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ABSTRACT

Neural networks are known to be a class of highly expressive functions able to fit
even random input-output mappings with 100% accuracy. In this work we present
properties of neural networks that complement this aspect of expressivity. By us-
ing tools from Fourier analysis, we show that deep ReLU networks are biased
towards low frequency functions, meaning that they cannot have local fluctuations
without affecting their global behavior. Intuitively, this property is in line with the
observation that over-parameterized networks find simple patterns that generalize
across data samples. We also investigate how the shape of the data manifold af-
fects expressivity by showing evidence that learning high frequencies gets easier
with increasing manifold complexity, and present a theoretical understanding of
this behavior. Finally, we study the robustness of the frequency components with
respect to parameter perturbation, to develop the intuition that the parameters must
be finely tuned to express high frequency functions.

1 INTRODUCTION

While universal approximation properties of neural networks have been known since the early
90s (Hornik et al., 1989; Cybenko, 1989; Leshno et al., 1993; Barron, 1993), recent research has
shed light on the mechanisms underlying such expressivity (Montufar et al., 2014; Raghu et al.,
2016; Poole et al., 2016). At the same time, deep neural networks, despite being massively over-
parameterized, have been remarkably successful at generalizing to natural data. This fact is at odds
with the traditional notions of model complexity and their empirically demonstrated ability to fit
arbitrary random data to perfect accuracy (Zhang et al., 2017a; Arpit et al., 2017). It has prompted
the recent investigations of possible implicit regularization mechanisms inherent in the learning pro-
cess, inducing biases towards low complexity solutions (Soudry et al., 2017; Poggio et al., 2018;
Neyshabur et al., 2017).

In this work, our main goal is to expose one such bias by taking a closer look at neural networks
through the lens of Fourier analysis1. We focus the discussion on ReLU networks, whose piece-
wise linear structure enables an analytic treatment. While they can approximate arbitrary functions,
we find that these networks favour low frequency ones; in other words, they exhibit a bias towards
smooth functions, a phenomenon we call the spectral bias2. We find that this bias manifests itself not
just in the process of learning, but also in the parameterization of the model itself: in fact we show
that the lower frequencies of trained networks are more robust with respect to random parameter
perturbations. Finally, we also exhibit and analyze a rather intricate interplay between the spectral
bias and the geometry of the data manifold: we show that high frequencies get easier to learn when
the data lies on a lower dimensional manifold of complex shape embedded in the input space.

CONTRIBUTIONS

1. We exploit the piecewise-linear structure of ReLU networks to evaluate and bound its
Fourier spectrum.

2. We demonstrate the peculiar behaviour of neural networks with illustrative and minimal
experiments and find evidence of a spectral bias: i.e. lower frequencies are learned first.

1The Fourier transform affords a natural way of measuring how fast a function can change within a small
neighborhood in its input of a model. See Appendix B for a brief recap of Fourier analysis.

2A similar result has been independently found and reported in Xu et al. (2018).
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3. We illustrate how the manifold hypothesis adds a layer of subtlety by showing how the
geometry of the data manifold attenuates the spectral bias in a non-trivial way. We present
a theoretical analysis of this phenomenon and derive conditions on the manifolds that fa-
cilitate learning higher frequencies.

4. Given a trained network, we investigate the relative robustness of the lower frequencies
with respect to random perturbations of the network parameters.

The paper is organized as follows. In Section 2, we derive the Fourier spectrum of deep ReLU
networks. Section 3 presents minimal experiments that demonstrate the spectral bias of ReLU net-
works. In Section 4, we study and discuss the role of the geometry of the data manifold. In Section
5, we empirically illustrate and theoretically explain our robustness result.

2 FOURIER ANALYSIS OF RELU NETWORKS

2.1 PRELIMINARIES

Consider the class of scalar functions f : Rd 7→ R defined by a ReLU network with L hidden layers
of widths d1, · · · dL and a single output neuron:

f(x) =
(
T (L+1) ◦ σ ◦ T (L) ◦ · · · ◦ σ ◦ T (1)

)
(x) (1)

where each T (k) : Rdk−1 → Rdk is an affine function (d0 = d and dL+1 = 1) and σ(u)i =
max(0, ui) denotes the ReLU activation function acting elementwise on a vector u = (u1, · · ·un).
In the standard basis, T (k)(x) = W (k)x + b(k) for some weight matrix W (k) and bias vector b(k).

ReLU networks are known to be continuous piece-wise linear (CPWL) functions, where the linear
regions are convex polytopes (Raghu et al., 2016; Montufar et al., 2014; Zhang et al., 2018; Arora
et al., 2018). Remarkably, the converse is also true: every CPWL function can be represented by
a ReLU network (Arora et al., 2018, Theorem 2.1), which in turn endows ReLU networks with
universal approximation properties. Given the ReLU network f from Eqn. 1, we can make the
piecewise linearity explicit by writing,

f(x) =
∑
ε

1Pε(x) (Wεx + bε) (2)

where ε is an index for the linear regions Pε and 1Pε is the indicator function on Pε. As shown in
Appendix C in more detail, each region corresponds to an activation pattern3 of all hidden neurons
of the network, which is a binary vector with components conditioned on the sign of the input of the
respective neuron. The 1× d matrix Wε is given by

Wε = W (L+1)W (L)
ε · · ·W (1)

ε (3)

where W (k)
ε is obtained from the original weight W (k) by setting its jth column to zero whenever

the neuron j of the kth layer is inactive.

We will henceforth assume that the input data lies in a bounded domain of Rd, say X = [−A,A]d

for some A > 0 and thus restrict ourselves to ReLU networks with bounded support4.

2.2 FOURIER SPECTRUM

In the following, we study the structure of ReLU networks in the Fourier domain, which is defined
as:

f(x) = (2π)d/2
∫
f̃(k) eik·xdk, f̃(k) :=

∫
f(x) e−ik·xdx (4)

3We adopt the terminology of Raghu et al. (2016); Montufar et al. (2014).
4Note that there is no loss of generality here: given any ReLU network f , its restriction f|X toX can always

be extended to a continuous piece-wise linear function on Rd with bounded support; this function, in turn, is
representable by a ReLU network. This argument also shows that ReLU networks with bounded support are
universal approximators of functions on X .

2



where dx,dk are the uniform Lebesgue measure on Rd and f̃ denotes the Fourier transform of f
(see Appendix B for a short recap of the Fourier transform). Lemmas 1 and 2 (proved in appendix
D) yield the explicit form of the Fourier components.

Lemma 1. The Fourier transform of ReLU networks decomposes as,

f̃(k) = i
∑
ε

Wεk

k2
1̃Pε(k) (5)

where k = ‖k‖ and 1̃P (k) =
∫
P
e−ik·xdx is the Fourier transform of the indicator function of P .

The Fourier transform of a polytope appearing in Eqn. 5 is a fairly intricate mathematical object;
Diaz et al. (2016) develop an elegant procedure for evaluating it in arbitrary dimensions via a re-
cursive application of Stokes theorem. We describe this procedure in detail in Appendix D.2, and
present here its main corollary.

Lemma 2. Let P be a full dimensional polytope in Rd. The Fourier spectrum of its indicator
function 1̃P satisfies the following:

|1̃P (k)| = O
(

1

k∆
(P )
k

)
(6)

where 1 ≤ ∆
(P )
k ≤ d, and ∆

(P )
k = j when k lies orthogonal to some (d− j)-dimensional face of P .

Note that since a polytope has a finite number of facets (of any dimension), the k’s for which
∆

(P )
k = j for some j < d lie on a finite union of j-dimensional subspaces of Rd. The Lebesgue

measure of all such lower dimensional subspaces for all such j equals 0, leading us to the conclusion
that the spectrum decays as O(k−d) for almost all directions k̂ of the frequency vector k in Rd.

Lemmas 1, 2 together yield the main result of this section. Given a ReLU network f , its linear
regions form a cell decomposition of Rd as union of polytopes; we denote by F the set of faces (of
any dimension) of all such polytopes. For k ∈ Rd, let ∆k be the minimum integer 1 ≤ j ≤ d such
that k lies orthogonal to some (d− j)-dimensional face in F .

Theorem 1. The Fourier components of the ReLU network f satisfy the following:

|f̃(k)| = O
(
NfLf
k∆k+1

)
(7)

where Nf is the number of linear regions and Lf = maxε ‖Wε‖2 is the Lipschitz constant of f .

Several remarks are in order:

(a) The spectral decay of ReLU networks is highly anisotropic in large dimensions. In almost all
directions k̂ of Rd, we have ∆k = d, i.e. a O(k−d−1) decay. However, the decay can be as slow as
O(k−2) in specific directions orthogonal to the facets bounding linear regions5.
As we prove in Appendix D.3, the Lipschitz constant Lf can be bounded as,

Lf ≤
L+1∏
k=1

‖W (k)‖ ≤ ‖W‖L+1
∞
√
d

L∏
k=1

dk (8)

where ‖ · ‖ is the spectral norm, W is the ravelled parameter vector of the network and ‖ · ‖∞ is
the max-norm. This makes the bound on Lf scale exponentially in depth and polynomial in width.
As for the number Nf of linear regions, Montufar et al. (2014) and Raghu et al. (2016) obtain tight
bounds that exhibit the same scaling behaviour (Raghu et al., 2016, Theorem 1). This makes the
overall bound in Eqn. 7 – and with it, the ability to express larger frequencies – scale exponentially
in depth and polynomially in width6. This result complements the well-known universal approx-
imation property of neural networks by explicitly incorporating a control on the capacity7 of the
network, namely the width, depth and the norm of parameters. Architecture dependent controls

5Note that such a rate is not guaranteed by piecewise smoothness alone. For instance, the function
√

|x| is
continuous and smooth everywhere except at x = 0, yet it decays as k−1.5 in the Fourier domain.

6A qualitative ablation study can be found in Appendix A.3.
7Note that the bound is relaxed with increasing capacity. In the limit of capacity to infinity, any constraint

on universal approximation is dissolved.
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(a) Equal Amplitudes

(b) Increasing Amplitudes

Figure 1: Left (a, b): Evolution of the spectrum (x-axis for frequency) during training (y-axis). The colors
show the measured amplitude of the network spectrum at the corresponding frequency, normalized by the
target amplitude at the same frequency (i.e. |f̃ki |/Ai) and the colorbar is clipped between 0 and 1. Right (a,
b): Evolution of the spectral norm (y-axis) of each layer during training (x-axis). Figure-set (a) shows the
setting where all frequency components in the target function have the same amplitude, and (b) where higher
frequencies have larger amplitudes. Gist: We find that even when higher frequencies have larger amplitudes,
the model prioritizes learning lower frequencies first. We also find that the spectral norm of weights increases
as the model fits higher frequency, which is what we expect from Theorem 1.

on approximation have been formalized in the literature through approximation bounds and depth
separation results, see e.g Barron (1993); Telgarsky (2016); Eldan & Shamir (2016).
(b) For a given architecture (i.e. fixed width and depth), the high frequency contributions of the
network can be increased by increasing the norm of the parameters. Assuming the weight norm
increases with training iterations, this suggests that the training of ReLU networks might be biased
towards lower frequencies. We investigate this fact empirically in the next section.

3 LOWER FREQUENCIES ARE LEARNED FIRST

In this section and the ones that follow, we present experiments that illustrate the peculiar behaviour
of deep ReLU networks in the Fourier domain. We begin with an experiment to demonstrate that
networks tend to fit lower frequencies first during training. We refer to this phenomenon as the
spectral bias, and discuss it in light of the results of Section 2.
Experiment 1. The setup is as follows8 : Given frequencies κ = (k1, k2, ...) with corresponding
amplitudes α = (A1, A2, ...), and phases φ = (ϕ1, ϕ2, ...), we consider the mapping λ : [0, 1]→ R
given by

λ(z) =
∑
i

Ai sin(2πkiz + ϕi). (9)

8More experimental details and additional plots are provided in Appendix A.1.
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A 6-layer deep 256-unit wide ReLU network fθ is trained to regress λ with κ = (5, 10, ..., 45, 50)

and N = 200 input samples spaced equally over [0, 1]; its spectrum f̃θ(k) in expectation over
ϕi ∼ U(0, 2π) is monitored as training progresses. In the first setting, we set equal amplitude
Ai = 1 for all frequencies and in the second setting, the amplitude increases from A1 = 0.1 to
A10 = 1. Fig 1 shows the normalized magnitudes |f̃θ(ki)|/Ai at various frequencies, as training
progresses. The result is that lower frequencies (i.e. smaller ki’s) are regressed first, regardless of
their amplitudes.

Discussion. Multiple theoretical aspects may underlie these observations. First, for a fixed archi-
tecture, the bound in Theorem 1 allows for larger Fourier coefficients at higher frequencies if the
parameter norm is large. However, the parameter norm can increase only gradually during training
by gradient descent, which leads to the higher frequencies being learned late in the optimization
process. To confirm that the bound indeed increases as the model fits higher frequencies, we plot
in Fig 1 the spectral norm of weights of each layer during training for both cases of constant and
increasing amplitudes.

Second, consider the Mean Squared Error MSE[fθ, λ] in terms of the Fourier components: letting
zi = i/N be the training sample points, we have:

MSE[fθ, λ] =
1

N

N−1∑
i=0

|fθ(zi)− λ(zi)|2 =
1

N

N−1∑
k=0

|f̃θ(k)− λ̃(k)|2 = MSE[f̃θ, λ̃] (10)

where the second equality follows from Plancherel theorem. We make two observations – first, the
square error in input space translates into square error in Fourier domain, with a priori no structural
bias towards any particular frequency component9, i.e. all frequencies are weighted the same. Since
the same cannot be said about e.g. cross-entropy loss, we use the MSE loss in most of our experi-
ments to avoid a potential confounding factor. Second, the parameterization of the network can be
exploited by considering the gradient of the MSE loss w.r.t. parameters,

∂

∂θ
MSE[f̃θ, λ̃] =

2

N

N−1∑
k=0

Re[f̃θ(k)− λ̃(k)]
∂f̃θ(k)

∂θ
≤ 2

N

N−1∑
k=0

|f̃θ(k)− λ̃(k)|

∣∣∣∣∣∂f̃θ(k)

∂θ

∣∣∣∣∣︸ ︷︷ ︸
=O(k−∆−1)

(11)

where Re(z) denotes the real part of z. We find that a bias naturally emerges as a consequence of the
spectral decay rate found in Theorem 1, in the sense that the magnitude of the residual |f̃θ(k)−λ̃(k)|
contributes less to the net gradient for large k. This generalizes the argument made in Xu (2018) for
two layer sigmoid networks by observing that the gradient w.r.t parameters of the network function
inherits the spectral decay rate of the function itself10. In Section 5, we use that the integral of f̃θ
w.r.t. the standard measure in parameter space dθ also inherits the spectral decay rate of f to make
a statement about the robustness of f̃θ(k) against random parameter perturbations.

4 NOT ALL MANIFOLDS ARE LEARNED EQUAL

In this section, we investigate the subtleties that arise when the data lies on a lower dimensional
manifold embedded in the higher dimensional input space of the model (Goodfellow et al., 2016).
We find that the shape of the data-manifold impacts the learnability of high frequencies in a non-
trivial way. As we shall see, this is because low frequencies functions in the input space may have
high frequency components when restricted to lower dimensional manifolds of complex shapes.
To systematically investigate the impact of manifold shape on the spectral bias, we demonstrate
results in an illustrative minimal setting11 free from unwanted confounding factors. We also present
a mathematical exposition of the relationship between the Fourier spectrum of the network, the
spectrum of the target function defined on the manifold, and the geometry of the manifold itself.

9Note that the finite range in frequencies is due to sampling
10Observe that the partial derivative w.r.t. θ can be swapped with the integrals in Eqn 4.
11We include experiments on MNIST and CIFAR-10 in appendices A.4 and A.5.
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Figure 2: Functions learned by two identical networks (up to initialization) to classify the binarized value of
a sine wave of frequency k = 200 defined on a γL=20 manifold. Both yield close to perfect accuracy for the
samples defined on the manifold (scatter plot), yet they differ significantly elsewhere. The shaded regions show
the predicted class (Red or Blue) whereas contours show the confidence (absolute value of logits).

Manifold hypothesis. We consider the case where the data lies on a lower dimensional data man-
ifold M ⊂ Rd embedded in input space, which we assume to be the image γ([0, 1]m) of some
injective mapping γ : [0, 1]m → Rd defined on a lower dimensional latent space [0, 1]m. Under
this hypothesis and in the context of the standard regression problem, a target function τ :M→ R
defined on data manifold can identified with a function λ = τ ◦ γ defined on the latent space.
Regressing τ is therefore equivalent to finding f : Rd → R such that f ◦ γ matches λ. Further,
assuming that the data probability distribution µ supported onM is induced by γ from the uniform
distribution U in the latent space [0, 1]m, the mean square error can be expressed as,

MSE(x)
µ [f, τ ] = Ex∼µ|f(x)− τ(x)|2 = Ez∼U |(f(γ(z))− λ(z)|2 = MSE(z)

U [f ◦ γ, λ] (12)
Observe that there is a vast space of degenerate solutions f that minimize the mean squared error –
namely all functions on Rd that yield the same function when restricted to the data manifoldM.

Our findings from the previous section suggest that neural networks are biased towards expressing
a particular subset of such solutions, namely those that are low frequency. It is also worth noting
that there exist methods that restrict the space of solutions: notably adversarial training (Goodfellow
et al., 2014) and Mixup (Zhang et al., 2017b).

Experimental set up. The experimental setting is designed to afford control over both the shape of
the data manifold and the target function defined on it. We will consider the family of curves in R2

generated by mappings γL : [0, 1]→ R2 given by

γL(z) = RL(z)(cos(2πz), sin(2πz)) where RL(z) = 1 +
1

2
sin(2πLz) (13)

Here, γL([0, 1]) defines the data-manifold and corresponds to a flower-shaped curve with L petals,
or a unit circle when L = 0 (see e.g. Fig 2). Given a signal λ : [0, 1] → R defined on the latent
space [0, 1], the task entails learning a network f : R2 → R such that f ◦ γL matches the signal λ.

Experiment 2. The set-up is similar to that of Experiment 1, and λ is as defined in Eqn. 9 with
frequencies κ = (20, 40, ..., 180, 200), and amplitudes Ai = 1 ∀ i. The model f is trained on the
dataset {γL(zi), λ(zi)}Ni=1 with N = 1000 uniformly spaced samples zi between 0 and 1. The
spectrum of f ◦ γL in expectation over ϕi ∼ U(0, 2π) is monitored as training progresses, and the
result shown in Fig 3 for L = 0, 4, 10, 16. Fig 3e shows the corresponding mean squared error
curves. More experimental details in appendix A.2.

The results demonstrate a clear attenuation of the spectral bias as L grows. Moreover, Fig 3e sug-
gests that the larger the L, the easier the learning task.

Experiment 3. Here, we adapt the setting of Experiment 2 to binary classification by simply thresh-
olding the function λ at 0.5 to obtain a binary target signal. To simplify visualization, we only use
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(a) L = 0 (b) L = 4

(c) L = 10 (d) L = 16

(e) Loss curves

Figure 3: (a,b,c,d): Evolution of the network spectrum (x-axis for frequency, colorbar for magnitude) during
training (y-axis) for the same target functions defined on manifolds γL for various L. Since the target function
has amplitudes Ai = 1 for all frequencies ki plotted, the colorbar is clipped between 0 and 1. (e): Correspond-
ing learning curves. Gist: Some manifolds (here with larger L) make it easier for the network to learn higher
frequencies than others.
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Figure 4: Heatmap of training accuracies of a network trained to predict the binarized value of a sine wave of
given frequency (x-axis) defined on γL for various L (y-axis).

signals with a single frequency mode k, such that λ(z) = sin(2πkz + ϕ). We train the same net-
work on the resulting classification task with cross-entropy loss12 for k ∈ {50, 100, ..., 350, 400}
and L ∈ {0, 2, ..., 18, 20}. The heatmap in Fig 4 shows the classification accuracy for each
(k, L) pair. Fig 2 shows visualizations of the functions learned by the same network, trained on
(k, L) = (200, 20) under identical conditions up to random initialization.

Observe that increasing L (i.e. going up a column in Fig 4) results in better (classification) per-
formance for the same target signal. This is the same behaviour as we observed in Experiment 2
(Fig 3a-d), but now with binary cross-entropy loss instead of the MSE.

Discussion. These experiments hint towards a rich interaction between the shape of the manifold and
the effective difficulty of the learning task. The key technical reason underlying this phenomenon
(as we formalize below) is that the relationship between frequency spectrum of the network f and
that of the fit f ◦ γL is mediated by the embedding map γL. In particular, we will argue that a
given signal defined on the manifold is easier to fit when the coordinate functions of the manifold
embedding itself has high frequency components. Thus, in our experimental setting, the same signal
embedded in a flower with more petals can be captured with lower frequencies of the network.

To understand this mathematically, we address the following questions: given a target function λ,
how small can the frequencies of a solution f be such that f ◦ γ = λ? And further, how does this
relate to the geometry of the data-manifold M induced by γ? To find out, we write the Fourier
transform of the composite function,

(̃f ◦ γ)(l) =

∫
dkf̃(k)Pγ(l,k) where Pγ(l,k) =

∫
[0,1]m

dz ei(k·γ(z)−l·z) (14)

The kernel Pγ depends on only γ and elegantly encodes the correspondence between frequencies
k ∈ Rd in input space and frequencies l ∈ Rm in the latent space [0, 1]m. Following a procedure
from Bergner et al., we can further investigate the behaviour of the kernel in the regime where the
stationary phase approximation is applicable, i.e. when l2 + k2 → ∞ (cf. section 3.2. of Bergner
et al.). In this regime, the integral Pγ is dominated by critical points z̄ of its phase, which satisfy

l = Jγ(z̄)k (15)
where Jγ(z)ij = ∇iγj(z) is the m × d Jacobian matrix of γ. Non-zero values of the kernel corre-
spond to pairs (l,k) such that Eqn 15 has a solution. Further, given that the components of γ (i.e. its
coordinate functions) are defined on an interval [0, 1]m, one can use their Fourier series representa-
tion together with Eqn 15 to obtain a condition on their frequencies (shown in appendix D.4). More
precisely, we find that the i-th component of the RHS in Eqn 15 is proportional to pγ̃i[p]ki where
p ∈ Zm is the frequency of the coordinate function γi. This yields that we can get arbitrarily large
frequencies li if γ̃i[p] is large13 enough for large p, even when ki is fixed.

12We use Pytorch’s BCEWithLogitsLoss. Internally, it takes a sigmoid of the network’s output (the
logits) before evaluating the cross-entropy.

13Consider that the data-domain is bounded, implying that γ̃ cannot be arbitrarily scaled.
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Figure 5: Normalized spectrum of the model (x-axis for frequency, colorbar for magnitude) with perturbed
parameters as a function of parameter perturbation (y-axis). The colormap is clipped between 0 and 1. Observe
that the lower frequencies are more robust to parameter perturbations than the higher frequencies.

This is precisely what Experiments 2 and 3 demonstrate in a minimal setting. From Eqn 13, observe
that the coordinate functions have a frequency mode at L. For increasing L, it is apparent that the
frequency magnitudes l (in the latent space) that can be expressed with the same frequency k (in the
input space) increases with increasing L. This allows the remarkable interpretation that the neural
network function can express large frequencies on a manifold (l) with smaller frequencies w.r.t its
input domain (k), provided that the coordinate functions of the data manifold embedding itself has
high-frequency components14.

5 LOWER FREQUENCIES ARE MORE ROBUST

The goal of this section is to show that lower frequency components of trained networks are more
robust than their higher frequency counterparts with respect to random perturbations in parameter
space. More precisely, we observe that in the neighbourhood of a solution in parameter space,
the high frequency components decay faster than the low frequency ones. This property does not
directly depend on the training process, but rather on the parametrization of the trained model. We
present empirical evidence and a theoretical explanation of this phenomenon.
Experiment 4. The set up is the same as in Experiment 1, where λ is given by Eqn. 9. Training
is performed for the frequencies κ = (10, 15, 20, ..., 45, 50) and amplitudes Ai = 1∀ i. After
convergence to θ∗, we consider random (isotropic) perturbations θ = θ∗ + δθ̂ of given magnitude
δ, where θ̂ ∼ U(Sdim(θ∗)) is a unit vector. We evaluate the network function fθ at the perturbed
parameters, and compute the magnitude of its discrete Fourier transform at frequencies ki, |f̃θ(ki)|.
We also average over 100 samples of θ̂ to obtain |f̃Eθ(ki)|, which we normalize by |f̃θ∗(ki)|. The
result, shown in Figure 5, demonstrate that higher frequencies are significantly less robust than the
lower ones.

Discussion. The interpretation is as follows: parameters that contribute towards expressing high-
frequency components occupy a small volume in the parameter space. To formalize this intuition,
given a bounded domain Θ of parameter space, let us define,

Ξε(k) = {θ ∈ Θ|∃k′, k′ > k, |f̃θ(k′)| > ε}
to be the set of parameters such that fθ has Fourier components larger than ε for some k′ with larger
norm than k. Then the following Proposition holds (proved in appendix E).
Proposition 1. The volume ratio,

R(k) =
Vol(Ξε(k))

Vol(Θ)
(16)

14Informally, we allow ourselves the intuition that it’s easy for neural networks to fit wiggly functions if they
are defined on wiggly manifolds.
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inherits the spectral decay rate of |f̃θ(k)|, given by Theorem 1.

Intuitively, expressing larger frequencies requires the parameters to be finely-tuned to work together.

6 RELATED WORK

While we focus on showing the spectral bias of deep ReLU networks towards learning functions
with dominant lower frequency components, most of existing work has focused on showing that in
theory, these networks are capable of learning arbitrarily complex functions. Hornik et al. (1989);
Cybenko (1989); Leshno et al. (1993) have shown that neural networks can be universal approxi-
mators when given sufficient width; more recently, Lu et al. (2017) proved that this property holds
also for width-bounded networks. Montufar et al. (2014) showed that the number of linear regions
of deep ReLU networks grows polynomially with width and exponentially with depth; Raghu et al.
(2016) generalized this result and provided asymptotically tight bounds. There have been various
results of the benefits of depth for efficient approximation (Poole et al., 2016; Telgarsky, 2016; Eldan
& Shamir, 2016). These analysis on the expressive power of deep neural networks can in part ex-
plain why over-parameterized networks can perfectly learn random input-output mappings (Zhang
et al., 2017a). Our Fourier analysis of deep ReLU networks also reflects the width and depth depen-
dence of their expressivity, but more interestingly reveals their spectral bias towards learning simple
functions. Thus our work may be seen as a formalization of the findings of Arpit et al. (2017), where
it is empirically shown that deep networks prioritize learning simple functions during training.

A few other works studied neural networks through the lens of harmonic analysis. For example,
Candès (1999) used the ridgelet transform to build constructive procedures for approximating a
given function by neural networks, in the case of oscillatory activation functions. This approach has
been recently generalized to unbounded activation functions by Sonoda & Murata (2017). Eldan &
Shamir (2016) use insights on the support of the Fourier spectrum of two-layer networks to derive
a worse-case depth-separation result. Barron (1993) makes use of Fourier space properties of the
target function to derive an architecture-dependent approximation bound. In a work done indepen-
dently from ours, and made available online almost at the same time, Xu et al. (2018) make the same
observation that lower frequencies are learned first. The subsequent work by Xu (2018) proposes
a theoretical analysis of the phenomenon in the case of 2-layer networks with sigmoid activation,
based on the spectrum of the sigmoid function.

In light of our findings, it is worth comparing the case of neural networks and other popular algo-
rithms such that kernel machines (KM) andK-nearest neighbor classifiers. We refer to the Appendix
F for a detailed discussion and references. In summary, our discussion there suggests that 1. DNNs
strike a good balance between function smoothness and expressivity/parameter-efficiency compared
with KM; 2. DNNs learn a smoother function compared withKNNs since the spectrum of the DNN
decays faster compared with KNNs in the experiments shown there.

7 CONCLUSION

We studied deep ReLU networks through the lens of Fourier analysis. Several conclusions can
be drawn from our analysis. While neural networks can approximate arbitrary functions, we find
that they favour low frequency ones – hence they exhibit a bias towards smooth functions – a phe-
nomenon that we called spectral bias. We also illustrated how the geometry of the data manifold
impacts expressivity in a non-trivial way, as high frequency functions defined on complex manifolds
can be expressed by lower frequency network functions defined in input space. Finally, we found
that the parameters contributing towards expressing lower frequencies are more robust to random
perturbations than their higher frequency counterparts.

We view future work that explore the properties of neural networks in Fourier domain as promis-
ing. For example, the Fourier transform affords a natural way of measuring how fast a function
can change within a small neighborhood in its input domain ; as such, it is a strong candidate for
quantifying and analyzing the sensitivity of a model – which in turn provides a natural measure of
complexity (Novak et al., 2018). We hope to encourage more research in this direction.
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Steven Bergner, Torsten Möller, Daniel Weiskopf, and David J Muraki. A spectral analysis of
function concatenations and its implications for sampling in direct volume visualization.

Emmanuel J Candès. Harmonic analysis of neural networks. Applied and Computational Harmonic
Analysis, 6(2):197–218, 1999.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals, and Systems (MCSS), 2(4):303–314, 1989.
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(a) Iteration 100. (b) Iteration 1000. (c) Iteration 10000. (d) Iteration 80000.

Figure 6: The learnt function (green) overlayed on the target function (blue) as the training progresses. The
target function is a superposition of sinusoids of frequencies κ = (5, 10, ..., 45, 50), equal amplitudes and
randomly sampled phases.

(a) Equal Amplitudes. (b) Increasing Amplitudes.

Figure 7: Loss curves averaged over multiple runs. (cf. Experiment 1)

A EXPERIMENTAL DETAILS

A.1 EXPERIMENT 1

We fit a 6 layer ReLU network with 256 units per layer fθ to the target function λ, which is a
superposition of sine waves with increasing frequencies:

λ : [0, 1]→ R, λ(z) =
∑
i

Ai sin(2πkiz + ϕi)

where ki = (5, 10, 15, ..., 50), and ϕi is sampled from the uniform distribution U(0, 2π). In the first
setting, we set equal amplitude for all frequencies, i.e. Ai = 1∀ i, while in the second setting we
assign larger amplitudes to the higher frequencies, i.e. Ai = (0.1, 0.2, ..., 1). We sample λ on 200
uniformly spaced points in [0, 1] and train the network for 80000 steps of full-batch gradient descent
with Adam (Kingma & Ba, 2014). Note that we do not use stochastic gradient descent to avoid the
stochasticity in parameter updates as a confounding factor. We evaluate the network on the same 200
point grid every 100 training steps and compute the magnitude of its (single-sided) discrete fourier
transform at frequencies ki which we denote with |f̃ki |. Finally, we plot in figure 1 the normalized

magnitudes |f̃ki |Ai
averaged over 10 runs (with different sets of sampled phases ϕi). We also record

the spectral norms of the weights at each layer as the training progresses, which we plot in figure 1
for both settings (the spectral norm is evaluated with 10 power iterations). In figure 6, we show an
example target function and the predictions of the network trained on it (over the iterations), and in
figure 7 we plot the loss curves.

A.2 EXPERIMENT 2

We use the same 6-layer deep 256-unit wide network and define the target function

λ : D → R, z 7→ λ(z) =
∑
i

Ai sin(2πkiz + ϕi)
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(a) Sampled δ-function at x = 0.5. (b) Constant Spectrum of the δ-function.

Figure 8: The target function used in Experiment 5.

(a) Depth = 3. (b) Depth = 4. (c) Depth = 5. (d) Depth = 6.

Figure 9: Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency, and col-
ormap for magnitude) for a network with varying depth, width = 16 and weight clip = 10. The spectrum of
the target function is a constant 0.005 for all frequencies.

where ki = (20, 40, ..., 180, 200), Ai = 1∀ i and ϕ ∼ U(0, 2π). We sample φ on a grid with 1000
uniformly spaced points between 0 and 1 and map it to the input domain via γL to obtain a dataset
{(γL(zj), λ(zj))}999

j=0, on which we train the network with 50000 full-batch gradient descent steps
of Adam. On the same 1000-point grid, we evaluate the magnitude of the (single-sided) discrete
Fourier transform of fθ ◦ γL every 100 training steps at frequencies ki and average over 10 runs
(each with a different set of sampled zi’s). Fig 3 shows the evolution of the spectrum as training
progresses for L = 0, 4, 10, 16, and Fig 3e shows the corresponding loss curves.

A.3 QUALITATIVE ABLATION OVER ARCHITECTURES

Theorem 1 exposes the relationship between the fourier spectrum of a network and its depth, width
and max-norm of parameters. The following experiment is a qualitative ablation study over these
variables.

Experiment 5. In this experiment, we fit various networks to the δ-function at x = 0.5 (see Fig 8a).
Its spectrum is constant for all frequencies (Fig 8b), which makes it particularly useful for testing
how well a given network can fit large frequencies. Fig 11 shows the ablation over weight clip (i.e.
max parameter max-norm), Fig 9 over depth and Fig 10 over width. Fig 12 exemplarily shows how
the network prediction evolves with training iterations. All networks are trained for 60K iterations
of full-batch gradient descent under identical conditions (Adam optimizer with lr = 0.0003, no
weight decay).

We make the following observations.

(a) Fig 9 shows that increasing the depth (for fixed width) significantly improves the network’s
ability to fit higher frequencies (note that the depth increases linearly).

(b) Fig 10 shows that increasing the width (for fixed depth) also helps, but the effect is consid-
erably weaker (note that the width increases exponentially).

(c) Fig 11 shows that increasing the weight clip (or the max parameter max-norm) also helps
the network fit higher frequencies.
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(a) Width = 16. (b) Width = 32. (c) Width = 64. (d) Width = 128.

Figure 10: Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency, and col-
ormap for magnitude) for a network with varying width, depth = 3 and weight clip = 10. The spectrum of
the target function is a constant 0.005 for all frequencies.

(a) Weight Clip = 0.1. (b) Weight Clip = 0.15. (c) Weight Clip = 0.2. (d) Weight Clip = 2.

Figure 11: Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency, and col-
ormap for magnitude) for a network with varying weight clip, depth = 6 and width = 64. The spectrum of
the target function is a constant 0.005 for all frequencies.

(a) Weight Clip = 0.1. (b) Weight Clip = 0.15. (c) Weight Clip = 0.2. (d) Weight Clip = 2.

Figure 12: Evolution with training iterations (y-axis) of the network prediction (x-axis for input, and colormap
for predicted value) for a network with varying weight clip, depth = 6 and width = 64. The target function is
a δ peak at x = 0.5.
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The above observations are all consistent with Theorem 1, and further show that lower frequencies
are learned first (i.e. the spectral bias, cf. Experiment 1).

A.4 MNIST: A PROOF OF CONCEPT

In the following experiment, we show that given two manifolds of the same dimension – one flat
and the other not – the task of learning random labels is harder to solve if the input samples lie on
the same manifold. We demonstrate on MNIST under the assumption that the manifold hypothesis
is true, and use the fact that the spectrum of the target function we use (white noise) is constant
in expectation, and therefore independent of the underlying coordinate system when defined on the
manifold.
Experiment 6. In this experiment, we investigate if it is easier to learn a signal on a more realistic
data-manifold like that of MNIST (assuming the manifold hypothesis is true), and compare with
a flat manifold of the same dimension. To that end, we use the 64-dimensional feature-space E
of a denoising15 autoencoder as a proxy for the real data-manifold of unknown number of dimen-
sions. The decoder functions as an embedding of E in the input space X = R784, which effectively
amounts to training a network on the reconstructions of the autoencoder. For comparision, we use
an injective embedding16 of a 64-dimensional hyperplane in X . The latter is equivalent to sampling
784-dimensional vectors fromU([0, 1]) and setting all but the first 64 components to zero. The target
function is white-noise, sampled as scalars from the uniform distribution U([0, 1]). Two identical
networks are trained under identical conditions, and Fig 13 shows the resulting loss curves, each
averaged over 10 runs.

This result complements the findings of Arpit et al. (2017) and Zhang et al. (2017a), which show
that it’s easier to fit random labels to random inputs if the latter is defined on the full dimensional
input space (i.e. the dimension of the flat manifold is the same as that of the input space, and not
that of the underlying data-manifold being used for comparison).

Figure 13: Loss curves of two identical networks trained to regress white-noise under identical conditions,
one on MNIST reconstructions from a DAE with 64 encoder features (blue), and the other on 64-dimensional
random vectors (green).

A.5 CIFAR-10: IT’S ALL CONNECTED

We have seen that deep neural networks are biased towards learning low frequency functions. This
should have as a consequence that isolated bubbles of constant prediction are rare. This in turn
implies that given any two points in the input space and a network function that predicts the same
class for the said points, there should be a path connecting them such that the network prediction
does not change along the path. In the following, we present an experiment where we use a path
finding method to find such a path between all Cifar-10 input samples indeed exist.
Experiment 7. Using AutoNEB Kolsbjerg et al. (2016), we construct paths between (adversarial)
Cifar-10 images that are classified by a ResNet20 to be all of the same target class. AutoNEB bends

15This experiment yields the same result if variational autoencoders are used instead.
16The xy-plane is R3 an injective embedding of a subset of R2 in R3.
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(automobile) -> airplane(frog)
(airplane) -> automobile(truck)
(airplane) -> bird(truck)
(automobile) -> cat(deer)
(frog) -> deer(horse)
(bird) -> dog(cat)
(bird) -> frog(horse)
(truck) -> horse(airplane)
(bird) -> ship(deer)
(deer) -> truck(horse)

Figure 14: Path between CIFAR-10 adversarial examples (e.g. “frog” and “automobile”, such that
all images are classified as “airplane”).

a linear path between points in some space Rm so that some maximum energy along the path is
minimal. Here, the space is the input space of the neural network, i.e. the space of 32 × 32 × 3
images and the logit output of the ResNet20 for a given class is minimized. We construct paths
between the following points in image space:

• From one training image to another,

• from a training image to an adversarial,

• from one adversarial to another.

We only consider pairs of images that belong to the same class c (or, for adversarials, that originate
from another class 6= c, but that the model classifies to be of the specified class c). For each class,
we randomly select 50 training images and select a total of 50 random images from all other classes
and generate adversarial samples from the latter. Then, paths between all pairs from the whole set
of images are computed.

The AutoNEB parameters are chosen as follows: We run four NEB iterations with 10 steps of SGD
with learning rate 0.001 and momentum 0.9. This computational budget is similar to that required
to compute the adversarial samples. The gradient for each NEB step is computed to maximize the
logit output of the ResNet-20 for the specified target class c. We use the formulation of NEB without
springs Draxler et al. (2018).

The result is very clear: We can find paths between all pairs of images for all CIFAR10 labels that
do not cross a single decision boundary. This means that all paths belong to the same connected
component regarding the output of the DNN. This holds for all possible combinations of images
in the above list. Figure 15 shows connecting training to adversarial images and Figure 14 paths
between pairs of adversarial images. Paths between training images are not shown, they provide no
further insight. Note that the paths are strikingly simple: Visually, they are hard to distinguish from
the linear interpolation. Quantitatively, they are essentially (but not exactly) linear, with an average
length (3.0± 0.3)% longer than the linear connection.

B BRIEF RECAPITULATION OF FOURIER ANALYSIS

The Fourier transform is a powerful mathematical tool used to represent functions as a weighted sum
of oscillating functions, given that the function satisfies certain conditions. In the realm of signal
processing and beyond, it is used to represent a time (space) domain signal f as a sum of sinusoids
of various (spatial) frequencies k, where the weights are referred to as the Fourier coefficients f̃(k).
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airplane (cat)
automobile (truck)

bird (horse)
cat (airplane)

deer (bird)
dog (frog)
frog (deer)

horse (dog)
ship (automobile)

truck (ship)

Figure 15: Each row is a path through the image space from an adversarial sample (right) to a true training
image (left). All images are classified by a ResNet-20 to be of the class of the training sample on the right with
at least 95% softmax certainty. This experiment shows we can find a path from adversarial examples (right, Eg.
”(cat)”) that are classified as a particular class (”airplane”) are connected to actual training samples from that
class (left, ”airplane”) such that all samples along that path are also predicted by the network to be of the same
class.

Let f : Rn → R be a squared-integrable function17, i.e. such that
∫
x∈Rn |f(x)|2dx

is finite, or f ∈ L2(Rn). With the Fourier inversion theorem, it holds:

f(x) =
1

2π

∫
k∈Rn

f̃(k)eik·xdk (17) f̃(k) =

∫
x∈Rn

f(x)e−ik·xdx (18)

Informally, equation 17 expresses the function f(x) as a weighted sum (the integral) of plane waves
e±ik·x of the angular wavenumber k, where the unit vector k̂ gives the direction of the corresponding
wave in n-D space and the magnitude k is inversely proportional to the wavelength. Equation 18
gives the expression for f̃(k), which is called the Fourier transform or the Fourier spectrum or
simply the spectrum of f . The 1

2π coefficient and sign in the exponential functions are matters of
convention.

The asymptotic behaviour of f̃ for k →∞ is a measure of smoothness of f . In Bachmann-Landau
or asymptotic notation18, we say f̃ = O(k−1) if for k → ∞, the function f̃ decays at least as fast
as 1

k . A function whose spectrum is O(k−2) is in a sense smoother than one whose spectrum is
O(k−1), while the spectrum of an infinitely differentiable (or smooth) function must decay faster
than any rational function of k, assuming the function is integrable, i.e. the integral of its absolute
value over its domain is finite (or the function is L1). Intuitively, the higher-frequency oscillations
in a smoother function must vanish faster. Formally, this is a straightforward consequence of the
Riemann-Lebesgue lemma, stating that the spectrum of any L1 function must vanish at infinity
(potentially arbitrarily slowly), taken together with the well known property of the Fourier transform
that it diagonalizes the differential operator i.e. [∇̃xf ](k) = kf̃(k).

17On a formal note, the squared integrability is only required for the inverse Fourier transform to exist;
for the forward transform, integrability is enough. Moreover, the Fourier transform can be generalized to
tempered distributions, which allow for evaluating the Fourier coefficients of non-integrable e.g. non-zero
constant functions.

18Formally, f = O(g) =⇒ lim supx→∞

∣∣∣ f(x)g(x)

∣∣∣ <∞.
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C THE CONTINUOUS PIECEWISE LINEAR STRUCTURE OF DEEP RELU
NETWORKS

We consider the class of ReLU network functions f : Rd 7→ R defined by Eqn. 1. Following the
terminology of Raghu et al. (2016); Montufar et al. (2014), each linear region of the network then
corresponds to a unique activation pattern, wherein each hidden neuron is assigned an activation
variable ε ∈ {−1, 1}, conditioned on whether its input is positive or negative. ReLU networks can
be explictly expressed as a sum over all possible activation patterns, as in the following lemma.

Lemma 3. Given L binary vectors ε(1), · · · ε(L) with ε(k) ∈ {−1, 1}dk , let T (k)

ε(k) : Rdk−1 → Rdk

the affine function defined by T (k)

ε(k)(u)i = (T (k)(u))i if (εk)i = 1, and 0 otherwise. ReLU network
functions, as defined in Eqn. 1, can be expressed as

f(x) =
∑

ε(1),···ε(L)

1Pf,ε(x)
(
T (L+1) ◦ T (L)

ε(L) ◦ · · · ◦ T
(1)

ε(1)

)
(x) (19)

where 1P denotes the indicator function of the subset P ⊂ Rd, and Pf,ε is the polytope defined as
the set of solutions of the following linear inequalities (for all k = 1, · · · , L):

(εk)i (T (k) ◦ T (k−1)

ε(k−1) ◦ · · · ◦ T
(1)

ε(1))(x)i ≥ 0, i = 1, · · · dk (20)

f is therefore affine on each of the polytopes Pf,ε, which finitely partition the input space Rd to
convex polytopes. Remarkably, the correspondence between ReLU networks and CPWL functions
goes both ways: Arora et al. (2018) show that every CPWL function is be represented by a ReLU
network, which in turn endows ReLU networks with the universal approximation property.

Finally, in the standard basis, each affine map T (k) : Rdk−1 → Rdk is specified by a weight matrix
W (k) ∈ Rdk−1 × Rdk and a bias vector b(k) ∈ Rdk . In the linear region Pf,ε, f can be expressed as
fε(x) = Wεx+ bε, where in particular

Wε = W (L+1)W (L)
εL · · ·W

(1)
ε1 ∈ R1×d, (21)

where W (k)
ε is obtained from W (k) by setting its jth column to zero whenever (εk)j = −1.

D FOURIER ANALYSIS OF RELU NETWORKS

D.1 PROOF OF LEMMA 1

Proof. The vector-valued function kf(x)eik·x is continuous everywhere and has well-defined and
continuous gradients almost everywhere. So by Stokes’ theorem (see e.g Spivak (2018)), the integral
of its divergence is a pure boundary term. Since we restricted to functions with compact support,
the theorem yields ∫

∇x ·
[
kf(x)e−ik·x

]
dx = 0 (22)

The integrand is (k · (∇xf)(x)− ik2f(x))e−ik·x, so we deduce,

f̂(k) =
1

−ik2
k ·
∫

(∇xf)(x) e−ik·x (23)

Now, within each polytope of the decomposition (19), f is affine so its gradient is a constant vector,
∇xfε = WT

ε , which gives the desired result (1).

D.2 FOURIER TRANSFORM OF POLYTOPES

D.2.1 THEOREM 1 OF DIAZ ET AL. (2016)

Let F be a m dimensional polytope in Rd, such that 1 ≤ m ≤ d. Denote by k ∈ Rd a vector
in the Fourier space, by φk(x) = −k · x the linear phase function, by F̃ the Fourier transform of
the indicator function on F , by ∂F the boundary of F and by volm the m-dimensional (Hausdorff)
measure. Let ProjF (k) be the orthogonal projection of k on to F (obtained by removing all compo-
nents of k orthogonal to F ). Given am−1 dimensional facetG of F , let NF (G) be the unit normal
vector to G that points out of F . It then holds:
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1. If ProjF (k) = 0, then φk(x) = Φk is constant on F , and we have:

F̃ = volF (F )eiΦk (24)

2. But if ProjF (k) 6= 0, then:

F̃ = i
∑
G∈∂F

ProjF (k) ·NF (G)

‖ProjF (k)‖2
G̃(k) (25)

D.2.2 DISCUSSION

The above theorem provides a recursive relation for computing the Fourier transform of an arbitrary
polytope. More precisely, the Fourier transform of a m-dimensional polytope is expressed as a
sum of fourier transforms over the m − 1 dimensional boundaries of the said polytope (which are
themselves polytopes) times a O(k−1) weight term (with k = ‖k‖). The recursion terminates if
ProjF (k) = 0, which then yields a constant.

To structure this computation, Diaz et al. (2016) introduce a book-keeping device called the face
poset of the polytope. It can be understood as a weighted tree diagram with polytopes of various
dimensions as its nodes. We start at the root node which is the full dimensional polytope P (i.e. we
initially set m = n). For all of the codimension-one boundary faces F of P , we then draw an edge
from the root P to node F and weight it with a term given by:

WF,G = i
ProjF (k) ·NF (G)

‖ProjF (k)‖2
G̃(k) (26)

and repeat the process iteratively for each F . Note that the weight term isO(k−1) where ProjF (k) 6=
0. This process yields tree paths T : P → F1 → ... → Fq where each Fi+1 ∈ ∂Fi has one
dimension less than Fi. For a given path and k, the terminal node for this path, Fq , is the first
polytope for which ProjFq (k) = 0. The final Fourier transform is obtained by multiplying the
weights along each path and summing over all tree paths:

1̃P (k) =
∑
T

iq
q−1∏
i=0

ProjFi(k) ·NFi(Fi+1)

‖ProjFi(k)‖2
volFq (Fq)e

iΦk (27)

where we wrote F0 = P . Together with Lemma 1, this gives the closed form expression of the
Fourier transform of ReLU networks.

For a generic vector k, all paths terminate at the zero-dimensional vertices of the original polytope,
i.e. dim(Fq) = 0, implying the length of the path q equals the number of dimensions d, yielding a
O(k−d) spectrum. The exceptions occur if a path terminates prematurely, because k happens to lie
orthogonal to some d− r-dimensional face Fr in the path, in which case we are left with a O(k−r)
term (with r < d) which dominates asymptotically. Note that all vectors orthogonal to the d − r
dimensional face Fr lie on a r-dimensional subspace of Rd. Since a polytope has a finite number
of faces (of any dimension), the k’s for which the Fourier transform is O(k−r) (instead of O(k−d))
lies on a finite union of closed subspaces of dimension r (with r < d). The Lebesgue measure of all
such lower dimensional subspaces for all such r is 0, leading us to the conclusion that the spectrum
decays as O(k−d) for almost all k’s. We formalize this in the following corollary.
Corollary 1. Let P be a full dimensional polytope in Rn. The Fourier spectrum of its indicator
function 1̃P satisfies the following:

|1̃P (k)| = O
(

1

k∆k

)
(28)

where 1 ≤ ∆k ≤ n, and ∆k = j for k on a finite union of j-dimensional subspaces of Rn.

D.3 PROOF OF THE LIPSCHTIZ BOUND

Proposition 2. The Lipschitz constant Lf of the ReLU network f is bound as follows (for all ε):

‖Wε‖ ≤ Lf ≤
L+1∏
k=1

‖W (k)‖ ≤ ‖θ‖L+1
∞
√
d

L∏
k=1

dk (29)
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Proof. The first equality is simply the fact that Lf = maxε ‖Wε‖, and the second inequality fol-
lows trivially from the parameterization of a ReLU network as a chain of function compositions19,
together with the fact that the Lipschitz constant of the ReLU function is 1 (cf. Miyato et al. (2018),
equation 7). To see the third inequality, consider the definition of the spectral norm of a I×J matrix
W :

‖W‖ = max
‖h‖=1

‖Wh‖ (30)

Now, ‖Wh‖ =
√∑

i |wi · h|, where wi is the i-th row of the weight matrix W and i = 1, ..., I .

Further, if ‖h‖ = 1, we have |wi · h| ≤ ‖wi‖‖h‖ = ‖wi‖. Since ‖wi‖ =
√∑

j |wij | (with

j = 1, ..., J) and |wij | ≤ ‖θ‖∞, we find that ‖wi‖ ≤
√
J‖θ‖∞. Consequently,

√∑
i |wi · h| ≤√

IJ‖θ‖∞ and we obtain:

‖W‖ ≤
√
IJ‖θ‖∞ (31)

Now for W = W (k), we have I = dk−1 and J = dk. In the product over k, every dk except the
first and the last occur in pairs, which cancels the square root. For k = 1, dk−1 = d (for the d
input neurons) and for k = L + 1, dk = 1 (for a single output neuron). The final inequality now
follows.

D.4 THE FOURIER TRANSFORM OF A FUNCTION COMPOSITION

Consider Equation 14. The general idea is to investigate the behaviour of Pγ(l,k) for large frequen-
cies l on manifold but smaller frequencies k in the input domain. In particular, we are interested in
the regime where the stationary phase approximation is applicable to Pγ , i.e. when l2 +k2 →∞ (cf.
section 3.2. of Bergner et al.). In this regime, the integrand in Pγ(k, l) oscillates fast enough such
that the only constructive contribution originates from where the phase term u(z) = k · γ(z)− l · z
does not change with changing z. This yields the condition that∇zu(z) = 0, which translates to the
condition (with Einstein summation convention implied and ∂ν = ∂/∂xν):

lν = kµ∂νγµ(z) (32)

Now, we impose periodic boundary conditions20 on the components of γ, and without loss of
generality we let the period be 2π. Further, we require that the manifold be contained in a
box21 of some size in Rd. The µ-th component γµ can now be expressed as a Fourier series:

γµ(z) =
∑

p∈Zm
γ̃µ[p]e−ipρzρ (33) ∂νγµ(z) =

∑
p∈Zm

−ipν γ̃µ[p]e−ipρzρ (34)

Equation 34 can be substituted in equation 32 to obtain:

ll̂ν = −ik
∑

p∈Zm
pν k̂µγ̃µ[p]e−ipρzρ (35)

where we have split kµ and lν in to their magnitudes k and l and directions k̂ν and l̂µ (respectively).
We are now interested in the conditions on γ under which the RHS can be large in magnitude, even
when k is fixed. Recall that γ is constrained to a box – consequently, we can not arbitrarily scale
up γ̃µ. However, if γ̃µ[p] decays slowly enough with increasing p, the RHS can be made arbitrarily
large (for certain conditions on z, l̂µ and k̂ν).

E VOLUME IN PARAMETER SPACE AND PROOF OF PROPOSITION 1

For a given neural network, we now show that the volume of the parameter space containing pa-
rameters that contribute ε-non-negligibly to frequency components of magnitude k′ above a certain

19Recall that the Lipschitz constant of a composition of two or more functions is the product of their respec-
tive Lipschtiz constants.

20This is possible whenever γ is defined on a bounded domain, e.g. on [0, 1]m.
21This is equivalent to assuming that the data lies in a bounded set.
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cut-off k decays with increasing k. For notational simplicity and without loss of generality, we
absorb the direction k̂ of k in the respective mappings and only deal with the magnitude k.

Definition 1. Given a ReLU network fθ of fixed depth, width and weight clip K with parameter
vector θ, an ε > 0 and Θ = B∞K (0) a L∞ ball around 0, we define:

Ξε(k) = {θ ∈ Θ|∃k′ > k, |f̃θ(k′)| > ε}
as the set of all parameters vectors θ ∈ Ξε(k) that contribute more than an ε in expressing one or
more frequencies k′ above a cut-off frequency k.

Remark 1. If k2 ≥ k1, we have Ξε(k2) ⊆ Ξε(k1) and consequently vol(Ξε(k2)) ≤ vol(Ξε(k1)),
where vol is the Lebesgue measure.

Lemma 4. Let 1εk(θ) be the indicator function on Ξε(k). Then:
∃κ > 0 : ∀k ≥ κ, 1εk(θ) = 0

Proof. From theorem 1, we know that22 |f̃θ(k)| = O(k−∆−1) for an integer 1 ≤ ∆ ≤ d. In the

worse case where ∆ = 1, we have that ∃M < ∞ : |f̃θ(k)| < M
k2 . Now, simply select a κ >

√
M
ε

such that M
κ2 < ε. This yields that |f̃θ(κ)| < M

κ2 < ε, and given that M
κ2 ≤ M

k2 ∀ k ≥ κ, we find
|f̃θ(k)| < ε∀ k ≥ κ. Now by definition 1, θ 6∈ Ξε(κ), and since Ξε(k) ⊆ Ξε(κ) (see remark 1), we
have θ 6∈ Ξε(k), implying 1εk(θ) = 0 ∀ k ≥ κ.

Remark 2. We have 1εk(θ) ≤ |f̃θ(k)| for large enough k (i.e. for k ≥ κ), since |f̃θ(k)| ≥ 0.

Proposition 1. The relative volume of Ξε(k) w.r.t. Θ is O(k−∆−1) where 1 ≤ ∆ ≤ d.

Proof. The volume is given by the integral over the indicator function, i.e.

vol(Ξε(k)) =

∫
θ∈Θ

1εk(θ)dθ

For a large enough k, we have from remark 2, the monotonicity of the Lebesgue integral and theorem
1 that:

vol(Ξε(k)) =

∫
θ∈Θ

1εk(θ)dθ ≤
∫
θ∈Θ

|f̃θ(k)|dθ = O(k−d+∆−1)vol(Θ)

=⇒ vol(Ξε(k))

vol(Θ)
= O(k−∆−1)

F KERNEL MACHINES AND KNNS

In this section, in light of our findings, we want to compare DNNs with K-nearest neighbor (k-NN)
classifier and kernel machines which are also popular learning algorithms, but are, in contrast to
DNNs, better understood theoretically.

F.1 KERNEL MACHINES VS DNNS

Given that we study why DNNs are biased towards learning smooth functions, we note that ker-
nel machines (KM) are also highly Lipschitz smooth (Eg. for Gaussian kernels all derivatives are
bounded). However there are crutial differences between the two. While kernel machines can ap-
proximate any target function in principal (Hammer & Gersmann, 2003), the number of Gaussian
kernels needed scales linearly with the number of sign changes in the target function (Bengio et al.,
2009). Ma & Belkin (2017) have further shown that for smooth kernels, a target function cannot be
approximated within ε precision in any polynomial of 1/ε steps by gradient descent.

22Note that in theorem 1, ∆k̂ depends only on the direction of k, which we absorb in the definition of ∆.

22



Deep networks on the other hand are also capable of approximating any target function (as shown
by the universal approximation theorems Hornik et al. (1989); Cybenko (1989)), but they are also
parameter efficient in contrast to KM. For instance, we have seen that deep ReLU networks separate
the input space into number of linear regions that grow polynomially in width of layers and expo-
nentially in the depth of the network (Montufar et al., 2014; Raghu et al., 2016). A similar result
on the exponentially growing expressive power of networks in terms of their depth is also shown in
(Poole et al., 2016). In this paper we have further shown that DNNs are inherently biased towards
lower frequency (smooth) functions over a finite parameter space. This suggests that DNNs strike a
good balance between function smoothness and expressibility/parameter-efficiency compared with
KM.

F.2 K-NN CLASSIFIER VS. DNN CLASSIFIER

K-nearest neighbor (KNN) also has a historical importance as a classification algorithm due to its
simplicity. It has been shown to be a consistent approximator Devroye et al. (1996), i.e., asymp-
totically its empirical risk goes to zero as K → ∞ and K/N → 0, where N is the number of
training samples. However, because it is a memory based algorithm, it is prohibitively slow for
large datasets. Since the smoothness of a KNN prediction function is not well studied, we compare
the smoothness between KNN and DNN. For various values of K, we train a KNN classifier on a
k = 150 frequency signal (which is binarized) defined on the L = 20 manifold (see section 4), and
extract probability predictions on a box interval in R2. On this interval, we evaluate the 2D FFT and
integrate out the angular components to obtain ζ(k):

ζ(k) =
d

dk

∫ k

0

dk′k′
∫ 2π

0

dϕ|f̃(k′, ϕ)| (36)

Finally, we plot ζ(k) for various K in figure 16e. Furthermore, we train a DNN on the very same
dataset and overlay the radial spectrum of the resulting probability map on the same plot. We
find that while DNN’s are as expressive as a K = 1 KNN classifier at lower (radial) frequencies,
the frequency spectrum of DNNs decay faster than KNN classifier for all values of K considered,
indicating that the DNN is smoother than the KNNs considered. We also repeat the experiment
corresponding to Fig. 4 with KNNs (see Fig. 16) for various K’s, to find that unlike DNNs, KNNs
do not necessarily perform better for larger L’s, suggesting that KNNs do not exploit the geometry
of the manifold like DNNs do.
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(a) K = 5. (b) K = 10.

(c) K = 15. (d) K = 20.

(e) Frequency spectrum

Figure 16: (a,b,c,d): Heatmaps of training accuracies (L-vs-k) of KNNs for various K. When
comparing with figure 4, note that the y-axis is flipped. (e): The frequency spectrum of KNNs with
different values of K, and a DNN. The DNN learns a smoother function compared with the KNNs
considered since the spectrum of the DNN decays faster compared with KNNs.
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