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Abstract. Anatomical structure localization plays an important role
in image-based medical diagnosis. Despite recent progress achieved by
deep learning methods, most existing neural networks for localization
lack an interpretable inference process and thus are difficult to use for
critical diagnosis in practice. In this paper, we propose an interpretable
multi-scale convolutional networks for structure localization in medical
images. Our network employs a modularized architecture consisting of a
local branch to encode structure features and a context branch to capture
global cues. The local branch adopts a coarse-to-fine strategy to refine
the localization. And within each step, it learns a linear voting scheme
based on a set of visual landmarks. The context branch uses a deformable
pooling to encode contextual anatomical structures for reducing local
ambiguities in localization. Given a prediction, we are able to trace back
and determine which features are involved and their importance. We
validate the proposed strategy on a Nuchal Translucency (NT) dataset,
and the results demonstrate that our method is capable of generating
an interpretable localization process and achieves the state-of-the-art
detection performance.

1 Introduction

Localizing anatomical or abnormal structures is of great importance in medical
image processing and its related diagnosis, such as pneumonia detection in chest
radiographs [9], masses localization in mammograms [5] and lesion detection in
3D CT scan volumes [11]. Recently, thanks to rapid progress in deep learning, a
promising strategy is to adopt an object detection network, such as R-CNN [8] or
its variants, to directly predict the location of structures. While achieving strong
performances, those deep networks are typically based on a complex and highly
nonlinear functional mapping which is difficult to interpret. Such black-box like
models are sensitive to input noises, and can generate false detection without
much evidence on its decision process. As a result, it is difficult to adopt them
in practice when structure localization is critical to the diagnosis.

There has been much effort on explaining deep networks for classification,
which can be largely divided into two groups. The first group attempts to vi-
sualize learned filter patterns or activation maps based on gradient or sensitiv-
ity analysis [12]. For example, Zhao et al. [14] proposed respond-weighted class
activation mapping to visualizing important input regions for classifying elec-
tron cryo-tomography images. The second type of work explains deep networks
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by learning a “transparent” model that mimics the learned network. Hinton et
al. [2] proposed to distill knowledge in deep networks into a decision tree, which
maps the network inference into a sequence of simple feature-based decisions.
By contrast, much less attention has been paid to those deep networks for ob-
ject localization. Wu et al. [10] trained an And-Or Graph (AOG) to explain the
classification of each proposal in the R-CNN [3], which however did not provide
interpretation on how the object locations are determined by the network. More-
over, such an object-centric representation is unable to tackle the localization of
fine-structures in medical images that heavily relies on global context cues.

In this work, we propose an interpretable deep learning strategy for structure
localization to address above-mentioned limitations. Inspired by [13], our method
adopts a feature-based voting scheme that allows us to represent the localiza-
tion process by linearly combining predictions from multiple visual landmarks.
In order to cope with noisy medical images, we develop a novel architecture con-
sisting of two main components: a coarse-to-fine module that gradually refines
the localization and learns a set of multi-scale visual landmarks and a global con-
text module that captures the layout of surrounding anatomical structures and
help reduce local ambiguities. Moreover, we design a simple trace-back step to
uncover what features contribute to the final localization and their importance.

We validate our method on our private Nuchal Translucency (NT) Scan
dataset. Results demonstrate superior performances and interpretability of our
method. Our main contributions are two-folds: 1) We propose an interpretable
voting-based deep network for structure localization task in medical images. 2)
We develop a coarse-to-fine strategy and a multi-scale representation in voting
to cope with noisy medical images.

2 Methodology

2.1 Method Overview

Given an image I, the task of structure localization aims to generate target
location x and foreground confidence score s of a specific anatomical structure.
Here x ∈ R4 denotes its bounding box parameters (center location x, y, width
and height w, h). We first generate an initial set of region proposals {xp ∈ R4}.
Then the main focus of this work is to design an explainable deep neural network
to regress the structure location x based on each initial proposal xp and predict
its confidence score from the image cues.

To achieve this, we propose a multi-scale representation of the target struc-
ture and image context based on a set of learned visual primitives. It enables us
to learn a sequential voting-based strategy to predict the structure location and
its score. Hence by decomposing the prediction into multi-scale primitive esti-
mation and voting, we provide an interpretation that identifies relevant image
cues and a simple geometric rule that generate the outcomes.

Specifically, we develop a dual-branch deep network consisting of a local
branch that encodes the target structure feature and a context branch that cap-
tures its global contextual cues. An overview of our model is illustrated in Fig. 1.
Given an input image I and a proposal xp, the local branch starts from a coarse
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Fig. 1: Overview of our framework. Given a medical image, Local Branch can
utilize local appearance feature and localize target anatomical structure in a transpar-
ent way. Context Branch captures global information to eliminate ambiguity. Finally,
our model combines outputs in each branch to get bounding box and confidence score.

feature map within xp and refines the location iteratively by gradually increas-
ing the spatial resolution. Within each step, it employs a voting-based primitive
module to generate a new location as a starting point for the next step. After m
steps, the local branch predicts a location xL and a confidence score sL. We use
m = 2 as it typically saturates with more steps. The context branch uses a de-
formable convolutional module [1] to represent the global context and computes
location xG and confidence score sG from the convolution features. We form the
final prediction by combining the outputs from both branches:

x = µxL + (1− µ)xG, s = µsL + (1− µ)sG (1)

where µ is learned weight coefficient. Below we will introduce those two network
branches in details.

2.2 Local Branch

In the local branch, we first use an ResNet-18 to compute a convolutional feature
map ΓL with C channels, and train an RPN [8] to generate a set of proposals. For
each initial proposal xp, we introduce a voting-based primitive module and apply
it to the proposal in a coarse-to-fine manner to generate the branch prediction.

Primitives Module. Our primitive module generates a new localization (xL, sL)
by taking a cropped conv-feature map around its input xp. Inspired by [13], we
adopt a voting strategy to implement this module by introducing a set of visual
primitives as localization landmarks. Formally, we introduce a set of visual prim-
itives {〈vk,Dk〉}, k ∈ {1, . . .K}, where vk ∈ RC , called semantic template, is a
mid-level conv-feature pattern that represents a sub-part of anatomical struc-
ture. Dk ∈ RM×N , or spatial template, is a 2D heatmap that encodes average
spatial relative distance between location of vk and anatomical structure center.

In order to detect target structure, each primitive finds a corresponding area
that has the highest response with vk, then votes to the center of target location
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Fig. 2: Primitive Module: (a) demonstrates the voting process of visual primitives.
(b) is an example of visual primitive.

with Dk. Specifically, given the input conv-feature map ΓL and xp, the module
crops a structure-centric feature map ΓL

p ∈ RC×M×N by applying ROI-Align

and rescaling. Denote each C-dimensional feature vector in ΓL
p as γi where i is

an index at the M × N grid and each feature vector is `2-normalized so that
||γi|| = 1. We predict the target location in two steps:

1) Primitive detection. We estimate the location of each semantic template
vk within xp by an inner-product based matching: Rsik = max(vk · γi, 0), and
Rsk = [Ri

k]M×N ∈ RM×N represents the response map of each vk.
2) Primitive voting. We utilize each response map to vote for target anatom-

ical structure center via spatial template Dk, and accumulate all the votes for
target location. We also use the response map as a spatial attention to reweigh
the feature maps and predict the confidence score:

Φ =
1

K

K∑
k=1

Φk =
1

K

K∑
k=1

Rsk ⊗Dk, sL = FCL(

K∑
k=1

Rsk � ΓL
p ) (2)

where ⊗ denotes convolution and � denotes element-wise product. Φ ∈ RM×N is
a heatmap indicating the predicted center location, and FCL represents multiple
fully-connected layers. We then adopt differentiable soft-argmax [7] to convert
Φ into location xL.

After voting, we introduce a trace-back step to find which primitives con-
tribute to the prediction as follows. First, we utilize the spatial template Dk to
reconstruct each response map from the voting heatmap Φ, denoted as Rck ∈
RM×N . We then compute a matching score αk between Rsk and Rck to indicate
the contribution of vk. Denote D̃k as a flipped version of Dk

1, our trace-back
step can be written as

Rck = Φ⊗ D̃k, αk =

∑
i Rsk �Bk +

∑
i Rck �Bk∑

i Rsk +
∑

i Rck
(3)

where Bk ∈ 1M×N is a binary mask, and Bi
k = 1 when Rsik > 0 and Rcik > 0.

The lager αk indicates higher overlap area between Rsk and Rck with high
response value.

1 As in 2D convolution, it can be formally written as D̃k = JMDkJN , where JM ∈
RM×M , JN ∈ RN×N are anti-diagonal identity matrices.
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Coarse to Fine. We propose to localize the target anatomical structure in a
coarse-to-fine fashion by utilizing convolutional feature maps at multiple reso-
lutions. Concretely, we first apply the primitive module to the pool-4 feature
(downsampled 16 times), which updates the proposal xp to x′p at a coarse level.
Then we use the primitive module on the pool-3 convolutional features (down-
sampled 8 times) within the updated proposal x′p. The final bounding box xL

and confidence score sL are the output from the fine-level voting.

2.3 Context Branch

In the context branch, we represent the global context of the target by a set of
context primitives, which are used to generate a global prediction on the location
xG and confidence score sG. We adopt the design of deformable pooling layer [1]
so that the context primitives dynamically adapt to each input image.

Specifically, we use another ResNet-18 to compute feature map ΓG, and
define a set of initial context proposals xo ∈ R4, o ∈ {1, . . . , O} to capture global
context cues. xo’s are pre-defined regions in the neighborhood of xp to cover a
large portion of the input image. As in deformable RoI pooling [1], we define an
union region xu as the minimum box in spatial region that contains all xo, and
union feature ΓG

u are cropped from ΓG with RoI-Align. The module computes
a spatial translation δo for each xo by applying FCG1 to the feature ΓG

u , and
the context proposals are updated to x′o:

δo = FCG1(ΓG
u ) x′o = xo + δo (4)

With the updated context proposals x′o, we crop all the context features ΓG
o

from ΓG with RoI-Align, and concatenate them into a context representation
ΓG
ctx. Finally, the location xG and confidence score sG are predicted by FCG2 :

(xG, sG) = FCG2(ΓG
ctx) (5)

3 Experiments and Results

Dataset. We validate our method on the private Nuchal Translucency Scan (NT)
dataset in terms of localization performance and interpretability of its predic-
tions. This dataset consists of ultrasound images from sonographic prenatal
screening scans for detecting cardiovascular abnormalities in fetus. The scans
are conducted during 11-14 weeks of pregnancy and are used to assess the quan-
tity of fluid collecting within the nape of fetal neck. Our task is to localize nuchal
translucency in ultrasound images for measuring its size as the chances of a chro-
mosomal abnormality and mortality increase with thickening of the NT. This
NT dataset contains 1073 subjects of image size 576×768 and we randomly split
the dataset into three folds with two folds for training and one for test.

Implementation Details. The first three blocks of ResNet-18 [4] are taken
to extract feature in local and context branch respectively. Then we set the
number of primitives K=128, and the number of context proposals O=4. The
local branch network is trained first, and then we train the whole network while
finetuning the local branch with Adam optimizer. The initial learning rate is
1e-4 and decayed by a factor of 0.1 every 10 epochs.
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Table 1: Localization performance on NT datast(%)

Methods Average
AUC SPE SEN

Faster-RCNN 83.6 91.2 81.4
FPN 83.9 91.1 82.2

LS 81.3 90.1 79.5
LCF 83.9 90.4 81.7

Proposed 85.6 92.0 84.3

Table 2: Results with various number
of primitives.

#Primitives
Average

AUC SPE SEN

K = 32 84.14 91.19 83.16
K = 64 84.97 91.37 83.72
K = 128 85.6 92.0 84.3
K = 256 85.31 90.40 83.41

Table 3: Results with various number
of context proposals.

#Context
Average

AUC SPE SEN

O = 2 84.59 91.33 83.32
O = 4 85.6 92.0 84.3
O = 6 85.52 91.83 84.04

Localization Performance. We first evaluate the localization performance
based on the standard setting in [5] and use Area Under ROC (AUC) as metric.
A predicted bounding box is true positive when its IOU with the ground-truth
is great than 0.5. In addition, we compute the specificity (SPE) and sensitiv-
ity (SEN) of the localization using top-1 prediction: for each image, we only
take the box with highest score as positive.Three-fold cross-validation strategy
is adopted to report average performances.

We compare our method with the state-of-the-art detectors, Faster-RCNN [8],
FPN [6] in Table 1. Our interpretable framework both outperforms Faster-RCNN
and FPN with a sizeable margin and achieves performance gain of of 1.7% on
AUC, 0.9% on SPE and 2.1% on SEN compared with FPN specifically. These
results demonstrate the effectiveness of the proposed framework in anatomical
structure localization tasks, and show that an explainable and modularized net-
work design can achieve the same or even higher level of performance as its
“black-box” counterpart. To validate our network design, we also perform a se-
ries of ablation study to evaluate the effectiveness of different model components:
i) Using single-scale voting at the coarse level in local branch as in [13] (called
LS); ii) Using the local branch only (called LCF); iii) Our full model (called
Proposed). In Table 1, we can see that our coarse-to-fine strategy and global
context branch improve all three metrics consistently. LCF outperforms LS with
2.6% on AUC, 0.3% on SPE and 2.2% on SEN, while the full model obtains
significant improvements with 1.7% on AUC, 1.6% on SPE and 2.6% on SEN
compared with LCF. In addition, we also conduct ablative studies on the num-
bers of primitives K and context proposals O. As shown in Table 2, the model
reaches best performance with K = 128, indicating that the network becomes ro-
bust with more visual primitives. But the performance decreases when K = 256
because of brining more background noise primitives. In Table 3, for context
proposals, the performance saturates at O = 4. However, it may insufficient to
capture context features when O = 2.
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Fig. 3: Interpretable Primitives. Some representative primitives in coarse level and
fine level of NT images are shown in (a) and (b). First row shows sub-parts (within
yellow boxes) representing the receptive filed of semantic templates in origin image.
Second row is the corresponding spatial templates, indicating the relative spatial loca-
tion of the primitives w.r.t. target center.

Model Interpretation. We now demonstrate that our model predictions are
easy to interpret by visualizing the inference procedure in the local branch and
context branch. For the local branch, a few examples of primitives are shown
in Fig. 3, which have clear semantic meanings. For instance, v56 is a semantic
template for the sub-part on the left side of nuchal translucency (the yellow box
region, denoted as SP56), and D56 is its spatial template showing its relative
location. We also illustrate the voting process in Fig. 4: (a) shows the intermedi-
ate localization result at the coarse level and fine level; (e) provides an example
of the voting process at the coarse level. For instance, Rs56 indicates SP56 ex-
ists in the middle area within proposal and D56 is its relative location w.r.t the
ground-truth location (on the left side). Hence the primitive votes for moving
to the right, as shown in Φ56. In the trace-back process, we obtain Rc56 via
back-projection as in Eq. 2 and Eq. 3. (c) shows the primitive weights which
indicate the importance of each primitive during voting. At the fine level, the
same inference process is shown in Fig. 4(f). In the context branch, our model
can automatically capture informative context regions that indicate the global
shape of a fetus, as shown in Fig. 4(b).

4 Conclusion

In this paper, we have proposed an interpretable deep framework for structure
localization task, which consists of a local network branch for encoding structure
features and a context branch for capturing global context features. Our method
is capable of producing an easy-to-interpret localization process which highlights
informative parts in the local region as well as surrounding context cues that
help eliminate local ambiguity. In addition, we adopt a coarse-to-fine search to
refine the target location so that our model can extract the different level of
information and cope with noisy images. In the experimental evaluation, our
method outperforms FPN, the state-of-the-art detector, with a sizable margin,
and its prediction can be explained by tracing back through the intermediate
stages.
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Fig. 4: Voting Process. (a) shows the bounding boxes generated in localization. The
red box is the region proposal, green box is the localization result at the coarse level,
blue box is the refined output, and white box is the final result. (b) shows context
primitives in red boxes.(c)(e) are the weights of primitives and voting results of some
representative primitives at the coarse level. (d)(f) are those results at the fine level.

References

1. Dai, J., et al.: Deformable convolutional networks. In: ICCV. pp. 764–773 (2017)
2. Frosst, N., et al.: Distilling a neural network into a soft decision tree. arXiv preprint

arXiv:1711.09784 (2017)
3. Girshick, R., et al.: Rich feature hierarchies for accurate object detection and se-

mantic segmentation. In: IEEE CVPR (2014)
4. He, K., et al.: Deep residual learning for image recognition. In: CVPR. pp. 770–778
5. Jung, H., et al.: Detection of masses in mammograms using a one-stage object

detector based on a deep convolutional neural network. PloS one 13(9) (2018)
6. Lin, T.Y., et al.: Feature pyramid networks for object detection. In: CVPR. pp.

2117–2125 (2017)
7. Luvizon, D.C., other: Human pose regression by combining indirect part detection

and contextual information. arXiv preprint arXiv:1710.02322 (2017)
8. Ren, S., et al.: Faster r-cnn: Towards real-time object detection with region pro-

posal networks. In: NeuIPS. pp. 91–99 (2015)
9. Team, T.D.: Pneumonia detection in chest radiographs. arXiv:1811.08939 (2018)

10. Wu, T., et al.: Towards interpretable r-cnn by unfolding latent structures. arXiv
preprint arXiv:1711.05226 (2017)

11. Yan, K., et al.: 3d context enhanced region-based convolutional neural network for
end-to-end lesion detection. In: MICCAI. pp. 511–519 (2018)

12. Zeiler, M.D., et al.: Visualizing and understanding convolutional networks. In:
ECCV. pp. 818–833 (2014)

13. Zhang, Z., et al.: Deepvoting: An explainable framework for semantic part detection
under partial occlusion. CVPR (2017)

14. Zhao, G., et al.: Respond-cam: Analyzing deep models for 3d imaging data by
visualizations. In: MICCAI. pp. 485–492 (2018)


