
Under review as a conference paper at ICLR 2019

CHAINGAN: A SEQUENTIAL APPROACH TO GANS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a new architecture and training methodology for generative adversar-
ial networks. Current approaches attempt to learn the transformation from a noise
sample to a generated data sample in one shot. Our proposed generator architec-
ture, called ChainGAN, uses a two-step process. It first attempts to transform a
noise vector into a crude sample, similar to a traditional generator. Next, a chain
of networks, called editors, attempt to sequentially enhance this sample. We train
each of these units independently, instead of with end-to-end backpropagation on
the entire chain. Our model is robust, efficient, and flexible as we can apply it to
various network architectures. We provide rationale for our choices and experi-
mentally evaluate our model, achieving competitive results on several datasets.

1 INTRODUCTION

Generative Adversarial Networks (GANs) are a class of generative models that have shown promis-
ing results in multiple domains, including image generation, text generation, and style-transfer
(Goodfellow et al., 2014; Zhang et al., 2017; Zhu et al., 2017). GANs use a game-theoretic frame-
work pitting two agents – a discriminator and a generator – against one another to learn a data
distribution Pd. The generator attempts to transform a noise vector z ∼ N into a sample x̃ that
resembles the training data. Meanwhile, the discriminator acts as a classifier trying to distinguish
between real samples, x ∼ Pd, and generated ones, x̃ ∼ Pg . Equation 1 is the original mini-
max objective proposed by Goodfellow et al. (2014), which can also be viewed as minimizing the
Jensen-Shannon divergence between two distributions, Pd and Pg . These agents are most often im-
plemented as neural networks and Goodfellow et al. (2014) proved that, under suitable conditions,
the generator distribution Pg will match the data distribution, Pd.

min
G

max
D

E
x∼Pd

[log(D(x)] + E
z∼N

[1− log(D(G(z))] (1)

Despite their success, GANs are notoriously hard to train and many variants have been proposed to
tackle shortcomings. These shortcomings include mode collapse (i.e., the tendency for the generator
to produce samples lying on a few modes instead of over the whole data space), training instability,
and convergence properties. In most of these modified GANs, however, the generator is realized as
a single network that transforms noise into a generated data sample.

In this paper, we propose a sequential generator architecture composed of a number of networks. In
the first step, a traditional generator (in this paper called the base generator) is used to transform a
noise sample z into a generated sample x̃0. The sample is then fed into a network (called editor)
which attempts to enhance its quality, as judged by the discriminator. We have a number of these
editor networks connected in a chain, such that the output of one is used as the input of the next.
Together, the base generator and the editors ahead of it are called the chain generator. Any pre-
existing generator architecture can be used for the base generator, making it quite flexible. For
the editors, architectures designed for sample enhancement work well. The whole chain generator
network can be quite small; in fact, it is smaller than most existing generator networks, yet produces
equivalent or better results (Section 4.2).

Each network in the chain generator is trained independently based on scores they receive from
the discriminator. This is done instead of an end-to-end backpropagation through the whole base
generator + editor chain (Section 3.3). This allows each network in the chain to get direct feedback
on its output. A similar approach has been quite successful in classification tasks. Huang et al.

1

Under review as a conference paper at ICLR 2019

(2017) showed that in a classification architecture composed of a chain of ResNet blocks, training
each of these blocks independently, produces better results than an end-to-end training scheme (He
et al., 2015).

In this paper, we propose a sequential generator architecture and a corresponding training regime
for GANs. The benefits of this approach include:

• Better performance on some datasets when compared with relevant models (Table 1)

• Efficient in memory and in the number of parameters (Section 7.1).

• Base generator itself performs better when trained alongside editors (Figure 4a).

• It is flexible and can be adapted to existing network architectures

2 BACKGROUND AND RELEVANT WORK

2.1 GAN OBJECTIVES

The formulation by Goodfellow et al. (2014) (Equation 1) is equivalent to minimizing the Jensen-
Shannon divergence between the data distribution Pd and the generated distribution Pg . However,
Arjovsky et al. (2017) showed that, in practice, this leads to a loss that is potentially not continuous,
causing training difficulty. To address this, they presented the Wasserstein GAN (WGAN) which
minimized the Wasserstein (or ‘Earth mover’) distance between two distributions. This is a weaker
distance than Jensen-Shannon and Arjovsky et al. (2017) showed that, under mild conditions, it
resulted in a function that was continuous everywhere and differentiable almost everywhere. The
WGAN objective can be expressed as:

min
G

max
D∈D

E
x∼Pd

[D(x)]− E
x̃∼Pg

[D(x̃)] (2)

where D is the set of all 1-Lipchitz functions. D no longer discerns between real and fake samples
but is used to approximate the Wasserstein distance between the two distributions (it is here called
a ‘critic’). G in turn looks to minimize this approximated distance. Several approaches have been
proposed to enforce the Lipchitz constraint on the critic, the most notable being gradient penalty
(Gulrajani et al., 2017). This method penalizes the norm of the critic’s gradient with respect to its
input and was shown to have stable training behavior on various architectures. Due to its strong
theoretical and empirical results, we use a modified version of this objective for our work. The
objective for WGAN with gradient penalty can be expressed as:

L = E
x∼Pd

[D(x)]− E
x̃∼Pg

[D(x̃)] + λ E
x̂∼Px̂

[(||∇x̂D(x̂)||2 − 1)2], (3)

where Px̂ samples uniformly along straight lines between pair of points sampled from the data
distribution Pd and the generator distribution Pg Gulrajani et al. (2017). λ is the gradient penalty
coefficient.

2.2 GAN ARCHITECTURES

There have been a diverse range of architectures proposed for the generator and discriminator net-
works. DCGAN has shown promising results by using a deep convolutional architecture for both
the generator and discriminator (Radford et al., 2015). However, this uses a single large generator
network instead of the sequential architecture that we have developed. Our architecture provides
similar results as DCGAN while being more efficient, both in network parameters (Section 4.2) and
in memory. EnhanceGAN, proposed by Deng et al. (2017), successfully use GANs for unsupervised
image enhancement. In this model, the generator is given an image, and it tries to improve its aes-
thetic quality. The editor part of our network is similar to this as they are responsible for enhancing
images in an unsupervised fashion.

Sequential generator architectures have been proposed for tasks where the underlying data has some
inherent sequential structure. TextGAN uses an LSTM architecture for the generator to generate a

2

Under review as a conference paper at ICLR 2019

sentence, one word at a time (Zhang et al., 2017). Ghosh et al. (2016) used an RNN-style discrim-
inator and generator to solve abstract reasoning problems. This attempts to predict the next logical
diagram, given a sequence of past diagrams. C-RNN-GAN is another example that uses GANs on
continuous sequential data like music (Mogren, 2016). Unlike these works, we do not assume the
data is inherently sequential nor do we produce a single sample by generating a number of smaller
units; rather, the output of any network in the chain generator is a whole sample, and the succeeding
ones try to enhance it. Moreover, each editor network has its own set of parameters, unlike LSTMs
or RNNs where these are shared. This allows each editor to be independent and makes our model
efficient as we do not have to backpropagate across time.

The concept of using multiple generators has been proposed previously. Hoang et al. (2017) used
multiple generators which share all but the last layer, trained alongside a single discriminator and
a classifier. Their work has shown resistance to mode collapse and achieves state-of-the-art results
on some datasets. Their work was influenced by MIX+GAN, which showed strong theoretical and
empirical results by using a mixture of GANs instead of a single generator and discriminator (Arora
et al., 2017). Notably, they showed that using a mixture of GANs guarantees existence of approx-
imate equilibrium, leading to stable training. However, a drawback of their work was the large
memory cost of using multiple GANs - they suggest a mixture size of 5. Our work is similar to these
in that we use multiple generators. The output of each editor is a different transformation on the
noise vector z and can be viewed as originating from different generators. However, the generators
in our model are not independent; rather, they are connected in a chain and meant to build upon the
previous ones.

3 MODEL

3.1 MOTIVATION

A clear advantage of a sequential approach is that each output in the sequence is conditioned on the
previous one, simplifying the problem of generating a complicated sample by mapping them to a
sequence of simpler problems. A sequential approach also means that loss or other latent information
in the intermediate steps can be used to guide the training process, which is not possible in one-shot
generation.

As such, we propose a sequential generator architecture and an associated training objective for
GANs. We observe that the challenge of generating a data sample from noise can be divided into
two components: generating a crude representation of what that sample might be, and then iteratively
refining it (Figure 1). A generator trained on images may first generate a rough picture of a car or a
boat, e.g., but it can then be successively edited and enhanced. Intuitively, this is akin to the editorial
process wherein a writer produces a rough sketch of an article, which then passes through a number
of editors before the finished copy is published.

Figure 1: Chain generator model, with noise z, base generator Gb, and editors, Ei.

3.2 ARCHITECTURE

We use a WGAN with gradient penalty as the starting point for our architecture due to its theoretical
robustness and training stability (Section 2.1). However, instead of using a single generator, we use

3

Under review as a conference paper at ICLR 2019

the chain generator consisting of a base generator, denoted by Gb and several editors, denoted by
Ei. The base generator takes in z ∼ N , and produces a sample x̃0 attempting to fool the critic, as
in the traditional GAN architecture. The editors are connected in a chain where the ith one takes
as input a sample x̃(i−1) and tries to produce an enhanced version as the output, x̃i (Figure 1).
Thus, the output of each editor is conditioned on the previous one. Our network can be expressed
recursively as:

x̃0 = Gb(z)

x̃i = Ei(x̃(i−1))
(4)

Each of the intermediate samples in the chain, x̃i, is an attempt to fool the critic. In the WGAN
formulation, the critic is used to approximate the Wasserstein distance between the data distribution
Pd and the generated distribution Pg , where Pg is obtained by transforming z ∼ N using the
network G. In our formulation, each output x̃i is obtained by the following transformation on z:
Ei(Ei−1(. . . E1(Gb(z))))). As such, xi can be viewed as being sampled from distribution Pgi and
a critic is needed to approximate the Wasserstein distance between Pd and Pgi (see Section 7 for a
detailed explanation). For a chain of n editors plus the base generator, n+1 critics are needed. For
the ith editor and critic, the objective can be expressed as:

Li = E
x∼Pd

[Di(x)]− E
x̃i∼Pgi

[Di(x̃i)] + λ E
x̂∼Px̂i

[(||∇x̂i
Di(x̂)||2 − 1)2] (5)

3.3 TRAINING

Each network in the chain generator, whether the base generator or any of the editors, is trained
independently, based on critic scores for that network’s output (Section 7.1). At every iteration, we
randomly choose one of them to update, and use their output to also train the corresponding critic,
Di. This means that the goal for any network in the chain generator is to ensure its outputs are
as realistic as possible. Without loss of generality, we can express the training rule for the chain
generator using canonical gradient descent with learning rate α as:

θt+1
Gb

= θtGb
− α∇θGb

D0(x̃0)

θt+1
Ei

= θtEi
− α∇θEi

Di(x̃i)
(6)

Our training regime is in contrast to performing end-to-end backpropagation (from the last editor all
the way to the base generator). The motivation for this is three-fold. First, we want each editor to do
its best in generating realistic samples and receive direct feedback on its performance. This way, we
can utilize the intermediate samples generated in the chain to guide the training process. So editor i
can start with the distribution Pgi−1 and use the critic feedback to construct a Pgi that is closer to Pd.
Another benefit of this is that we can possibly use fewer editors during evaluation. For example, we
can train with the chain generator composed of Gb, E1, E2, . . . , En, but in evaluation observe that
after editor k (k ≤ n), the quality of the samples saturate or do not improve significantly (Figure 2).
As such, during evaluation we can cutoff the chain generator at editor k, and use this smaller chain
for downstream tasks, making it more compact. Performing end-to-end backpropagation would
mean that only the samples generated by the last editor would be viewed by the critic, and the goal
of the chain generator would be to generate good samples by the last editor. That network could
no longer be made compact at evaluation, and the number of editors to use would be an additional
hyper-parameter.

The last rationale behind our training approach is efficiency. Observe that in the canonical GAN
architecture, the gradient computation when updating the generator is ∂

∂θG
D(G(z)), which involves

traversing both the generator and critic graphs, which can be expensive for large generator networks.
Performing end-to-end backpropagation on our chain generator would cause a similar issue as the
entire chain would need to be retained alongside the critic. However, training each of these networks
separately means that the gradient computation for an update step becomes ∂

∂θEi
Di(Ei(x̃i−1)), so

only a single editor or base generator and its critic need to be traversed and loaded on the GPU
(Section 7.1). Since these networks are quite small, our model can be made very efficient.

4

Under review as a conference paper at ICLR 2019

Gb E1 E2 E3 E4 E5

Figure 2: In this example, the first few editors significantly enhance the image of a car, but after
Editor 3, they tend to more subtle.

We abide by the recommendations of Arjovsky et al. (2017) to train the critic more than the generator
in each iteration and use a gradient penalty to enforce the Lipchitz constraint. We use the Adam
optimizer (Kingma & Ba, 2014). Algorithm 1 explains our training process.

Algorithm 1: ChainGAN Training
Our default values are λ = 10, ncritic = 5, α = 0.0001, (β1, β2) = (0.5, 0.9), batch size = 64.

Require: initial critic parameters w0 and initial chain generator parameters {θ00 . . . θ0n}, where
θi are the parameters for the ith network in the chain generator.

Require: gradient penalty coefficient λ, batch size m, critic iterations per generator iteration
ncritic, and Adam hyperparametes α, β1, β2,

while θ0, ...θn has not converged do
i ∼ Cat(0, n) ;
for j = 1, ..., ncritic do

for k = 1, ...,m do
Sample real data, x ∼ Pd, and noise, z ∼ N (0, 1);
Sample ε ∼ U(0, 1);
x̃i ←Ei(Ei−1(...Gb(z)));
x̂← εx+ (1− ε)x̃i;
L(k) ← Di(x)−Di(x̃) + λ(||∇x̂Di(x̂)||2 − 1)2;

end for
wt+1 ← Adam(∇wt

1
m

∑m
k=1 L

(k), wt, α, β1, β2);
end for
Sample a batch of {z}mk=1 ∼ N ;
{x̃i}mk=1 ← {Ei(Ei−1(...Gb(zk)))}mk=1;
θt+1
i ← Adam(∇θti

1
m

∑m
k=1−Di(x̃i), θ

t
i , α, β1, β2);

end while

4 EXPERIMENTS

We deploy our model on several datasets that are commonly used to evaluate GANs, including: (i)
MNIST – 28x28 gray-scale images of hand-written digits (LeCun & Cortes, 2010); (ii) CIFAR10
– 32x32 colour images across 10 classes (Krizhevsky et al.); (iii) CelebA face dataset – 214x110
colour images of celebrity faces (Liu et al., 2015). For the CIFAR10 dataset, we compute the incep-
tion score and compare it against several GAN variants (Salimans et al., 2016). Our goal is to show
that our model can be used with existing generator architectures to provide competitive scores while
using a smaller network.

We implement multiple critics by sharing all but the last layer (Section 7.3). To verify our results
were not due to this, we also experiment with using a single critic, which did not degrade results.
Each editor is composed of a few residual blocks since Deng et al. (2017) showed that such an
architecture performs well for unsupervised image enhancement tasks (see Section 7.4 for details).
We use this editor architecture for all our experiments and have five such networks connected in a
chain. A key goal when designing our networks was efficiency; in fact, all implementations of our
chain generator have fewer parameters than comparable models.

5

Under review as a conference paper at ICLR 2019

4.1 MNIST

Gb E1 E2 E3 E4 E5

Epoch 10

Epoch 22

Epoch 54

Epoch 98

Figure 3: Randomly selected MNIST examples from our DCGAN with editors model at different
epochs.

Our base generator and the critics use a convolutional architecture similar to DCGAN. The entire
chain generator network is quite small, using approximately a third of the number of parameters as
the DCGAN generator. Early in the training, the base generator’s samples are crude, but the editors
work to enhance it significantly (Figure 3). As the training progresses, the base generator’s samples
increase in quality and the editor’s effect becomes more subtle. Visually, it appears that the editors
collaborate and build upon each other; the class and overall structure of the image remain the same
throughout the edit-process.

4.2 CIFAR10

Table 1: Inception scores on unlabelled CIFAR with and without the chain generator approach
trained with WGAN+GP. d refers to the depth of the first conv layer in DCGAN architectures. See
section 7.4 for details about architecture.

Model Generator Arch. Gb Score Best Ei Score ∼Params

1 Small DCGAN (d=256) 5.02±0.05 N/A 700,000
2 Tiny DCGAN (d=128) + Editors 5.00±0.09 5.67±0.07 (Edit 3) 866,000
3 Small DCGAN + Editors (one Critic) 5.24±0.04 6.05±0.08 (Edit 2) 1,250,000
4 Small DCGAN + Editors (multi Critic) 5.63±0.06 5.86±0.05 (Edit 2) 1,250,000
5 Small DCGAN + Editors (end-to-end) N/A 2.56±0.02 1,250,000
6 DCGAN - WGAN+GP (d=512) 5.18±0.05 N/A 1,730,000
7 Small ResNet 5.75±0.05 720,000
8 Small ResNet + Editors 6.35±0.09 6.70±0.03 (Edit 3) 1,000,000
9 ResNet - WGAN+GP 6.86±0.04 N/A 1,220,000

We experiment with different architectures for the base generator. These include variants of DC-
GAN and a ResNet architecture proposed by Gulrajani et al. (2017). We add a chain of five editors
to these base generators and train them according to Algorithm 1. We compare them against the
original (and larger) versions of these architectures. For original architectures, we use the tuned
hyper-parameters recommended in the pertinent paper/implementation. For the ChainGAN variants,
we use default parameters instead. We wanted to evaluate the robustness of our model and believe
that better results than ours can be obtained by tuning hyper-parameters. All models compared are
trained to the same number of epochs using the WGAN formulation with a gradient penalty term
(WGAN+GP). Table 1 contains the results of these experiments.

6

Under review as a conference paper at ICLR 2019

Based on inception scores, our DCGAN variant of the chain generator using multiple critics (model
2 and 4) was able to outperform the base DCGAN model (model 6) while using fewer parameters.
In a related experiment, we train the base generator by itself (i.e., without editors) against the
critic (model 1), to note the effect of the editors on the base generator. In this case, the base
generator exhibits better inception scores when trained alongside editors than without them, as
shown in Fig. 4a. This suggests that the sequential model not only improves the overall sample
quality, but may also improve base generator training. To discern the role of our training regime,
we run an experiment that uses end-to-end backpropagation on a chain generator with 5 editors
(model 5), noting a significant drop in performance.

Figure 4: (a) Inception scores across epochs of model 4 vs model 1 (b) Randomly selected CIFAR-10
examples from editor 3 of Model 8.

Table 2: Comparison of inception scores

Method (unlabelled) Inception scores

Real Data 11.24±0.12
WGAN (Arjovsky et al., 2017) 3.82±0.06
MIX + WGAN (Arora et al., 2017) 4.04±0.07
DCGAN - WGAN+GP ∗ 5.18±0.05
ALI (Dumoulin et al., 2016) 5.35±0.05
BEGAN (Berthelot et al., 2017) 5.62
Small DCGAN (WGAN+GP) + Editors∗ 6.05±0.04
Small ResNet (WGAN+GP) + Editors∗ 6.70±0.02
ResNet - WGAN+GP ∗ 6.86±0.04
EGAN-Ent-VI (Dai et al., 2017) 7.07±0.10
MGAN (Hoang et al., 2017) 8.33±0.10

The variant of ChainGAN using a ResNet base generator also uses a smaller network (model 8),
while achieving comparable scores. While performing slightly worse than base on the standard
inception score (IV2-TF), we outperform the base model in the IV3-Torch inception model used in
Barratt & Sharma (2018). We also see the same effect as above: results from the base generator
are better when in chain and trained alongside editors (model 8) rather than being trained by itself
(model 7). Figure 4b shows random samples from Editor 3 of the Small ResNet + Editors model.

7

Under review as a conference paper at ICLR 2019

Table 2 compares our models against different GAN variants. Entries denoted by ∗ refer to models
that we implemented (all using pyTorch). The ResNet - WGAN+GP is the model proposed by
Gulrajani et al. (2017) and we closely followed all their recommendations yet were unable to achieve
their stated inception score of 7.86.

4.3 CELEBA

We also trained our model on the celebrity face dataset (Liu et al., 2015). We do not center-crop
the images, which would focus only on the face; rather, we downsample but maintain the whole
image. As in the previous experiments, the editors build upon one another rather than working at
cross purposes. Section 7.2 shows some samples generated by our model.

5 DISCUSSION AND FUTURE WORK

In our experiments, we were able to successfully train a sequential GAN architecture to achieve
competitive results. Our model uses a smaller network and the training regime is also more efficient
than the alternatives (Section 7.1). We trained with 5 editors, but in evaluation needed k ≤ 5 editors
to achieve the best scores; this suggests that we can use a smaller network during evaluation or
for downstream tasks. Our results yielded diverse samples and we do not notice any visual signs
of mode collapse (Figure 4b). To ensure that our generator architecture and training scheme are
responsible for the performance, we run experiments with a single critic and see that results do not
degrade (see model 3 in Table 1); but with end-to-end backpropagation through the chain generator
results degraded significantly (see model 5 in Table 1).

We also experimented with inducing a game between the editors themselves, using their loss func-
tions. In one formulation, Ei’s loss was the difference of the critic scores between itself and the pre-
vious editor scaled by λ, Li = Di(x̃i)−λDi−1(x̃i−1). As such, each editor would compete against
the previous one and try to outperform it. In another formulation, each editor’s loss was a discounted
(by λ) sum of all the critic scores ahead of it, Li = Di(x̃i) + λDi+1(x̃i+1) + ...+ λn−iDn(x̃n).
This would force earlier editors to take on more responsibility since they influence those further
ahead. Although promising, these methods often led to unstable training. Future work could focus
on training stability with these approaches as there is merit in exploring strategies between editors.

5.1 OPEN CHALLENGES

The idea of splitting sample generation into a multi-step process is very flexible and can be extended
in a number of ways. Currently, editors are completely unsupervised, but this can be extended to
make each editor responsible for a different feature. One approach might build upon InfoGAN,
which provides the generator with several latent variables, along with noise, and tries to maximize
the mutual information between the generated samples and the latent variables (Chen et al., 2016).
Using a ChainGAN approach, we could use the base generator to simply generate a sample, and
each editor would be responsible for a different latent variable, with a goal of maximizing mutual
information between that variable and its output.

ChainGAN may also prove effective in text generation – a domain with which GANs struggle. In
this context, the base generator could be responsible for generating a bag of words, and the editors
would be responsible for reordering them, e.g., for coherence. Editors could similarly be used
change the tone or sentiment of text appropriately.

6 CONCLUSION

In this paper, we present a new sequential approach to GANs. Instead of attempting to generate
a sample from noise in one shot, our model first generates a crude sample via the base generator
and then successively enhances it through a chain of networks called editors. We use multiple
critics, each corresponding to a different network in the chain generator. Our model is efficient
and we successfully trained on a number of datasets to achieve competitive results, outperforming
some existing models. Furthermore, our scheme is very flexible and there are several avenues for
extension.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Martin Arjovsky, Soumith Chintala, and Lon Bottou. Wasserstein GAN. ICML, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium
in generative adversarial nets (GANs). ICML, 2017.

Shane Barratt and Rishi Sharma. A note on the inception score. ICML, 2018.

David Berthelot, Thomas Schumm, and Luke Metz. BEGAN: Boundary equilibrium generative
adversarial networks. IEEE, 2017.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
GAN: Interpretable representation learning by information maximizing generative adversarial
nets. NIPS, 2016.

Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron Courville. Calibrating
energy-based generative adversarial networks. ICLR, 2017.

Yubin Deng, Chen Change Loy, and Xiaoou Tang. Aesthetic-driven image enhancement by adver-
sarial learning. CVPR, 2017.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. ICLR, 2016.

Arnab Ghosh, Viveka Kulharia, Amitabha Mukerjee, Vinay Namboodiri, and Mohit Bansal. Con-
textual RNN-GANs for abstract reasoning diagram generation, 2016.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. NIPS, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Im-
proved training of Wasserstein GANs. NIPS, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CVPR, 2015.

Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. Multi-generator generative adversarial
nets. 2017.

Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning deep ResNet blocks
sequentially using boosting theory. ICML, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Canadian Institute for Advanced
Research). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), 2015.

Olof Mogren. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. NIPS,
2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. ICLR, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs, 2016.

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin.
Adversarial feature matching for text generation. ICML, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. CVPR, 2017.

9

http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2019

7 APPENDIX

7.1 TRADITIONAL GAN TRAINING VS CHAINGAN TRAINING

Figure 5: Whereas backpropagation for traditional GANs (top) require retaining the entire generator
graph, ChainGAN requires the graph of one randomly selected editor per iteration (bottom), which
has a fraction of the number of parameters. Orange boxes represent the parameters involved in the
backpropagation of loss gradients.

7.2 CELEBA RESULTS

Gb E1 E2 E3 E4 E5

Figure 6: CelebA samples. Editors progressively smooth irregularities of the initial generated im-
ages.

10

Under review as a conference paper at ICLR 2019

7.3 RATIONALE FOR MULTIPLE CRITICS

Figure 7: Multiple critics share convolution parameters and differ only in the last linear layer. Critic
D0 is responsible for evaluating base generator Gb’s output x̃0, Di is responsible for evaluating
editor Ei’s output x̃i, and so on.

The Wasserstein distance can be intuitively interpreted as the cost of the cheapest transport strat-
egy that transforms one distribution to another. Between two distributions Pg and Pd, this can be
expressed as:

W (Pg, Pd) = inf
γε

∏
(Pd,Pg)

E
(x,y)∼γ

[||x− y||] (7)

where
∏
(Pd, Pg) is the set of all distributions whose marginals are Pg and Pd. Arjovsky et al.

(2017) show that using the Kantorovich-Rubenstein duality and a slight reframing, this objective
can be expressed as:

W (Pg, Pd) = max
wεW

E
x∼Pd

[fw(x)]− E
z∼N

[fw(G(z))] (8)

Here, {fw}wεW is the set of all K-Lipchitz functions for some K. We can use a neural network D
to approximate the function fw. Now that we have an approximation for the Wasserstein distance
between Pd and Pg , the generator network seeks to minimize this, giving us the WGAN formulation
of:

min
G

max
D∈D

E
x∼Pd

[D(x)]− E
x̃∼Pg

[D(x̃)] (9)

In our ChainGAN model, the output of each editor can be seen as a different transformation of the
noise vector z ∼ N . For example, Editor i’s output x̃i is obtained by the following transformation
on z: Ei(Ei−1(. . . E1(Gb(z))))). Thus, to approximate the Wasserstein distance between Pd and
Pgi , we use a network Di. For a base generator and n editors, we have n+1 critics.

11

Under review as a conference paper at ICLR 2019

7.4 ARCHITECTURES

7.4.1 RESNET ARCHITECTURES

The results before each ResBlock (of any type) were added to the output of that ResBlock after
undergoing a resample (of the same type as the ResBlock in question) and a dimension invariant
convolution with filter size [1 × 1]. The architecture choices for the different ResBlocks all come
from the WGAN-GP paper (Gulrajani et al., 2017). ResBlock type I is composed of a convolution
with padding 1 followed by a ReLU activation function followed by another similar convolution
followed mean pooling. ResBlock type II is composed of a ReLU activation function followed by a
convolution with padding 1, then another ReLU followed by a similar convolution again and a mean
pooling layer at the end. ResBlock type III is the same as ResBlock type II except it includes a batch
normalization layer before each ReLU and has an upsampling layer instead of the mean pooling
layer. ResBlock type IV is similar to types II and III except it has no resampling layer. The last
convolution layer is just a convolution with padding 1.

Critic D (d = 128)

Kernel Size Resample Output shape
Input Image - - 3× 32× 32

Residual Block Type I [3× 3] Down d× 16× 16
Residual Block Type II [3× 3] Down d× 8× 8
Residual Block Type II [3× 3] Down d× 4× 4
Residual Block Type II [3× 3] Down d× 4× 4
Linear (n such layers) - - 1

Base Generator Gb (d = 96 or d = 128)

Kernel Size Resample Output shape
z - - 128

Linear - - d× 4× 4
Residual Block Type III [3× 3] Up d× 8× 8
Residual Block Type III [3× 3] Up d× 16× 16
Residual Block Type III [3× 3] Up d× 32× 32

Convolution [3× 3] - 3× 32× 32

Editor E (d = 34)

Kernel Size Resample Output shape
Previous Image - - 3× 32× 32

Residual Block Type IV [3× 3] - d× 32× 32
Residual Block Type IV [3× 3] - d× 32× 32
Residual Block Type IV [3× 3] - d× 32× 32

Convolution [3× 3] - 3× 32× 32

7.4.2 DCGAN ARCHITECTURE

Each generator convolution transpose refers to a layer with a convolution transpose of stride 2 and
no padding, followed by batch normalization, and then a ReLU activation function. Each critic con-
volution refers to a convolution operation with stride 2 and padding of 1 followed by a LeakyReLU
activation function. Notice here that we do not use batch normalization for the critic. The editor
used with the DCGAN variant shares its architecture with its counterpart in the ResNet section and
is only reproduced here for clarity.

12

Under review as a conference paper at ICLR 2019

Critic D (d = 512)

Kernel Size Output shape
Input Image - 3× 32× 32
Convolution - d× 4× 4
Convolution [3× 3] d× 16× 16
Convolution [3× 3] 2d× 8× 8
Convolution [3× 3] 4d× 4× 4

Linear (n such layers) - 1

Base Generator Gb (d = 256 or d = 512)

Kernel Size Output shape
z - 128

Linear - d× 4× 4
Convolution Transpose [2× 2] d

2 × 8× 8
Convolution Transpose [2× 2] d

4 × 16× 16
Convolution Transpose [2× 2] 3× 8× 8

Editor E (d = 34)

Kernel Size Resample Output shape
Previous Image - - 3× 32× 32

Residual Block Type IV [3× 3] - d× 32× 32
Residual Block Type IV [3× 3] - d× 32× 32
Residual Block Type IV [3× 3] - d× 32× 32

Convolution [3× 3] - 3× 32× 32

7.5 ADDITIONAL CIFAR-10 RESULTS

Figure 8: Selected outputs from using ResNets for both the generator and 5 editors.

13

	Introduction
	Background and relevant work
	GAN Objectives
	GAN architectures

	Model
	Motivation
	Architecture
	Training

	Experiments
	MNIST
	CIFAR10
	CelebA

	Discussion and future work
	Open challenges

	Conclusion
	Appendix
	Traditional GAN training vs ChainGAN training
	CelebA results
	Rationale for multiple critics
	Architectures
	ResNet Architectures
	DCGAN Architecture

	Additional CIFAR-10 results

