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ABSTRACT

Pre-trained word embeddings are the primary method for transfer learning in sev-
eral Natural Language Processing (NLP) tasks. Recent works have focused on
using unsupervised techniques such as language modeling to obtain these embed-
dings. In contrast, this work focuses on extracting representations from multiple
pre-trained supervised models, which enriches word embeddings with task and
domain specific knowledge. Experiments performed in cross-task, cross-domain
and cross-lingual settings indicate that such supervised embeddings are helpful,
especially in the low-resource setting, but the extent of gains is dependent on the
nature of the task and domain.

1 INTRODUCTION

Named entity recognition, semantic role labelling, relation extraction etc. can be thought of as
primary tasks necessary for solving high level tasks like question answering, summarization etc.
However, labelling large amounts of data at this granularity is not only prohibitively expensive, but
also unscalable. Given that high performance models for these tasks already exist, it is desirable to
leverage them for other language understanding tasks.

Next, consider the domain adaptation setting where some domains have a lot of data, while others do
not. A model for a low-resource domain would benefit from information in expert models trained
on other data rich domains. Finally, consider the setting of cross-lingual adaptation, a common
problem for personal assistants expanding to more languages. As the number of languages increases,
it becomes unfeasible to obtain human annotated data. Again, the need to adapt to low-resource
languages can be met by leveraging models that already exist for high-resource languages.

Motivated by the above scenarios, we propose a simple method to transfer (1) supervised knowledge,
from (2) multiple sources, (3) in an easy to implement manner. In our approach, this knowledge is
extracted from source models in the form of contextual word embeddings. We treat preexisting
models as embedding extractors, which are used to extract token level representations for an input
sentence. These representations are then combined via a task specific convex combination.

Unsupervised transfer learning methods such as ELMo have shown great success for a variety of
tasks Peters et al. (2018). While they have the advantage of being trained on very large corpora, the
training objectives are unsupervised. We show that in low-resource settings especially, leveraging
representations from multiple pre-trained supervised models in related tasks, domains or languages
can prove to be beneficial.

The common way of supervised transfer learning via fine-tuning can transfer information only from
a single source task Mou et al. (2016). One way to incorporate information from multiple external
sources is via multi-task learning Hashimoto et al. (2017); Ruder (2017). The limitations of multi-
task learning are the need for labelled data for the source models, longer training times and complex
design decisions (weighing the losses for each task, sampling strategies, and choice of architecture).
In contrast, our plug-and-play approach is simple and does not assume availability of source model
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data at training time. Finally, our approach also provides some interpretability (through the param-
eters of the convex combination) into which source tasks or domains are important for which other
tasks and domains.

2 RELATED WORK

Our work aligns most with the following three directions of research.

Unsupervised transfer learning Embeddings such as GloVe and FastText have become an inte-
gral part of the modern NLP pipeline Pennington et al. (2014); Bojanowski et al. (2017). Over the
last year, language model based deep contextualized embedding methods such as ELMo have shown
substantial improvements over their shallow counterparts, heralding a new era of word representa-
tions Peters et al. (2018).

Supervised transfer learning CoVe McCann et al. (2017) and InferSent Conneau et al. (2017a)
extract embeddings from encoders pre-trained for Machine Translation and Natural Language Infer-
ence respectively. Mihaylov et al. (2017) transfer low-level skills such as textual entailment, NER,
paraphrase detection and question type classification into a reading comprehension model.

Multi-source transfer learning In terms of modelling approach, our work is similar to Kim et al.
(2017) , where the authors use multiple existing models for domain adaptation for spoken language
understanding. In comparison, our work focuses not just on the domain adaptation, but also the
cross-task and cross-lingual settings. In another work, Coates & Bollegala (2018) create meta-
embeddings from multiple embeddings like GloVe, Fasttext etc.

3 APPROACH

Most deep learning models can be thought of as having an encoder E and decoder D. For example
in a Deep-SRL model He et al. (2017), stacked bidirectional LSTM constitutes E, while D is the
softmax layer. Assume K existing supervised models either for different tasks or different domains
M1, ...,MK and corresponding encoders E1, ..., EK . Given a sentence of N tokens (t1, t2, ..., tN ),
we feed these tokens to the K different encoders and get K different representations for each token.
We denote the encoder output of the kth model for the nth token by hkn. Each encoder generates
representations specialized for the task, domain, or language it was trained for. Since our approach
assumes no explicit information about the encoders of the model, they can be of varying dimensions
and use different underlying architectures. Evidently, they would also be in different vector spaces
and therefore we first use a projection layer to bring all of them in the same vector space. The
parameters of these projection layersW1, ...WK are learned along with the target model parameters.
Wk projects hkn to a fixed D dimensional vector gkn.

For inclusion in a downstream model, we aggregate the projection layer output of all the different
source models into one vector. Several aggregation schemes can be employed : pooling, convex
combination, attention etc. We choose the simple yet interpretable convex combination approach,
as described below.

Convex Combination: This technique is similar to one used by ELMo Peters et al. (2018). We use
a softmax normalized weight sk corresponding to each of the different representations of the word,
add them up and use a scalar parameter γ that scales up the whole vector. The embedding On for
the nth word comes out to be:

On = γ

K∑
k=1

sk g
k
n

This approach adds K + 1 trainable parameters to the model. An advantage of combining the
representations in this manner is that the size of the embedding is fixed irrespective of the number
of source models used.

Once we get a combined representation, it can be used in the target model just like any other em-
bedding. In our experiments, we concatenate these embeddings with traditional GloVe or ELMo
embeddings.
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4 EXPERIMENTAL SETUP

We use the proposed supervised contextual embeddings along with GloVe and ELMo embeddings
in three knowledge transfer settings.

Cross-task transfer In this setting, we transfer knowledge to a target task from models trained
on multiple source tasks. We transfer into Semantic Role Labeling (SRL) task using Constituency
Parsing (CP), Dependency Parsing (DP) and Named Entity Recognition (NER) as source tasks. The
choice of SRL as a target task, with source embeddings from CP, DP and NER models, is inspired by
the popular use of explicit syntactic parsing features for SRL. We use OntoNotes 5.0 Pradhan et al.
(2012) dataset to train the SRL target tasks. We use the stacked alternating LSTM architechture for
SRL as per He et al. (2017). On the source side, the DP model is based on Dozat & D. Manning
(2016) and CP on Stern et al. (2017). For most of the source models, we use off-the-shelf, pre-trained
models provided by AllenNLP 1. We refer readers to Peters et al. (2018) for further description of
model architectures for the various tasks.

Cross-domain transfer Here, we study the applicability of our method in the cross-domain set-
ting. The target task is same as the source tasks, but instead, the domains of the source and target
models are different. For this set of experiments, our task is NER and we use the OntoNotes 5.0
dataset which comes with annotations for multiple domains. Though NER is an easier task, we chose
it as the target task for the cross-domain setting as even state of the art NER models may perform
poorly for a data-scarce domain. We choose the target domain as web blogs and the source domains
are newswire, broadcast conversation, telephone conversation, magazines and broadcast news. Note
that the samples in the validation and test sets are also limited to the web blogs domain only. We use
an LSTM-CRF architechture with 1 LSTM layer for NER as per Peters et al. (2017).

Cross-lingual transfer From the CoNLL shared tasks, we obtain NER datasets for English, Span-
ish, German and Dutch Tjong Kim Sang & De Meulder (2003). We consider two scenarios with
German and Spanish as the target languages and the remaining 3 as source languages. To facilitate
the input of sentences into models from other languages with different scripts, we rely on cross-
lingual embeddings provided by MUSE Conneau et al. (2017b). The NER model architecture is the
same as the one used for the cross-domain experiments.

To study the effectiveness of our approach in the low resource setting, in addition to the full datasets,
we also run experiments on smaller training subsets. Similar to Mulcaire et al. (2018), we create ran-
dom subsets of 1,000 and 5,000 samples to simulate a low resource setting. In all the aforementoiend
settings, the source task models are trained on their complete datasets.

Hyperparameters We use the Adam optimizer (lr=0.001) for all our experiments. We run our
target models for 50 epochs in SRL tasks and 75 epochs for NER tasks. Batch size is kept at 8 for
the 1k data setting and 16 for 5k data setting. The dimensions of the GloVe and ELMo embeddings
are 100 and 1024 respectively. The output dimension of the projection layer in all settings for
supervised embeddings is 300.

5 RESULTS AND DISCUSSION

Cross-task SRL results (with GloVe and ELMo in 1k, 5k and full data settings) have been tabulated
in Table 1. Table 2 has the results for cross-domain NER and Table 3 shows the results for cross-
lingual transfer on NER. All the reported numbers are F1 scores.

Cross-task SRL With GloVe embeddings, adding the supervised embeddings gives us significant
improvements in F1 scores∼ 5% for 1k and∼ 7% for 5k examples. When we use the entire dataset,
adding supervised embeddings provides no performance gains. Examining the learned source task
weights in the 1k setting, we find that weights for CP, DP and NER have values 0.41, 0.41 and 0.18
respectively which shows that SRL benefits greatly from syntactic tasks like CP and DP. This is in

1https://allennlp.org/models
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#samples=1k #samples=5k #samples=all
Dev Test Dev Test Dev Test

Glove 32.30 33.02 44.98 46.19 77.62 77.87
GloVe
+Ours 37.40 38.27 52.11 53.05 77.83 77.94

ELMo 44.69 45.34 58.30 58.79 82.68 82.58
ELMo
+Ours 49.59 50.36 63.30 63.84 82.50 82.54

Table 1: Performance of cross-task transfer on SRL
(samples=all includes 280K samples)

#samples=1k #samples=5k #samples=all
Dev Test Dev Test Dev Test

GloVe 45.30 45.52 53.50 56.67 59.75 66.23
GloVe
+Ours 50.18 49.64 55.49 60.56 61.16 65.51

ELMo 45.06 45.57 56.43 57.68 59.58 64.20
ELMo
+Ours 48.18 48.56 56.53 57.94 60.36 65.19

Table 2: Performance of cross-domain transfer on
NER (samples=all includes 17K samples)

German Spanish
#samples=1k #samples=5k #samples=all #samples=1k #samples=5k #samples=all
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

MUSE 58.12 57.48 69.85 67.49 74.53 71.98 68.05 71.61 80.48 82.60 82.01 82.91
MUSE
+Ours 64.85 61.60 73.06 70.62 75.56 72.96 69.23 74.59 80.48 82.76 82.11 84.22

Table 3: Performance of cross-lingual transfer on NER (samples=all is 12K for German and 27K for Spanish)

agreement with SRL state-of-the-art models Strubell et al. (2018) and Marcheggiani & Titov (2017)
which rely on syntactic features.

When we replace GloVe with ELMo representations, we see that the baseline model improves by
over ∼ 13%, showing that ELMo representations are indeed very strong. But adding supervised
embeddings in the 1k setting further improves upon the ELMo baseline by over ∼ 5%. A similar
improvement of ∼ 5% can be seen in the 5k setting as well. Our model shows comparable per-
formance as the baseline when we use the entire dataset. These results suggest that the proposed
supervised contextual embeddings further bring about improvements over already strong language
model features in a low-resource setting. This reinforces the learning that when sufficient data is
available, supervised signals do not provide information that the model cannot learn by itself from
the data alone.

Cross-domain NER Supervised embeddings provide an impressive 4% improvement over the
GloVe baseline with both 1,000 and 5,000 samples. Even when we replace GloVe with ELMo, we
see an improvement of 3% , indicating that the benefits of using knowledge from other domains
is orthogonal to what ELMo can offer. However, the gains vanish when the full dataset is used,
suggesting that knowledge from other domains is particularly useful in the very low-resource setting.
However, if sufficient data is available, the model has enough resources to build upon generic word
embeddings. It is also interesting to note that for this dataset, GloVe based models outperform their
ELMo counterparts. This is probably due to the mismatch in the data used to train ELMo (formal
language from the 1 billion word corpus) as opposed to the NER dataset which consists of informal
language used in web blogs.

Cross-lingual NER We observe substantial gains by exploiting information present in other lan-
guages. For both German and Spanish the performance gains are highest when number of samples
is 1,000 , thus validating the suitability of the proposed method for transfer to very low-resource
settings. Even when full dataset is used, we see gains over 1% for both languages.

6 CONCLUSION AND FUTURE WORK

We propose supervised contextual embeddings, an easy way to incorporate supervised knowledge
from multiple pre-existing models. We perform experiments in the cross-task, cross-domain and
cross-lingual setups and find that the proposed embeddings are particularly useful in the low-
resource setting. Our work points to the potential of such embeddings in various downstream tasks
in different transfer learning settings. Future work includes incorporating more tasks, domains and
languages, and understanding the relationships among them. These explorations would build to-
wards our larger vision of building a more complete taxonomy of transfer learning dependencies
among NLP tasks, domains and languages.
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