BC 148 1.5M 4.31 20.76
DenseNet-BC(standard dropout) 148 1.5M 4.60 22.28
DenseNet-BC(our specialized dropout) 148 1.5M 3.90 19.75

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETTINGS

In our experiments, we mainly use two datasets: CIFAR10 and CIFAR100, containing 50k training
images and 10k test images, a perfect size for a model of normal size to overfit. Meanwhile, we
apply normal data augmentation on them which includes horizontal flipping and translation.

When implementing our models, we try to retain the same configurations of original DenseNet
though further hyper-parameter tuning might generate better results since dropout will slow conver-
gence (Srivastava et al., 2014). Briefly four DenseNet structures are used: DenseNet-40, DenseNet-
BC-76, DenseNet-BC-100 and DenseNet-BC-147. The number at the rear of the structure name
represents the depth of the network. Growth rate k for all structures is 12. We adopt 300 training
epochs with batch size 64. The initial learning rate is 0.1 and is divided by 10 at 50% and 75% of
the total number of training epochs. During training process a fixed survival probability 0.5 is used
for non-stochastic dropout methods. The test error is reported after every epoch and all results in our
experiments represent test errors after the final epoch.

4.2 OVERALL EFFECTIVENESS OF SPECIALIZED DROPOUT

As an important part of our work, we want to know how DenseNets with our specialized dropout
method compare with other models. In this section, we use three different DenseNet structures and
test on CIFAR10 and CIFAR100 augmentation datasets.
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Note that our specialized dropout won’t incur additional parameters in the network. From results
in Table 1, we can find that DenseNets with our specialized dropout method get the best accu-
racy on both datasets. In particular specialized dropout could consistently have good improvements
over standard dropout method and DenseNet-BC-100 with our specialized dropout which only con-
tains 0.8M parameters could outperform a 1001 layer ResNet model. Notice that data augmentation
(which is always applied) already imposes generalization power to the model, which could make
other regularization methods less effective.

Further, based on the results, our specialized dropout method gives better accuracy improvements on
larger DenseNets, e.g., on CIFAR100 dataset, the improvements of our specialized dropout method
would increase with the depth of the network.

4.3 EXPERIMENTS ON PRE-DROPOUT STRUCTURE

Table 2: Unit-wise pre-dropout vs standard dropout

Test error (%)
Structure standard dropout Pre-dropout
DenseNet-40 5.83 5.75
DenseNet-BC-76 5.56 5.25

In order to show the effectiveness of pre-
dropout structure, we compare unit-wise pre-
dropout method with standard dropout on two
DenseNet structures. We run experiments on
CIFAR10 augmentation dataset. Results are
shown in Table 2.

From Table 2, pre-dropout structure achieves
better accuracy than standard dropout on both
of the two DenseNet structures. Such results
coincide with our analysis that pre-dropout
could incur better feature-reuse and stimulate
various features in the network. Meanwhile according to the analysis in Section 3.2 one factor that
could disadvantage pre-dropout here is that correlated features can compensate for dropped features
in standard dropout method.

4.4 EFFECTIVENESS OF CHANNEL-WISE DROPOUT

Table 3: Comparisons of different dropout granularity

Test error (%)
Method C10 C100
Unit-wise dropout 5.25 24.52
Layer-wise dropout 5.46 25.28
Channel-wise dropout 5.09 24.36

In this section, we use DenseNet-BC-76
structure to compare the three dropout gran-
ularity on CIFAR10 and CIFAR100 aug-
mentation datasets respectively. The results
are shown in Table 3.

Table 3 shows that channel-wise dropout
achieves the best accuracy on both of two
datasets. So in our specialized dropout
method, we adopt channel-wise dropout
granularity. Also from Table 3, layer-wise
dropout always has the worst performance.
The reason could be that layer-wise dropout
discards some useful features at one time, as a result a loss of accuracy is observed.

4.5 EXPERIMENTS ON DIFFERENT PROBABILITY SCHEDULES

Table 4: Comparisons of various probability schedules

Method Error (%)
Channel-wise dropout (uniform 0.5) 5.09
Channel-wise dropout with v1 5.02
Channel-wise dropout with v2 5.13
Channel-wise dropout with v3 4.94

In Section 3.3, we argue why DenseNet
would benefit from the variation of noise
at different layers. In order to validate
this idea, we compare the proposed three
stochastic probability schedules to the stan-
dard version with a uniform dropout prob-
ability (0.5) on DenseNet-BC-76. Our em-
pirical study indicates that v3 always is the
best among the three schedules, whereas v2
is the worst. Thus, we pick schedule v3 as
our final specialized dropout method.

Table 4 gives an example result for DenseNet-BC-76 on CIFAR10 augmentation dataset. Recall that
the number of feature maps to shallow layers in DenseNet is very limited and schedule v2 applies
lower survival probabilities on these layers, thus from the results we can see although v2 reduces the
total randomness in the model, a loss of relatively larger quantity of low-level features could still
hurt the accuracy.
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Furthermore, we can find that the same effect of v1 also exists in v3, i.e., relatively higher survival
probabilities are assigned for shallow layers and lower ones for deep layers. Besides v3 can also help
deep layers rely more on high-level features, which could be the reason making v3 better than v1.

4.6 REGULARIZATION EFFECT
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Figure 5: Training on CIFAR100. Thin curves de-
note training error, and bold curves denote test error.

We also want to figure out the reasons why
our specialized dropout method could result
in an accuracy improvement. To reveal the
reasons, we compare the training/test errors
during the training procedures of the nor-
mal DenseNet and the one with our special-
ized dropout method. Figure 5 shows such
comparison on DenseNet-BC-148. As shown
in the figure, the specialized dropout ver-
sion reaches slightly higher training error at
convergence, but produces lower test error.
This phenomenon indicates that the improve-
ment of accuracy comes from the strong reg-
ularization effect brought by the specialized
dropout method, which also verifies that the
specialized dropout method could improve
the model generalization ability.

4.7 SPECIALIZED DROPOUT ON OTHER CNN MODELS

Table 5: Effectiveness of the specialized dropout
method on other state-of-the-art CNN models. The
model names in bold denote models with the special-
ized dropout method. Results are reported as test errors.

Model Depth C10 C100
AlexNet 8 10.32 38.71
AlexNet 8 9.78 35.42
VGG-16 16 8.39 35.04
VGG-16 16 7.25 33.71
ResNet v1 110 6.41 27.22
ResNet v1 110 5.45 25.46
ResNet v2 164 5.46 24.33
ResNet v2 164 4.38 23.36

Following the idea of designing a special-
ized dropout method for DenseNet, we
also want to explore whether such idea
could also apply to other state-of-the-art
CNN models. Here we choose AlexNet,
VGG-16 and ResNet to conduct the ex-
periments. Similar to the DenseNet, we
design the specialized dropout method for
each model from three aspects. We apply
pre-dropout structure and channel-wise
granularity for all specialized dropout
methods and decide dropout probability
by the size of input. In order to reduce the
total randomness in a model, the largest
input will have the dropout probability 0
while the smallest one corresponds to the
probability 0.5. Layers between the two
will follow a linear increasing/decreasing
schedule to assign the dropout probabil-
ity. The results are shown in Table 5.

From results in Table 5 we can see that models with the specialized dropout method all outperform
its original counterparts, which indicates that our idea to design a specialized dropout method could
also work in other CNN models. The effectiveness of our idea is also validated by such results.

5 CONCLUSION

In this paper, first we show problems of applying standard dropout method on DenseNet. To deal
with these problems, we come up with a new pre-dropout structure and adopt channel-wise dropout
granularity. Specifically, we put dropout before convolutional layers to reinforce feature-reuse in-
side the model. Meanwhile we randomly drop some feature maps in inputs of convolutional layers
to break dependence among them. Besides to further promote model generalization ability we intro-
duce stochastic probability method to add various degrees of noise to different layers in DenseNet.
Experiments show that in terms of accuracy DenseNets with our specialized dropout method out-
perform other CNN models.
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