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ABSTRACT

Models based on the Transformer architecture have achieved better accuracy than
models based on competing architectures. A unique feature of the Transformer
is its universal application of a self-attention mechanism, which allows for free
information flow at arbitrary distances. In this paper, we provide two alternative
views of the attention mechanism: one from the probabilistic view via the Gaussian
mixture model, the other from the optimization view via optimal transport. Follow-
ing these insights, we propose a new attention scheme that requires normalization
on both the upper and lower layers, called the doubly-normalized attention scheme.
We analyze the properties of both the original and the new attention schemes,
and find that the doubly-normalized attention mechanism directly mitigates two
unwanted effects: it resolves the explaining-away effect and alleviates mode col-
lapse. We conduct empirical studies that quantify numerical advantages for the
doubly-normalized attention model, as well as for a hybrid model that dynamically
combines both attention schemes to achieve improved performance on several
well-known benchmarks.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has been successfully used to improve state-of-
the-art performance in a variety of machine learning tasks, such as machine translation (Vaswani
et al., 2017; Dehghani et al., 2019), language modeling (Devlin et al., 2019; Yang et al., 2019),
summarization (Cohan et al., 2018; Goodman et al., 2019), dialog (Mazaré et al., 2018; Cheng et al.,
2019), image captioninig (Sharma et al., 2018; Zhao et al., 2019), and visual question answering (Yu
et al., 2019b; Tan & Bansal, 2019). One of the most important components of the Transformer
architecture is its self-attention mechanism, applied universally to both the encoder and the decoder
components. This attention mechanism allows for information to freely flow between inputs at
arbitrary distances, which is intuitively appealing for modeling natural language or tasks that need to
model cross-modal relationships between their inputs (such as visual question answering).

Despite the empirical success of the self-attention mechanism, little formal work has been done to
analyze its statistical properties and relate it to previously known classical models. Better understand-
ing its properties can lead to insights into what it does and does not do well. This in turn can lead to
improvements to the attention mechanism and ultimately to a better-performing Transformer network.
In this paper, we closely study the current attention formulation from both a probabilistic view via
the Gaussian mixture model and from an optimization view via optimal transport.

First, we reveal the mathematical connection between the Transformer attention and the Gaussian
mixture model. In particular, we show that the output neurons (from the upper layer) of an attention
unit can be regarded as the most likely data generated by a Gaussian mixture model (GMM), while
the input neurons (from the lower layer) of the attention unit act as the Gaussian centers.

A formulation in which the upper layer acts as the generated data while the lower layer acts as the
Gaussian centers aligns well with the purpose of a decoder mechanism, where a final upper layer
ultimately generates the outputs. However, this design does not correspond well to the purpose of an
encoder mechanism, in which the bottom layer takes input data and the upper layer encodes the data.
To address this mismatch, we describe in this paper a new attention mechanism, in which the role
of the upper and lower layers in the GMM formulation are reversed: the lower layer represents the
generated data, while the upper layer represents the Gaussian centers. It is worth noting that a similar
design was also applied in the Capsule Networks algorithm (Hinton et al., 2018).
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The Maximum Likelihood Estimate (MLE) solution of the reversed GMM model leads to a very
similar attention update as the original, except for the attention weight normalization. The original
attention scheme only normalizes the attention weights once, over the lower layer of every upper-layer
neuron. By contrast, the doubly-normalized attention mechanism requires a two-step attention weight
normalization: the first normalizes over the upper layer for each lower-layer neuron, and the second
normalizes over the lower layer for each upper-layer neuron. In the rest of this paper, we denote the
original, lower normalized attention scheme as LNAS, and the doubly-normalized attention scheme
as DNAS.

In addition, our analysis shows that the two normalization schemes can also be connected as optimiz-
ing two closely related constrained objective functions, with one additional normalization constraint
for DNAS. We also show that DNAS updates correspond to one iteration of the Sinkhorn algorithm
in optimal transport (Peyré & Cuturi, 2019).

We mathematically analyze the statistical properties of these two attention schemes, finding that the
DNAS proposal possesses two advantages over LNAS. First, it avoids the “explaining away” effect
that the LNAS scheme suffers from, in which information present in the input is filtered out too early
and cannot be recovered at a later stage when needed. Second, it alleviates the mode-collapsing
phenomenon that also plagues the LNAS formulation, which fails to accommodate multiple modes
and concentrates its entire mass in a single mode.

We also formulate a hybrid scheme, HNAS, that dynamically combines both attention schemes, and
can provide a handle on the preference betewen LNAS and DNAS, as resulting from the optimization
algorithm. We perform empirical studies that quantify the numerical advantages of the doubly-
normalized attention model, as well as the ones for the hybrid model. We obtain clear numerical
improvements using the HNAS formulation over several well-known benchmarks, including a new
state-of-the-art result on the Gigaword bechmark for text summarization.

2 ATTENTION FROM THE PROBABILISTIC PERSPECTIVE

In this section, we review the Transformer self-attention mechanism and analyze how it relates to the
Gaussian Mixture Model formulation from the probabilistic perspective.

The Transformer attention mechanism involves two layers of neurons. In what follows, we denote
the lower-layer neurons as xj , and the upper-layer neurons as yi. The self-attention mechanism
first transforms the input features to a query and a key by applying the transformations qi = Qxi
and kj = Kxj , where Q and K are trainable transformation matrices. The value of an upper-layer
neuron yi is then computed as the weighted sum over the lower-layer neurons xj , using the attention
update equation,

yi =
∑
j

exp(q>i kj)∑
j exp(q

>
i kj)

xj , (1)

which is then followed by an additional output-value transformation.

The Transformer attention updates from Eq. (1) can be regarded as the solution of the most likely
data generation of a Gaussian mixture model (GMM). To make this connection clear, let us consider
the log-likelihood function of a GMM. We denote the Gaussian cluster centers as kj , the priors of the
clusters as αj satisfying

∑
j αj = 1, and the generated data as qi. If we assume the variance of the

Gaussian distributions to be equal to 1, then the log-likelihood of the GMM is:

∑
i

log p(qi) =
∑
i

log

∑
j

αj N (qi|kj , 1)

 . (2)

To find the most likely data generated by the Gaussian mixture model, we take the derivative of qi,

∂

∂ qi

∑
i

log p(qi) =
∂

∂ qi
log p(qi) =

∑
j αj N (qi|kj , 1)

∂ logN (qi|kj ,1)
∂ qi∑

j αj N (qi|kj , 1)
.
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We introduce the abbreviation

πij ,
αj N (qi|kj , 1)∑
j αj N (qi|kj , 1)

=
αj exp(q

>
i kj − 1

2 k
>
j kj)∑

j αj exp(q
>
i kj − 1

2 k
>
j kj)

, (3)

where
∑
j πij = 1. We approximate the cluster priors as αj ∝ exp( 12 k

>
j kj), and therefore

πij =
exp(q>i kj)∑
j exp(q

>
i kj)

.

Also, since ∂ logN (qi|kj ,1)
∂ qi

= kj −qi, then,

∂

∂ qi

∑
i

log p(qi) =
∑
j

πij(kj −qi) =
∑
j

πij kj −qi .

Let ∂
∂ qi

log p(qi) = 0, then we have:

qnewi =
∑
j

πij kj =
∑
j

exp(q>i kj)∑
j exp(q

>
i kj)

kj . (4)

If we compare Eq. (4) with Eq. (1), the two equations are equivalent modulo a transformation matrix
K, which can be incorporated in the additional output-value transformation that follows.

3 DOUBLY-NORMALIZED ATTENTION

As we have shown, in the original Transformer self-attention mechanism LNAS, the lower layer
corresponds to the Gaussian centers, while the upper layer corresponds to the data generated from
these centers. This flow of information aligns well with the goal of a decoding mechanism, in which
the upper layer generates the decoded outputs. However, for an encoding mechanism, the information
flows in the other direction: data comes from the lower layer, while the role of the upper layer is to
represent the signal from the lower-layer. As such, the current design of the Transformer self-attention
mechanism, in which the LNAS scheme is applied universally for both the encoder and the decoder
networks, does not align well with the information flow of the encoding process.

To resolve this discrepancy, we propose a new attention mechanism, DNAS, resulting from reversing
the role of the upper and lower layers in the GMM. Under this new scheme, the lower layer neurons
kj are treated as data, and the upper layer neurons qi are the Gaussian centers. The log-likelihood
function becomes: ∑

j

log p(kj) =
∑
j

log

(∑
i

βiN (kj |qi, 1)

)
, (5)

with priors βi satisfying
∑
i βi = 1. We take the gradient with respect to qi,

∂

∂ qi

∑
j

log p(kj) =
∑
j

βi
∂
∂ qi
N (kj |qi, 1)∑

i βiN (kj |qi, 1)
=
∑
j

βiN (kj |qi, 1) ∂
∂ qi

logN (kj |qi, 1)∑
i βiN (kj |qi, 1)

.

We introduce the abbreviation

ξji ,
βiN (kj |qi, 1)∑
i βiN (kj |qi, 1)

=
βi exp(q

>
i kj − 1

2 q
>
i qi)∑

i βi exp(q
>
i kj − 1

2 q
>
i qi)

, (6)

where
∑
i ξji = 1. If we approximate βi ∝ exp( 12 q

>
i qi), then

ξji =
exp(q>i kj)∑
i exp(q

>
i kj)

. (7)

Let ∂
∂ qi

∑
j log p(kj) = 0, we have 0 =

∑
j ξji(qi−kj), which results in:

qnewi =
∑
j

ξji∑
j ξji

kj . (8)
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Comparing (4) and (8), we notice that the only difference between the two updates is the normalization
process of the attention weights. Under the Transformer attention scheme LNAS from Eq. (3), its
weights πij are normalized just once over the lower layer neurons j. For DNAS in Eq. (6), the
attention weights are computed in two steps: first, an upper-layer normalization is applied over the
upper-layer neurons i according to Eq. (7), for every lower-layer neuron j; second, a lower-layer
normalization is applied over the lower-layer neurons j according to Eq. (8), for every upper-
layer neuron i. The name doubly-normalized attention scheme, DNAS, is chosen to reflect this
normalization mechanism. It is worth noting that DNAS is closely related to the EM routing
algorithm in the capsule networks (Hinton et al., 2018), which is also derived from GMM. Due to
space limitations, this connection is discussed in more detail in Appendix A.

4 ATTENTION FROM THE OPTIMIZATION PERSPECTIVE

The Transformer LNAS scheme can also be understood from an optimization perspective. Consider
the following constrained optimization problem that characterizes πij ,

min
π

∑
ij

πijD(qi,kj) + πij log πij s.t.
∑
j

πij = 1. (9)

Introducing the Lagrange multipliers λi, this formulation is equivalent to optimizing the Lagrangian,
whose gradient with respect to πij gives

∂L(πij , λi)

∂πij
= D(qi,kj) + 1 + log πij + λi,

and leads to the same solution as (3) when D(qi,kj) := −q>i kj .

The doubly-normalized attention scheme DNAS can be derived from a very similar constrained
optimization except that an additional normalization constraint is added to the lower layer neurons:

min
π

∑
ij

πijD(qi,kj) + πij log πij s.t.
∑
i

πij = 1,
∑
j

πij = 1. (10)

The above objective function is well-known in the optimal transport literature, and the classical
iterative algorithm for finding the solution is called the Sinkhorn algorithm (Peyré & Cuturi, 2019).
This algorithm uses the initial condition π0

ij = exp(−D(qi,kj)), and iterates

ξtji =
πt−1ij∑
i π

t−1
ij

, πtij =
ξtji∑
j ξ

t
ji

.

If we writeD(qi,kj) := −q>i kj then the doubly-normalized attention weights in Eq. (8) correspond
exactly to the updates of the Sinkhorn algorithm for one iteration.

Comparing the two constrained optimization problems in (9) and (10), the only difference is that the
constraint on the attention-weight sum for the lower neurons is removed in (9). The removal of the
constraint allows solutions in which a lower-layer neuron j has an arbitrary contribution to the upper
layer. This is the reason for which the LNAS scheme suffers from the so-called “explaining-away”
effect, as we discuss in the next section.

5 PROPERTIES OF DOUBLY-NORMALIZED ATTENTION

5.1 DOUBLY-NORMALIZED ATTENTION AVOIDS EXPLAINING AWAY

Under the original Transformer normalization scheme, LNAS, the mechanism allows the nodes in
the higher layer to not attend to some of the nodes in the lower layer. In particular, for a certain
lower-layer neuron j, the sum of its attention assignments to the upper layer is

∑
i πij , where i

denotes the location of the indices over the upper-layer neurons. Since the only restriction under
LNAS is

∑
j πij = 1, the summation

∑
i πij can be as low as 0, which means the contribution of

the lower neuron j is effectively filtered out in the upper layer. This is the very definition of the
“explaining-away” phenomenon, which can potentially have negative effects for an encoder: if early
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encoder layers filter out the contribution of certain inputs that could be useful at later stages in the
encoder, that information can no longer be recovered. In contrast to LNAS, the DNAS scheme avoids
completely the “explaining-away” phenomenon. The following lemma formalizes this property by
showing that each lower-layer neuron gets to contribute with a weight assignment of at least 1/L ,
where L is the layer size.

Lemma 1 For any lower-layer neuron j, the sum of the doubly-normalized attention weights over
the upper layer neurons

∑
i πij =

∑
i

ξji∑
j ξji

is lower bounded by 1/L.

0 100000 200000 300000 400000

steps

0.00

0.02

0.04

0.06

0.08

0.10

M
in

im
um

 w
ei

gh
t s

um

LNAS
DNAS

Figure 1: The minimum of attention
weight sum in LNAS and DNAS.

The proof of the lemma is provided in Appendix B. To illustrate
the difference between the two attention schemes and how dif-
ferent they behave in practice with respect to the “explaining-
away” phenomenon, we use the Visual Question Answering
setup described in more detail in Sec. 7.1. Fig. 1 shows the
minimum attention weight sum values, minj

∑
i πij , achieved

by both LNAS and DNAS during training. As predicted by
our analysis, the LNAS scheme has the minimum attention
weight sum close to 0 (meaning that it explains-away at least
some of its inputs), while the DNAS scheme maintains a min-
imum attention weight sum above its lower-bound value of
1/L = 0.01.

5.2 DOUBLY-NORMALIZED
ATTENTION ALLEVIATES MODE COLLAPSE

Another shortcoming of the LNAS scheme is its tendency to collapse modes∗. To study the mode-
collapsing effect, we analyze the speed of two clusters approaching each other in a 1D scenario
using the two attention schemes. Let us assume we have two sets of data, one containing N0 data
points centered at value a, and another containing N1 data points centered at value −a. The distance
between the two centers is 2a. Assuming the relative distance between the data points within each set
is negligible compared to 2a, the unnormalized attention weights between one center and the data
from the other set is s = exp(−(2a)2/2) = exp(−2a2), and the weights between one center and the
data within that set is t = exp(0) = 1†.

Due to space limitations, the details of the derivations are provided in Appendix C and only the main
results are presented here. If r := N0/N1, after one LNAS update, the new center distance is:

cL0 − cL1 =
2r(1− s2)a

(1 + rs)(r + s)
. (11)

For DNAS, the new center distance is

cD0 − cD1 =
2qr(1− s2)a

(q + rs)(r + sq)
. (12)

where q = r+s
rs+1 . To better understand the difference between the values of Eq. (11) and Eq. (12),

we plot them on the y-axis against that of r = N0/N1 on the x-axis, for several different a values,
see Fig. 2. We see that in both cases the distance between the two centers decays after the attention
updates. However, the center distance of DNAS always upper bounds the one of LNAS, with the
gap getting larger as the cluster sizes get more unbalanced (r 6= 1).

The mode collapse effect is even more obvious in multi-layer attention. In Appendix C, we show that
when the two clusters are unbalanced (Fig. 6), the LNAS collapses to a single cluster after 4 steps,
while the DNAS maintains two separate clusters.

∗Note that most multi-layer attention models such as the Transformer avoid such collapsing effect by adding
a residual layer after attention.
†The attention weights are computed with a Gaussian. But the same result holds with dot product attention,

where the inter-attention weight is s = exp(〈−a, a〉) = exp(−a2) and the intra-attention weight is t =
exp(〈a, a〉) = exp(a2). The ratio s/t = exp(−2a2) is identical to the Gaussian case.
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Figure 2: Center distance values after lower-normalized attention (LNAS, blue solid curve) and
doubly-normalized attention (DNAS, red dashed curve), as a function of cluster mass ratio r =
N0/N1 with different a values (initial distance between centers is 2a).

6 HYBRID ATTENTION

In practice, we can also combine the LNAS and DNAS formulations. We investigated doing so
with a trainable variable u ∈ [0, 1] that controls the contribution of the attention weights of the two
normalization schemes:

πHij = u πDij + (1− u)πLij ,

where πD denotes the DNAS weights and πL denotes the LNAS weights. We call this combination
form to be the hybrid normalized attention scheme (HNAS). The HNAS is attractive because it
allows the model to learn, at different layers l, which of the two normalization schemes achieves better
results; the ul parameter is trained jointly with the other parameters to improve the representation
power of the model and better fit the data. As a side effect, this approach also allows one to
visualize how the values of the ul parameters change as the model is training, and therefore provides
direct evidence of how much and where the different normalization schemes lead to better training
performance. We provide examples of such visualizations in Sec. 7.

7 NUMERICAL EXPERIMENTS

7.1 VISUAL QUESTION ANSWERING

The goal of a visual question answering model is to provide an answer to a natural language question
relevant to the contents of a given image. For our first experimental setup, we use a model similar to
the one proposed in (Yu et al., 2019a), which uses one attention layer to combine multi-view features,
i.e., visual features produced by different image processing modules.

Experiment Setup. We conduct experiments on the most commonly used VQA benchmark dataset,
VQA-v2 (Goyal et al., 2017). Our core VQA model uses as a backbone the Pythia architecture (Jiang
et al., 2018). Aside from the backbone network, a crucial factor in the performance of a good VQA
system is its visual feature extraction. Currently, virtually all high-performing model use bounding-
box visual features extracted by object-detector models trained on the Visual Genome Dataset (Krishna
et al., 2017). Additionally, Yu et al. (2019a) showed that it is beneficial to use bounding-box features
from multiple object detectors. In our experiments, we use three object detection models, where each
detector generates 100 bounding-box features. All three object detection models are trained over the
Visual Genome dataset. The difference between detection models is in the backbone network: the
first uses a ResNet-101 network (He et al., 2016), the second a ResNet-200 network, and the third an
Inception-ResNetV2 network (Szegedy et al., 2016).

Multi-view features can be used in a VQA model in a straightforward manner by concatenating them
all together before feeding them into the Pythia model; we call this approach the 3x100-boxes baseline.
The proposal from (Yu et al., 2019a) combines the multi-view features using a one-layer attention
mechanism, as follows: one object-detector model is designated as primary, and its corresponding
features are used as queries after transformation; the second and third object detection models are
designated as secondary, and their corresponding features are used to obtain keys and values. The
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resulting output feature is a weighted sum of the features according to the attention weights. With
this attention scheme, the original 300 bounding-box features from the three object-detection models
are transformed into 100 features, which are then fed into a Pythia model. We experiment with two
versions of this scheme: one with an attention mechanism using lower-normalized attention (LNAS)
and one using doubly-normalized attention (DNAS).

Results and analysis. The results are summarized in Table 1.

Method Test-dev Test-std
100-boxes Pythia (Jiang et al., 2018) 68.31 -
100-boxes (our baseline) 68.33 -
3x100-boxes (our baseline) 68.79 69.22
3x100-boxes LNAS 69.14 69.50
3x100-boxes DNAS 69.70 70.01

Table 1: Test Accuracy on VQA v2.0, over Test-dev and Test-std splits.
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Figure 3: The hybrid weight heavily
favors DNAS for the VQA task.

Confirming the findings from (Yu et al., 2019a), we see that
using visual features from three object detectors improves per-
formance over using the one from a single object detector
(+0.46 on Test-dev). Furthermore, using an attention mecha-
nism over the 3x100 boxes further improves the accuracy over
the 3x100-boxes baseline, but the DNAS mechanism achieves
a better utilization of the signal provided by the three object de-
tectors compared to the LNAS mechanism (+0.56 on Test-dev
and +0.51 on Test-std). Moreover, using the HNAS formula-
tion (Sec. 6) allows us to both visually and empirically confirm
the superiority of the DNAS mechanism: as we plot the hybrid
weight u in Fig. 3, the hybrid weight rapidly converges to 1.0
in this scenario.

7.2 HEADLINE GENERATION

The goal of a headline generation model is to abstractively (as opposed to extractively) generate a
short, headline-like summary given a text document. Similar to recent work that achieves state-of-the-
art results on the task (Goodman et al., 2019), we use an encoder-decoder Transformer architecture
with 12 layers of attention.

Experiment Setup. The standard benchmark for the headline generation task is the Gigaword
dataset (Graff & Cieri, 2003), which consists of about 4M 〈article, headline〉 pairs. We pre-process
this dataset as in (Rush et al., 2015), which results in an average article length of 31.4 words, and
an average headline length of 8.5 words. We further tokenize the words into word-pieces (Devlin
et al., 2019), which results in a vocabulary size of 30,522 word-piece types. We use a 10k dataset for
validation, and the standard 2k test set (Rush et al., 2015) as the evaluation test.

The backbone model is a Transformer encoder-decoder containing 12 layers, each with a hidden size
of 768 and 12 attention heads. We use an Adam optimizer (Kingma & Ba, 2015) and a learning
rate of 2e−5. We truncate (or pad) the input and output sequences to a fixed number of word-piece
positions, namely 128 encoder positions and 64 decoder positions, to accommodate hardware and
model-architecture limitations. Similar to (Goodman et al., 2019), we run experiments starting from
both random initializations and BERT-checkpoint initializations.

Results Analysis. The results are summarized in Table 2. Our Transformer LNAS model reproduces
the configuration from (Goodman et al., 2019), and obtains 35.23 ROUGE-L F1 score with random
initialization and 36.24 with BERT initialization. Consistent with the previous results, the Transformer
HNAS model performs better compared to the LNAS version by +0.5 ROUGE-L F1 points with
random intialization and +0.3 ROUGE-L F1 points with BERT initialization. To the best of our
knowledge, the ROUGE scores of the Transformer HNAS〈BERT,BERT〉 configuration establish a
new state-of-art on the Gigaword headline generation benchmark.
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Method ROUGE-1 ROUGE-2 ROUGE-L
SEASS (Zhou et al., 2017) 36.15 17.54 33.63
Base+E2Tcnn+sd (Amplayo et al., 2018) 37.04 16.66 34.93
Transformer 〈Random,Random〉 (Goodman et al., 2019) 38.05 18.95 35.26
Transformer 〈BERT,BERT〉 (Goodman et al., 2019) 38.96 19.55 36.22
Transformer LNAS〈Random,Random〉 38.15 18.73 35.23
Transformer HNAS〈Random,Random〉 38.47 19.11 35.71
Transformer LNAS〈BERT,BERT〉 38.90 19.65 36.24
Transformer HNAS〈BERT,BERT〉 39.06 20.14 36.51

Table 2: ROUGE F1 scores for headline generation on the Gigaword benchmark.

Method SQuAD 1.1 SQuAD 2.0 MNLI
BERTbase 90.5/83.3 80.3/77.3 84.1
LNAS 90.5/83.6 80.3/77.0 84.3
HNAS 90.9/84.0 80.5/77.4 84.7

Table 3: Pretraining with HNAS and finetuning on SQuAD 1.1 and SQuAD 2.0 (F1/EM) and MNLI.

7.3 LANGUAGE REPRESENTATION LEARNING

The goal of language representation learning is to pretrain textual representations that are useful for
solving natural language understanding (NLU) tasks like entailment or question answering.

0 2 4 6 8 10

layers
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Hy
br

id
 w

ei
gh

t

Figure 4: The hybrid weight favors
DNAS in all layers of the encoder
(u ≥ .5); LNAS gains more weight
for closer-to-output layers.

Experiment Setup. BERT (Devlin et al., 2019) established
itself as a high-performing contextual representation model.
We report here experiments done with the base setting for
BERT: a Transformer network with 12 layers of attention,
the hidden and embedding size set to 768, and 12 attention
heads. Following recent work (Joshi et al., 2019), we use n-
gram masking (n ≤ 3), with the length of each n-gram mask
randomly selected.

We use the BOOKCORPUS (Zhu et al., 2015) and English
Wikipedia (Devlin et al., 2019) to pretrain two contextual
representation models, one using LNAS and one using HNAS.
We evaluate the resulting representations by using them as a
starting point to finetune for the SQuAD task (Rajpurkar et al.,
2018) and the MNLI task (Williams et al., 2018).

Results Analysis. The results are summarized in Table 3. The
HNAS experimental condition improves over the LNAS condition on all tasks considered. Aside
from the numerical improvements when finetuning on the task, we also inspect what happens to the
hybrid weight u during HNAS pretraining. In Fig. 4, we plot the hybrid weight for all 12 layers and
find that they are always larger than 0.5, meaning that the DNAS method is preferred during the
pretraining optimization. In agreement with the GMM view, the plot shows that the LNAS method
starts to have more weight for the layers that are closer to the output layer, approaching a point where
LNAS and DNAS are similarly useful. This suggests that the resulting network parameters encode
their language representations by making use of the advantages of the DNAS method, positively
contributing to the resulting empirical advantage of the HNAS-driven language representations.

8 DISCUSSION

The attention mechanism of the Transformer, here called LNAS, can be framed under both a
probabilistic perspective and an optimization perspective. The new attention scheme we propose based
on these perspectives, called DNAS, compensates for certain shortcomings of the LNAS scheme.
Together, these two attention normalization schemes can be combined into a hybrid one, HNAS,
which we show here to be empirically superior to the original normalization mechanism. Further
research needs to be conducted to thoroughly analyze the interplay of the attention scheme with other
Transformer components, such as the residual layer.
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A CONNECTION TO CAPSULE NETWORKS WITH EM ROUTING

DNAS is closely related to the EM routing algorithm in the capsule networks (Hinton et al., 2018).
In particular, the vote matrix Vij in (Hinton et al., 2018) is similar to kj in Eq. (5); the new pose
matrix µj in (Hinton et al., 2018) is similar to qi in Eq. (5). The difference is that in DNAS, the qi is
only updated for one iteration, while the pose matrix µj is updated until it converges. There is no
variance σ2

i and βi estimation in DNAS, as we assume σ2
i = 1 and βi ∝ exp( 12 q

>
i qi).

One interesting question is whether DNAS could potentially perform better with more iterations
for the updates in Eq. (6) and Eq. (8), as well as updates for σ2

i and βi. In our experiments, we
observed that adding more update iterations increases computational time but does not improve the
performance significantly. Furthermore, trying to estimate σ2

i tends to hurt the empirical performance
of the algorithm.

B PROOF OF LEMMA 1

Lemma 1 For any lower-layer neuron j, the sum of the doubly-normalized attention weights over
the upper layer neurons

∑
i

ξji∑
j ξji

is lower bounded by 1/L.

Proof Since
∑
i ξji = 1,∑

i

ξji∑
j ξji

≥
∑
i

ξji
maxi(

∑
j ξji)

=

∑
i ξji

maxi(
∑
j ξji)

=
1

maxi(
∑
j ξji)

≥ 1∑
j maxi(ξji)

≥ 1

L

C DETAILS ABOUT THE MODE COLLAPSING ANALYSIS

To study the mode-collapsing effect, we analyze the speed of two clusters approaching each other
in a 1D scenario using the LNAS and DNAS attention schemes. Let us assume we have two sets
of data, one containing N0 data points centered at value a, and another containing N1 data points
centered at value −a. The distance between the two centers is 2a. Assuming the relative distance
between the data points within each set is negligible compared to 2a, the unnormalized attention
weights between one center and the data from the other set is s = exp(−(2a)2/2) = exp(−2a2),
and the weights between one center and the data within that set is t = exp(0) = 1.

Applying Eq. (4) for the LNAS scheme, the new center distance of the lower-normalized attention
scheme are:

cL0 =

(
N0t

N0t+N1s
− N1s

N0t+N1s

)
a =

N0t−N1s

N0t+N1s
a

cL1 =

(
N0t

N0t+N1s
− N1s

N0t+N1s

)
a =

N0s−N1t

N1t+N0s
a

and the distance between the two updated centers is:

cL0 − cL1 =
2N0N1(t

2 − s2)a
(N1t+N0s)(N0t+N1s)

.

Since we have that t = 1, defining r = N0/N1 then gives

cL0 − cL1 =
2r(1− s2)a

(1 + rs)(r + s)
. (13)
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By contrast, if we apply the Eq. (8) updates for the DNAS scheme, the new center distance of the
doubly-normalized attention scheme are:

cD0 =

(
N0t

N0t+N1s
N0t

N0t+N1s
+ N1s

N0s+N1t

−
N1s

N0s+N1t
N0t

N0t+N1s
+ N1s

N0s+N1t

)
a =

N0t(N0s+N1t)−N1s(N0t+N1s)

N0t(N0s+N1t) +N1s(N0t+N1s)
a

cD1 =

(
N0s

N0t+N1s
N0s

N0t+N1s
+ N1t

N0s+N1t

−
N1t

N0s+N1t
N0s

N0t+N1s
+ N1t

N0s+N1t

)
a =

N0s(N0s+N1t)−N1t(N0t+N1s)

N0s(N0s+N1t) +N1t(N0t+N1s)
a,

and the distance between the two updated centers is:

cD0 − cD1 = 2N1a

(
t(N0t+N1s)

N0s(N0s+N1t) +N1t(N0t+N1s)
− s(N0t+N1s)

N0t(N0s+N1t) +N1s(N0t+N1s)

)
.

Since again t = 1, defining r = N0/N1 and q = N0t+N1s
N0s+N1t

= r+s
rs+1 then yields

cD0 − cD1 =
2qr(1− s2)a

(q + rs)(r + sq)
. (14)

We plot them on the y-axis against that of r = N0/N1 on the x-axis, for several different a values,
see Fig. 2.

We see that in both cases the distance between the two centers decays after one attention updates.
However, the center distance of the doubly-normalized attention mechanism always upper bounds the
one of the lower normalization. For r = 1, the reduction is minimized and the center distances of
both normalization schemes decay at the same rate. When r is greater than or less than 1, the center
distance of the lower layer normalization decays much faster than that of the double normalization.
The latter maintains a slow decay rate until r is extremely small or large.

The mode collapse effect is even more obvious in multi-layer attention. In Fig. 5, when the two
clusters are balanced, both normalization schemes yield similar results. However, when the two
clusters are unbalanced (Fig. 6), the lower normalization collapses to a single cluster after 4 steps,
while the doubly-normalized scheme maintains two separate clusters.
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Figure 5: Mode-collapsing behavior on balanced mixture of Gaussian data: LNAS and DNAS behave
similarly without mode collapsing after 4 steps.
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Figure 6: Mode-collapsing behavior on unbalanced mixture of Gaussian data: LNAS collapses to
one cluster after 4 steps, while DNAS maintains 2 clusters.
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