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ABSTRACT

While recent continual learning methods largely alleviate the catastrophic problem
on toy-sized datasets, some issues remain to be tackled to apply them to real-world
problem domains. First, a continual learning model should effectively handle
catastrophic forgetting and be efficient to train even with a large number of tasks.
Secondly, it needs to tackle the problem of order-sensitivity, where the performance
of the tasks largely varies based on the order of the task arrival sequence, as it
may cause serious problems where fairness plays a critical role (e.g. medical
diagnosis). To tackle these practical challenges, we propose a novel continual
learning method that is scalable as well as order-robust, which instead of learning
a completely shared set of weights, represents the parameters for each task as
a sum of task-shared and sparse task-adaptive parameters. With our Additive
Parameter Decomposition (APD), the task-adaptive parameters for earlier tasks
remain mostly unaffected, where we update them only to reflect the changes
made to the task-shared parameters. This decomposition of parameters effectively
prevents catastrophic forgetting and order-sensitivity, while being computation- and
memory-efficient. Further, we can achieve even better scalability with APD using
hierarchical knowledge consolidation, which clusters the task-adaptive parameters
to obtain hierarchically shared parameters. We validate our network with APD,
APD-Net, on multiple benchmark datasets against state-of-the-art continual learning
methods, which it largely outperforms in accuracy, scalability, and order-robustness.

1 INTRODUCTION

Continual learning (Thrun, 1995), or lifelong learning, is a learning scenario where a model is
incrementally updated over a sequence of tasks, potentially performing knowledge transfer from
earlier tasks to later ones. Building a successful continual learning model may lead us one step further
towards developing a general artificial intelligence, since learning numerous tasks over a long-term
time period is an important aspect of human intelligence. Continual learning is often formulated as
an incremental / online multi-task learning that models complex task-to-task relationships, either by
sharing basis vectors in linear models (Kumar & Daume III, 2012; Ruvolo & Eaton, 2013) or weights
in neural networks (Li & Hoiem, 2016). One problem that arises here is that as the model learns on
the new tasks, it could forget what it learned for the earlier tasks, which is known as the problem
of catastrophic forgetting. Many recent works in continual learning of deep networks (Li & Hoiem,
2016; Lee et al., 2017; Shin et al., 2017; Kirkpatrick et al., 2017; Riemer et al., 2019; Chaudhry
et al., 2019) tackle this problem by introducing advanced regularizations to prevent drastic change
of network weights. Yet, when the model should adapt to a large number of tasks, the interference
between task-specific knowledge is inevitable with fixed network capacity. Recently introduced
expansion-based approaches handle this problem by expanding the network capacity as they adapt
to new tasks (Rusu et al., 2016; Fang et al., 2017; Yoon et al., 2018; Li et al., 2019). These recent
advances have largely alleviated the catastrophic forgetting, at least with a small number of tasks.

However, to deploy continual learning to real-world systems, there are a number of issues that should
be resolved. First, in practical scenarios, the number of tasks that the model should train on may
be large. In the lifelong learning setting, the model may even have to continuously train on an
unlimited number of tasks. Yet, conventional continual learning methods have not been verified
for their scalability to a large number of tasks, both in terms of effectiveness in the prevention of
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Figure 1: Description of crucial challenges for continual learning with Omniglot dataset experiment. Catas-
trophic forgetting: Model should not forget what it has learned about previous tasks. Scalability: The
increase in network capacity with respect to the number of tasks should be minimized. Order sensitivity: The
model should have similar final performance regardless of the task order. Our model with Additive Parameter
Decomposition effectively solves these three problems.

catastrophic forgetting, and efficiency as to memory usage and computations (See Figure 1 (a), and
(b)).

Another important but relatively less explored problem is the problem of task order sensitivity, which
describes the performance discrepancy with respect to the task arrival sequence (See Figure 1 (c)).
The task order that the model trains on has a large impact on the individual task performance as well
as the final performance, not only because of the model drift coming from the catastrophic forgetting
but due to the unidirectional knowledge transfer from earlier tasks to later ones. This order-sensitivity
could be highly problematic if fairness across tasks is important (e.g. disease diagnosis).

To handle these practical challenges, we propose a novel continual learning model with Additive
Parameter Decomposition (APD). APD decomposes the network parameters at each layer of the
target network into task-shared and sparse task-specific parameters with small mask vectors. At each
arrival of a task to a network with APD, which we refer to as APD-Net, it will try to maximally
utilize the task-shared parameters and will learn the incremental difference that cannot be explained
by the shared parameters using sparse task-adaptive parameters. Moreover, since having a single set
of shared parameters may not effectively utilize the varying degree of knowledge sharing structure
among the tasks, we further cluster the task-adaptive parameters to obtain hierarchically shared
parameters (See Figure 2).

This decomposition of generic and task-specific knowledge has clear advantages in tackling the
previously mentioned problems. First, APD will largely alleviate catastrophic forgetting, since
learning on later tasks will have no effect on the task-adaptive parameters for the previous tasks,
and will update the task-shared parameters only with generic knowledge. Secondly, since APD
does not change the network topology as existing expansion-based approaches do, APD-Net is
memory-efficient, and even more so with hierarchically shared parameters. It also trains fast since
it does not require multiple rounds of retraining. Moreover, it is order-robust since the task-shared
parameters can stay relatively static and will converge to a solution rather than drift away upon the
arrival of each task. With the additional mechanism to retroactively update task-adaptive parameters,
it can further alleviate the order-sensitivity from unidirectional knowledge transfer as well.

We validate our methods on several benchmark datasets for continual learning while comparing
against state-of-the-art continual learning methods to obtain significantly superior performance with
minimal increase in network capacity while being scalable and order-robust.

The contribution of this paper is threefold:

• We tackle practically important and novel problems in continual learning that have been
overlooked thus far, such as scalability and order robustness.

• We introduce a novel framework for continual deep learning that effectively prevents
catastrophic forgetting, and is highly scalable and order-robust, which is based on the
decomposition of the network parameters into shared and sparse task-adaptive parameters
with small mask vectors.

• We perform extensive experimental validation of our model on multiple datasets against
recent continual learning methods, whose results show that our method is significantly
superior to them in terms of the accuracy, efficiency, scalability, as well as order-robustness.
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Figure 2: An illustration of Additive Parameter Decomposition (APD) for continual learning. APD effectively
prevents catastrophic forgetting and suppresses order-sensitivity by decomposing the model parameters into
shared σ and sparse task-adaptive τ t, which will let later tasks to only update shared knowledge. Mt is the
task-adaptive mask on σ to access only the relevant knowledge. Sparsity on τ t and hierarchical knowledge
consolidation which hierarchically rearranges the shared parameters greatly enhances scalability.

2 RELATED WORK

Continual Learning The literature on continual (lifelong) learning (Thrun, 1995) is vast (Ruvolo
& Eaton, 2013) as it is a long-studied topic, but we only mention the most recent and relevant works.
Most continual deep learning approaches are focused on preventing catastrophic forgetting, in which
case the retraining of the network for new tasks shifts the distribution of the learned representations.
A simple yet effective regularization is to enforce the representations learned at the current task to be
closer to ones from the network trained on previous tasks (Li & Hoiem, 2016). A more advanced
approach is to employ deep generative models to compactly encode task knowledge (Shin et al.,
2017) and generate samples from the model later when learning for a novel task. Kirkpatrick et al.
(2017), and Schwarz et al. (2018) proposed to regularize the model parameter for the current tasks
with parameters for the previous task via a Fisher information matrix, to find a solution that works
well for both tasks, and Lee et al. (2017) introduces a moment-matching technique with a similar
objective. Serrà et al. (2018) proposes a new binary masking approach to minimize drift for important
prior knowledge. The model learns pseudo-step function to promote hard attention, then builds a
compact network with a marginal forgetting. But the model cannot expand the network capacity
and performs unidirectional knowledge transfer thus suffers from the order-sensitivity. Lopez-Paz &
Ranzato (2017); Chaudhry et al. (2019) introduces a novel approach for efficient continual learning
with weighted update according to the gradients of episodic memory under single-epoch learning
scenario. Nguyen et al. (2018) formulates continual learning as a sequential Bayesian update and
use coresets, which contain important samples for each observed task to mitigate forgetting when
estimating the posterior distribution over weights for the new task. Riemer et al. (2019) addresses
the stability-plasticity dilemma maximizing knowledge transfer to later tasks while minimizing their
interference on earlier tasks, using optimization-based meta-learning with experience replay.

Dynamic Network Expansion Even with well-defined regularizers, it is nearly impossible to
completely avoid catastrophic forgetting, since in practice, the model may encounter an unlimited
number of tasks. An effective way to tackle this challenge is by dynamically expanding the network
capacity to handle new tasks. Dynamic network expansion approaches have been introduced in
earlier work such as Zhou et al. (2012), which proposed an iterative algorithm to train a denoising
autoencoder while adding in new neurons one by one and merging similar units. Rusu et al. (2016)
proposed to expand the network by augmenting each layer of a network by a fixed number of neurons
for each task, while keeping the old weights fixed to avoid catastrophic forgetting. Yet, this approach
often results in a network with excessive size. Yoon et al. (2018) proposed to overcome these
limitations via selective retraining of the old network while expanding each of its layer with only the
necessary number of neurons, and further alleviate catastrophic forgetting by splitting and duplicating
the neurons. Xu & Zhu (2018) proposed to use reinforcement learning to decide how many neurons
to add. Li et al. (2019) proposes to perform an explicit network architecture search to decide how
much to reuse the existing network weights and how much to add. Our model also performs dynamic
network expansion as the previous expansion-based methods, but instead of adding in new units, it
additively decomposes the network parameters into task-shared and task-specific parameters. Further,
the capacity increase at the arrival of each task is kept minimal with the sparsity on the task-specific
parameters and the growth is logarithmic with the hierarchical structuring of shared parameters.
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3 CONTINUAL LEARNING WITH ADDITIVE PARAMETER DECOMPOSITION

In a continual learning setting, we assume that we have sequence of tasks {T1, . . . , TT } arriving
to a deep network in a random order. We denote the dataset of the tth task as Dt = {xi

t,y
i
t}

Nt
i=1,

where xi
t and yi

t are ith instance and label among Nt examples. We further assume that they
become inaccessible after step t. The set of parameters for the network at step t is then given as
Θt = {θl

t}, where {θl
t} represents the set of weights for each layer l; we omit the layer index

l when the context is clear. Then the training objective at the arrival of task t can be defined as
follows: minimizeΘt

L (Θt;Θt−1, Dt)+λR(Θt), whereR(·) is a regularization term on the model
parameters. In the next paragraph, we introduce our continual learning framework with task-adaptive
parameter decomposition and hierarchical knowledge consolidation.

Additive Parameter Decomposition To minimize the effect of catastrophic forgetting and the
amount of newly introduced parameters with network expansion, we propose to decompose θ into a
task-shared parameter matrix σ and a task-adaptive parameter matrix τ , that is, θt = σ ⊗Mt + τ t

for task t, where the masking variableMt acts as an attention on the task-shared parameter to guide
the learner to focus only on the parts relevant for each task. This decomposition allows us to easily
control the trade-off between semantic drift and predictive performance of a new task by imposing
separate regularizations on decomposed parameters. When a new task arrives, we encourage the
shared parameters σ to be properly updated, but not deviate far from the previous shared parameters
σ(t−1). At the same time, we enforce the capacity of τ t to be as small as possible, by making it
sparse. The objective function for this decomposed parameter model is given as follows:

minimize
σ,τ t,vt

L ({σ ⊗Mt + τ t};Dt) + λ1‖τ t‖1 + λ2‖σ − σ(t−1)‖22, (1)

where L denotes a loss function, σ(t−1) denotes the shared parameter before the arrival of the
current task t, ‖ · ‖1 indicates an element-wise `1 norm defined on the matrix, and λ1, λ2 are
hyperparameters balancing efficiency catastrophic forgetting. We use `2 transfer regularization to
prevent catastrophic forgetting, but we could use other types of regularizations as well, such as Elastic
Weight Consolidation (Kirkpatrick et al., 2017). The masking variableMt is a sigmoid function with
a learnable parameter vt, which is applied to output channels or neurons of σ in each layer. We name
our model with decomposed network parameters, Additive Parameter Decomposition (APD).

The proposed decomposition in (1) makes continual learning efficient, since at each task we only
need to learn a very sparse τ t that accounts for task-specific knowledge that cannot be explained
with the transformed shared knowledge σ ⊗Mt. Thus, in a way, we are doing residual learning
with τ t. Further, it helps the model achieve robustness to the task arrival order, because semantic
drift occurs only through the task-shared parameter that corresponds to generic knowledge, while the
task-specific knowledge learned from previous tasks are kept intact. In the next section, we introduce
additional techniques to achieve even more task-order robustness and efficiency.

Order Robust Continual Learning with Retroactive Parameter Updates We observe that a
naive update of the shared parameters may induce semantic drift in parameters for the previously
trained tasks which will yield an order-sensitive model, since we do not have access to previous task
data. In order to provide high degree of order-robustness, we impose an additional regularization to
further prevent parameter-level drift without explicitly training on the previous tasks.

To achieve order-robustness in (1), we need to retroactively update task adaptive parameters of the
past tasks to reflect the updates in the shared parameters at each training step, so that all previous
tasks are able to maintain their original solutions. Toward this objective, when a new task t arrives,
we first recover all previous parameters (θi for task i < t): θ∗i = σ(t−1) ⊗M(t−1)

i + τ
(t−1)
i and

then update τ 1:t−1 by constraining the combined parameter σ ⊗Mi + τ i to be close to θ∗i . The
learning objective for the current task t is then described as follows:

minimize
σ,τ1:t,v1:t

L ({σ ⊗Mt + τ t};Dt) + λ1

t∑
i=1

‖τ i‖1 + λ2

t−1∑
i=1

‖θ∗i − (σ ⊗Mi + τ i)‖22. (2)

Compared to (1), the task-adaptive parameters of previous tasks now can be retroactively updated to
minimize the parameter-level drift. This formulation also constrains the update of the task-shared
parameters to consider order-robustness.
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Algorithm 1 Continual learning with Additive Parameter Decomposition
input Dataset D1:T and hyperparameter λ,m, s,K = k

output σ(T ), v1:T , σ̃1:K , and τ 1:T

1: Let σ(1) = θ1, and optimize for the task 1
2: for t = 2, ..., T do
3: for i = 1, ..., t− 1 do
4: Restore θ∗i = σ(t−1) ⊗M(t−1)

i + τ̃
(t−1)
i

5: end for
6: Minimize (3) to update σ and {τ i,vi}ti=1

7: if t mod s = 0 then
8: Initialize k new random centroids, {µg}Kg=K−k+1

9: Group all tasks into K disjoint sets, {Gg}Kg=1

10: for g = 1, ...,K do
11: Decompose {τ̃ i}i∈Gg into σ̃g and {τ i}i∈Gg
12: end for
13: Delete old σ̃ and K = K + k
14: end if
15: end for

Hierarchical Knowledge Consolidation The objective function in (2) does not directly consider
local sharing among the tasks, and thus it will inevitably result in the redundancy of information
in the task-adaptive parameters. To further minimize the capacity increase, we perform a process
called hierarchical knowledge consolidation to group relevant task-adaptive parameters into task-
shared parameters (See Figure 2). We first group all tasks into K disjoint sets {Gg}Kg=1 using
K-means clustering on {τ i}ti=1, then decompose the task-adaptive parameters in the same group
into locally-shared parameters σ̃g and task-adaptive parameters {τ i}i∈Gg (with higher sparsity) by
simply computing the amount of value discrepancy in each parameter as follows:

• If max {τ i,j}i∈Gg −min {τ i,j}i∈Gg ≤ β, then {τ i,j}i∈Gg = 0 and σ̃g,j = µg,j

• Else, σ̃g,j = 0,

where τ i,j denotes the jth element of the ith task-adaptive parameter matrix, and µg is the cluster
center of group Gg . We update the locally-shared parameters σ̃g after the arrival of every s tasks for
efficiency, by performing K-means clustering while initializing the cluster centers with the previous
locally-shared parameters σ̃g for each group. At the same time, we increase the number of centroids
to K + k to account for the increase in the variance among the tasks.

Our final objective function is then given as follows:

minimize
σ,τ1:t,v1:t

L ({σ ⊗Mt + τ t};Dt) + λ1

t∑
i=1

‖τ i‖1 + λ2

t−1∑
i=1

‖θ∗i − (σ ⊗Mi + τ̃ i)‖22,

where τ̃ i = τ i + σ̃g for i ∈ Gg.

(3)

Algorithm 1 describes the training of our APD model.

Selective task forgetting In practical scenarios, some of earlier learned tasks may become irrelevant
as we continually train the model. For example, when we are training a product identification model,
recognition of discontinued products will be unnecessary. In such situations, we may want to forget
the earlier tasks in order to secure network capacity for later task learning. Unfortunately, existing
continual learning methods cannot effectively handle this problem, since the removal of some features
or parameters will also negatively affect the remaining tasks as their parameters are entangled. Yet,
with APDs, forgetting of a task t can be done by dropping out the task adaptive parameters τ t.
Trivially, this will have absolutely no effect on the task-adaptive parameters of the remaining tasks.

4 EXPERIMENT

We now validate APD-Net on multiple datasets against state-of-the-art continual learning methods.
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4.1 DATASETS

1) CIFAR-100 Split (Krizhevsky & Hinton, 2009) consists of images from 100 generic object classes.
We split the classes into 10 group, and consider 10-way multi-class classification in each group as a
single task. We use 5 random training/validation/test splits of 4, 000/1, 000/1, 000 samples.

2) CIFAR-100 Superclass consists of images from 20 superclasses of the CIFAR-100 dataset, where
each superclass consists of 5 different but semantically related classes. For each task, we use 5
random training/validation/test splits of 2, 000/500/500 samples.

3) Omniglot-rotation (Lake et al., 2015) contains OCR images of 1, 200 characters (we only use the
training set) from various writing systems for training, where each class has 80 images, including 0,
90, 180, and 270 degree rotations of the original images. We use this dataset for large-scale continual
learning experiments, by considering the classification of 12 classes as a single task, obtaining 100
tasks in total. For each class, we use 5 random training/test splits of 60/20 samples.

We use a modified version of LeNet-5 (LeCun et al., 1998) and VGG16 network (Simonyan &
Zisserman, 2015) with batch normalization as base networks. For experiments on more datasets, and
detailed descriptions of the architecture and task order sequences, please see the supplementary file.

4.2 BASELINES AND OUR MODELS

1) L2-Transfer. Deep neural networks trained with the L2-transfer regularizer λ‖θt − θt−1‖2F
when training for task t. 2) EWC. Deep neural networks regularized with Elastic Weight Consolida-
tion (Kirkpatrick et al., 2017). 3) P&C. Deep neural networks with two-step training: Progress, and
Compresss (Schwarz et al., 2018). 4) PGN. Progressive Neural Networks (Rusu et al., 2016) which
constantly increase the network size by k neurons with each task. 5) DEN. Dynamically Expandable
Networks (Yoon et al., 2018) that selectively retrain and dynamically expand the network size by
introducing new units and duplicating neurons with semantic drift. 6) RCL. Reinforced Continual
Learning proposed in (Xu & Zhu, 2018) which adaptively expands units at each layer using reinforce-
ment learning. 7) APD-Fixed. APD-Net without the retroactive update of the previous task-adaptive
parameters (Eq. (1)). 8) APD(1). Additive Parameter Decomposition Networks with depth 1, whose
parameter is decomposed into task-shared and task-adaptive parameters. 10) APD(2). APD-Net with
depth 2, that also has locally shared parameters from hierarchical knowledge consolidation.

4.3 QUANTITATIVE EVALUATION

Task-average performance We first validate the final task-average performance after the comple-
tion of continual learning. To perform fair evaluation of performance that is not order-dependent, we
report the performance on three random trials over 5 different task sequences over all experiments.
Table 1 shows that APD-Nets outperform all baselines by large margins in accuracy. We attribute this
performance gain to two features. First, an APD-Net uses neuron(filter)-wise masking on the shared
parameters, which allows it to focus only on parts that are relevant to the task at the current training
stage. Secondly, an APD-Net updates the previous task-adaptive parameters to reflect the changes
made to the shared parameters, to perform retroactive knowledge transfer. APD-Fixed, without these
retroactive updates, performs slightly worse. APD(2) outperforms APD(1) since it further allows
local knowledge transfer with hierarchically shared parameters. Moreover, when compared with
expansion based baselines, our methods yield considerably higher accuracy with lower capacity
(Figure 3). This efficiency comes from the task-adaptive learning performing only residual learning
for each task with minimal capacity increase, while maximally utilizing the task-shared parameters.

We further validate the efficiency of our methods in terms of training time. Existing approaches with
network expansion are slow to train. DEN should be trained with multiple steps, namely selective
retraining, dynamic network expansion and split/duplication, each of which requires retraining of the
network. RCL is trained with reinforcement learning, which is inherently slow since the agent should
determine exactly how many neurons to add at each layer in a discrete space. PGN trains much faster,
but the model increases the fixed number of neurons at each layer when a new task arrives, resulting
in overly large networks. On the contrary, APD-Net, although it requires updates to the previous
task-adaptive parameters, can be trained in a single training step. Figure 3 shows that both APD(1)
and APD(2) have training time comparable to the base model, with only a marginal increase.
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Table 1: Experiment results on CIFAR-100 Split and CIFAR-100 Superclass datasets. The results are the mean
accuracies over 3 runs of experiments with random splits, performed with 5 different task order sequences. STL
is the single-task learning model that trains a separate network for each task independently. Standard deviations
for accuracy are given in Table A.3 in the Appendix.

CIFAR-100 Split CIFAR-100 Superclass
Methods Capacity Accuracy AOPD MOPD Capacity Accuracy AOPD MOPD

STL 1,000% 63.75% 0.98% 2.23% 2,000% 61.00% 2.31% 3.33%
L2T 100% 48.73% 8.62% 17.77% 100% 41.40% 8.59% 20.08%

EWC 100% 53.72% 7.06% 15.37% 100% 47.78% 9.83% 16.87%
P&C 100% 53.54% 6.59% 11.80% 100% 48.42% 9.05% 20.93%
PGN 171% 54.90% 8.08% 14.63% 271% 50.76% 8.69% 16.80%
DEN 181% 57.38% 8.33% 13.67% 191% 51.10% 5.35% 10.33%
RCL 181% 55.26% 5.90% 11.50% 184% 51.99% 4.98% 14.13%

APD-Fixed 132% 59.32% 2.43% 4.03% 128% 55.75% 3.16% 6.80%
APD(1) 134% 59.93% 2.12% 3.43% 133% 56.76% 3.02% 6.20%
APD(2) 135% 60.74% 1.79% 3.43% 130% 56.81% 2.85% 5.73%
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Figure 3: Accuracy over efficiency of expansion-based continual learning methods and our methods. We report
performance over capacity and performance over training time on both datasets.

Order fairness in continual learning We now evaluate the order-robustness of our model in
comparison to the existing approaches. We first define an evaluation metric for order-sensitivity for
each task t, which we name as Order-normalized Performance Disparity (OPD), as the disparity
between its performance on R random task sequences:

OPDt = max(P
1

t , ..., P
R

t )−min(P
1

t , ..., P
R

t ) (4)

where P
r

t denotes the performance of task t to the task sequence r. Then we define the Maximum
OPD as MOPD = max(OPD1, ..., OPDt), and the Average OPD as AOPD = 1

T

∑T
t=1OPDt,

to evaluate order-robustness on the entire task set. A model that is sensitive to the task sequence order
will have high MOPD and AOPD, and an order-robust model will have low values for both metrics.

In table 1, we show the experimental results on order-robustness for all models, obtained on 5 random
sequences. We observe that expansion-based continual learning methods are more order-robust than
fixed-capacity methods, owing to their ability to introduce task-specific units, but they still suffer
from a large degree of performance disparity due to asymmetric direction of knowledge transfer from
earlier tasks to later ones. On the other hand, APD-Nets obtain significantly lower MOPD and AOPD
compared to baseline models that have high performance disparity between task sequences given
in different orders. APD(1) and APD(2) are more order-robust than APD-Fixed, which suggests
the effectiveness of the retroactive updates of τ 1:t−1. Figure 4 further shows how the per-task
performance of each model changes to task sequences of three different orders. We observe that our
models show the least disparity in performance to the order of the task sequence.

Preventing catastrophic forgetting We show the effectiveness of APD on its prevention of catas-
trophic forgetting by examining how the model performance on earlier tasks change as new tasks
arrive. Figure 5, (a)-(c) show the results on task 1, 6, 11 from CIFAR-100 Superclass, which has 20
tasks in total. APD-Nets do not show any sign of catastrophic forgetting, although their performances
marginally change with the arrival of each task. In fact, APD(2) even improves on task 6 (by 0.40%p)
as it learns on later tasks, which is possible both due to the update of the shared parameters and the
retroactive update of the task-adaptive parameters for earlier tasks, which leads to better solutions.
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Figure 4: Performance disparity of continual learning baselines and our models on CIFAR-100 Split. Plots
show per-task accuracy for 3 task sequences of different order. Performance disparity of all methods for 5 task
sequences of different order are given in Figure A.8 in the Appendix.
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Figure 5: (a)-(c) Catastrophic Forgetting on CIFAR-100 Superclass: Performance of our models on the 1st,
6th,and 11th task during continual learning. (d)-(e) Task Forgetting on CIFAR-100 Split: Per-task Performance
of APD(1) (T1:5) when 1st task is dropped during continual learning.

Selective task forgetting To show that APD-Net can perform selective task forgetting without
any harm on the performance of non-target tasks, in Figure 5, (d)-(e), we report the performance
change in Task 1-5 when removing parameters for Task 3 and 5. As shown, there is no performance
degeneration on non-target tasks, which is expected since dropping out a task-adaptive parameter
for a specific task will not affect the task-adaptive parameters for the remaining tasks. This ability
to selectively forget is another important advantage of our model that makes it practical in lifelong
learning scenarios.

Scalability to large number of tasks We further validate the scalability of our model with large-
scale continual learning experiments on the Omniglot-Rotation dataset, which has 100 tasks. Re-
gardless of random rotations, tasks could share specific features such as circles, curves, and straight
lines. Gidaris et al. (2018) showed that we can learn generic representations even with rotated images,
where they proposed a popular self-supervised learning technique where they train the model to
predict the rotation angle of randomly rotated images. We do not compare against DEN or RCL for
this experiment since they are impractically slow to train. Figure 6 (Left) shows the results of this
experiment. For PGN, we restrict the maximum number of links to the adapter to 3 in order to avoid
it from establishing exponentially many connections. We observe that continual learning models
achieve significantly lower performance and high OPDs compared to single task learning. On the
contrary, our model outperforms them by large amount, obtaining performance that is almost equal to
STL which uses 100 times more network parameters. To show that our model scales well, we plot
the number of parameters for our models as a function of the number of tasks in Figure 6 (Right).
The plot shows that our APD-Net scales well, showing logarithmic growth in network capacity (the
number of parameters), while PGN shows linear growth. This result suggests that our model is highly
efficient especially in large-scale continual learning scenarios.

Continual learning with heterogenerous datasets We further consider a more challenging con-
tinual learning scenario where we train on a series of heterogeneous datasets. For this experiment,
we use CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR100, and the Street View House Numbers
(SVHN) (Netzer et al., 2011) dataset, in two different task arrival sequences (SVHN→CIFAR-
10→CIFAR-100, CIFAR-100→CIFAR-10→SVHN). We use VGG-16 as the base network, and
compare against an additional baseline, Piggyback (Mallya et al., 2018), which handles a newly
arrived task by learning a task-specific binary mask on a network pretrained on ImageNet; since
we cannot assume the availability of such large-scale datasets for pretraining in a general setting,
we pretrain it on the inital task. Table 2 shows the results, which show that existing models obtain
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Models Capacity Accuracy AOPD MOPD
STL 10,000% 82.13% (0.08) 2.79% 5.70%
L2T 100% 63.46% (1.58) 13.35% 24.43%

1,599% 64.65% (1.76) 11.35% 27.23%
EWC 100% 67.48% (1.39) 14.92% 32.93%

1,599% 68.66% (1.92) 15.19% 40.43%
PGN 1,045% 73.65% (0.27) 6.79% 19.27%

1,543% 79.35% (0.12) 4.52% 10.37%
APD(2) 649% 81.20% (0.62) 4.09% 9.44%

943% 81.60% (0.53) 3.78% 8.19% 20 40 60 80 100
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Figure 6: Left: Performance comparison with several benchmarks on Omniglot-rotation (standard deviation
into parenthesis). Right: The number of the parameters which is obtained during course of training on
Omniglot-rotation.

Table 2: Accuracy comparison on diverse datasets according to two opposite task order (arrows). The results are
the mean accuracies over 3 runs of experiments. VGG16 with batch normalization is used for a base network.

STL L2T Piggyback PGN APD(1)
Task Order None ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

SVHN 96.8% 10.7% 88.4% 96.8% 96.4% 96.8% 96.2% 96.8% 96.8%
CIFAR10 91.3% 41.4% 35.8% 83.6% 90.8% 85.8% 87.7% 90.1% 91.0%

CIFAR100 67.2% 29.6% 12.2% 41.2% 67.2% 41.6% 67.2% 61.1% 67.2%
Average 85.1% 27.2% 45.5% 73.9% 84.8% 74.7% 83.7% 83.0% 85.0%

Model Size 171MB 57 MB 57 MB 59 MB 59 MB 64 MB 64 MB 63 MB 65 MB

suboptimal performance in this setting and are order-sensitive. While Piggyback and PGN are immue
to catastrophic forgetting since they freeze the binary masks and hidden units trained on previous
tasks, they still suffer from performance degeneration, since their performances largely depends upon
the pretrained network and the similarity of the later tasks to earlier ones. On the contrary, APD
obtains performance close to STL without much increase to the model size, and is also order-robust.
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(a) L2-Transfer (b) APD-Fixed (c) APD(1)
Figure 7: Visualizations of the model paramters during continual learning. The colored markers
denote the parameters for each task i, and the empty markers with black outlines denote the task-
shared parameters. Dashed arrows indicate the drift in the parameter space as the model trains on a
sequence of tasks.

4.4 QUALITATIVE ANALYSIS

As a further qualitative analysis of the effect of APD, we visualize the parameters using our method
and baselines by projecting them onto a 2D space (Figure 7). For this experiment, we use a modified
MNIST-split dataset whose images are cropped in the center by 8×8 pixels, and create 5 tasks, where
each task is the binary classification between two classes. As for the base network, we use a 2-layer
multi-layer perceptron with 10 units at each layer. Then we use Principle Component Analysis (PCA)
to reduce the dimensionality of the parameters to two. We visualize the 2D projections of both the
task-shared and task-adaptive parameters for each step of continual learning. For example, for task 3,
we plot three green markers which visualize teh parameters when training on task 4 and 5. For the
last task (Task 5), we only have a single marker since this is the last task.
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We observe that the model parameters using L2-Transfer drift away in a new direction, as it trains
on a sequence of tasks, which brings in catastrophic forgetting. APD-Fixed (Figure 7(b)) largely
alleviates the semantic drift, as the update on later tasks only affects the task-shared parts while the
task-adaptive parameters are kept intact. However, the update to the task-shared parameters could
result in small drift in the combined task-specific parameters. On the other hand, APD-Net with
retroactive update of task-adaptive parameters successfully prevents the drift in the task-specific
parameters (Figure 7(c)) .

5 CONCLUSION

We proposed a novel continual learning model with Additive Parameter Decomposition, where the
task-shared parameters capture knowledge generic across tasks and the task-adaptive parameters
capture incremental differences over them to capture task-specific idiosyncrasies. This knowledge
decomposition naturally solves the catastrophic forgetting problem since the task-adaptive parameters
for earlier tasks will remain intact, and is significantly more efficient compared to expansion-based
approaches, since the task-adaptive parameters are additive and do not increase the number of
neurons or filters. Moreover, we also introduce and tackle a novel problem we refer to as task
order sensitivity, where the performance for each task varies sensitively to the order of task arrival
sequence; with our model, the shared parameters will stay relatively static regardless of the task
order, and retroactive updates of the task-adaptive parameters prevent them from semantic drift. With
extensive experimental validation, we showed that our model obtains impressive accuracy gains over
the existing continual learning approaches, while being memory- and computation-efficient, scalable
to large number of tasks, and order-robust. We hope that our paper initiates new research directions
for continual learning on the relatively unexplored problems of scalability, task-order sensitivity, and
selective task forgetting.
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A APPENDIX

We introduce detailed experiment settings for our Additive Parameter Decomposition (APD). Also,
we provide experimental results including additional quantitative analysis and ablation study for our
model.

A.1 EXPERIMENT SETTINGS

In this section, we describe experimental details for our models. We used exponential learning rate
decay at each epoch and all models are applied on weight decay with λ = 1e−4. All hyperparameters
are deterimined from a validation set. All experiments are performed without data preprocessing
techniques. For MNIST-Variation, we used two-layered feedforward networks with 312, 128 neurons.
Training epochs are 50 for all baselines and APDs. λ1 = [2e−4, 1e−4] on APD.

For CIFAR-100 Split and CIFAR-100 Superclass, we used LeNet with 20-50-800-500 neurons.
Training epochs are 20 for all models. λ1 = [6e−4, 4e−4]. We equally set λ2 = 100, also K=2 per 5
tasks, and β=1e−2 for hierarchical knowledge consolidation on MNIST-Variation, CIFAR-100 Split,
and CIFAR-100 Superclass.

For Omniglot, we used LeNet with 10-20-500-300 neurons as default. And to show the performance
EWC with larger network capacity, we used LeNet with 64-128-2500-1500 neurons. Training epochs
are 100 for all models, and λ1 = [4e−4, 2e−4], and λ2 = 100, and 1K for APD. We set K=3 per
10 tasks, and β=1e−4 for hierarchical knowledge consolidation. Note that we use an additional
technique which updates only largely changed θi where i < t. It bypasses the retroactive parameter
update for the tasks which is nearly relevant to learn the current task t. This selective update rule
helps the model skip these meaningless update procedure and we can train our model much faster on
large-scale continual learning.

To estimate order robustness, we used 5 different orders on all experiments. For the case of MNIST-
Variation and CIFAR-100 Split, we select random generated orders as follows:

• orderA: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

• orderB: [1, 7, 4, 5, 2, 0, 8, 6, 9, 3]

• orderC: [7, 0, 5, 1, 8, 4, 3, 6, 2, 9]

• orderD: [5, 8, 2, 9, 0, 4, 3, 7, 6, 1]

• orderE: [2, 9, 5, 4, 8, 0, 6, 1, 3, 7]

For CIFAR-100 Superclass, we select random generated orders as follows:

• orderA: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

• orderB: [15, 12, 5, 9, 7, 16, 18, 17, 1, 0, 3, 8, 11, 14, 10, 6, 2, 4, 13, 19]

• orderC: [17, 1, 19, 18, 12, 7, 6, 0, 11, 15, 10, 5, 13, 3, 9, 16, 4, 14, 2, 8]

• orderD: [11, 9, 6, 5, 12, 4, 0, 10, 13, 7, 14, 3, 15, 16, 8, 1, 2, 19, 18, 17]

• orderE: [6, 14, 0, 11, 12, 17, 13, 4, 9, 1, 7, 19, 8, 10, 3, 15, 18, 5, 2, 16]

For Omniglot dataset, we omit the sequence of random generated orders for readability.

Table A.3: Ablation study results on APD(1) with average of five different orders depicted in A.1. We show a
validity of APD as comparing with several architectural variants. All experiments performed on CIFAR-100
split dataset.

Models Capacity Accuracy AOPD MOPD
STL 1,000% 63.75% 0.98% 2.23%

APD(1) 170% 61.30% 1.57% 2.77%
w/o Sparsity 1,084% 63.47% 3.20% 5.40%

w/o Adaptive Mask 168% 59.09% 1.83% 3.47%
Fixed σ 167% 58.55% 2.31% 3.53%
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A.2 ARCHITECTURAL CHOICES FOR ADDITIVE PARAMETER DECOMPOSITION

We also evaluate various ablation experiments on Additive Parameter Decomposition. First of all,
we build the dense APD without sparsity inducing constraints for task-adaptive parameters while
maintaining the essential architecture, depicted as w/o Sparsity. It significantly outperforms APD in
terms of accuracy but impractical since it requires huge capacity. We also measure the performance
of APD without adaptive masking variables to observe how much performance is degraded when the
flexibility of APD for newly arriving tasks is limited, which is referred to as w/o Adaptive Masking
in the table. Naturally, it underperforms with respect to both accuracy and OPDs. Freezing σ after
training the first task, referred to as Fixed σ in the table, is designed to observe the performance
when the task-shared knowledge is not properly captured by σ. Interestingly, this shows much
lower performance than other variants, suggesting that it is extremely crucial to properly learn the
task-shared knowledge during continual learning.

Table A.4: Comparison with GEM-variants on Permuted-MNIST dataset. We followed all experimental settings
from A-GEM (Chaudhry et al., 2019). We report the performance on single epoch training for 17 random
permuted MNIST except 3 cross-validation tasks from 20 total tasks, mini-batch is 10 and size of episodic
memory in GEMs is 256. We refered the experimental results for GEM variants from Chaudhry et al. (2019).

Methods Network Capacity (%) Accuracy Average Forgetting Worst-case Forgetting
STL 1,700% 0.9533 0.00 0.00
GEM 100% 0.8950 0.060 0.100

S-GEM 100% 0.8820 0.080 -
A-GEM 100% 0.8910 0.060 0.130
APD(1) 103% 0.9067 0.020 0.051
APD(1) 115% 0.9283 0.018 0.047

Table A.5: Comparison with HAT (Serrà et al., 2018) on sequence of 8 heterogeneous dataset. We follow all
experimental settings from HAT and reproduce the performance of HAT directly from the author’s code. We
perform the experiments with 5 different (randomly generated) task order sequences. We use forgetting measure
as Average Forgetting and Worst-case Forgetting from (Chaudhry et al., 2019).

Methods Network Capacity Accuracy Average F. Worst-case F. AOPD MOPD
HAT 100% 0.8036 (0.012) 0.0014 0.0050 0.0795 0.2315

HAT-Large 182% 0.8183 (0.011) 0.0013 0.0057 0.0678 0.1727
APD-Fixed 181% 0.8242 (0.005) 0.0003 0.0006 0.0209 0.0440

A.3 COMPARISON WITH OTHER CONTINUAL LEARNING METHODS

We additionally compare our APD with GEM-based approaches (Lopez-Paz & Ranzato, 2017;
Chaudhry et al., 2019). As for the backbone networks, we use a two-layer perceptron with 256
neurons at each layer. The results in Table A.4 show that GEM-variants obtain reasonable performance
with a marginal forgetting since the models store data instances of previous tasks in the episodic
memory, and use them to compute gradients for training on later tasks. Note that we do not count the
size of episodic memory to the network capacity.

Furthermore, we compare APD-Net against HAT (Serrà et al., 2018) on a sequence of 8 heterogeneous
dataset including CIFAR-10, CIFAR-100, FaceScrub (Ng & Winkler, 2014), MNIST (LeCun et al.,
1998), NotMNIST (Bulatov, 2011), FashionMNIST (Xiao et al., 2017), SVHN, and TrafficSign (Stal-
lkamp et al., 2011). We used a modified version of AlexNet (Krizhevsky et al., 2012) as the backbone
networks and reproduce the performance of HAT directly from the author’s code. Table A.5 shows
that APD-Fixed largely outperforms HAT.

Both GEM variants and HAT are strong continual learning approaches, but cannot expand the network
capacity and/or performs unidirectional knowledge transfer thus suffers from the capacity limitation
and order-sensitivity. On the other hand, our APD adaptively increases the network capacity by
introducing task-adaptive parameters which learns task-specific features not captured in the task-
shared parameters. Therefore, APD can learn richer representations compared to fixed-capacity
continual learning approaches. APD also exhibit several unique properties, such as task-order
robustness and trivial task forgetting.
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Table A.6: Full experiment results on CIFAR-100 Split and CIFAR-100 Superclass datasets. The results are the
mean accuracies over 3 runs of experiments with random splits, preformed with 5 different task order sequences
(standard deviation into parenthesis).

CIFAR-100 Split
Methods Capacity Accuracy AOPD MOPD

STL 1,000% 63.75% (0.14) 0.98% 2.23%
L2T 100% 48.73% (0.66) 8.62% 17.77%

EWC 100% 53.72% (0.56) 7.06% 15.37%
P&C 100% 53.54% (1.70) 6.59% 11.80%
PGN 171% 54.90% (0.92) 8.08% 14.63%
DEN 181% 57.38% (0.56) 8.33% 13.67%
RCL 181% 55.26% (0.13) 5.90% 11.50%

APD-Fixed 132% 59.32% (0.44) 2.43% 4.03%
175% 61.02% (0.31) 2.26% 2.87%

APD(1) 134% 59.93% (0.41) 2.12% 3.43%
170% 61.30% (0.37) 1.57% 2.77%

APD(2) 135% 60.74% (0.21) 1.79% 3.43%
153% 61.18% (0.20) 1.86% 3.13%

CIFAR-100 Superclass
Methods Capacity Accuracy AOPD MOPD

STL 2,000% 61.00% (0.20) 2.31% 3.33%
L2T 100% 41.40% (0.99) 8.59% 20.08%
EWC 100% 47.78% (0.74) 9.83% 16.87%
P&C 100% 48.42% (1.39) 9.05% 20.93%
PGN 271% 50.76% (0.39) 8.69% 16.80%
DEN 191% 51.10% (0.77) 5.35% 10.33%
RCL 184% 51.99% (0.25) 4.98% 14.13%

APD-Fixed 128% 55.75% (1.01) 3.16% 6.80%
191% 57.98% (0.65) 2.58% 4.53%

APD(1) 133% 56.76% (0.27) 3.02% 6.20%
191% 58.37% (0.22) 2.64% 5.47%

APD(2) 130% 56.81% (0.33) 2.85% 5.73%
182% 58.53% (0.31) 2.75% 5.67%

Performance at Each Task

1 2 3 4 5 6 7 8 9 10
Task Index

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

OrderA
OrderB
OrderC
OrderD
OrderE

Performance at Each Task

1 2 3 4 5 6 7 8 9 10
Task Index

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

OrderA
OrderB
OrderC
OrderD
OrderE

Performance at Each Task

1 2 3 4 5 6 7 8 9 10
Task Index

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

OrderA
OrderB
OrderC
OrderD
OrderE

Performance at Each Task

1 2 3 4 5 6 7 8 9 10
Task Index

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

OrderA
OrderB
OrderC
OrderD
OrderE

(a) L2T (b) EWC (c) P&C (d) PGN
Performance at Each Task

1 2 3 4 5 6 7 8 9 10
Task Index

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

OrderA
OrderB
OrderC
OrderD
OrderE

Performance at Each Task

1 2 3 4 5 6 7 8 9 10
Task Index

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

OrderA
OrderB
OrderC
OrderD
OrderE

Performance at Each Task

1 2 3 4 5 6 7 8 9 10
Task Index

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

OrderA
OrderB
OrderC
OrderD
OrderE

Performance at Each Task

1 2 3 4 5 6 7 8 9 10
Task Index

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

OrderA
OrderB
OrderC
OrderD
OrderE

(c) DEN (d) RCL (e) APD(1) (g) APD(2)

Figure A.8: Per-task accuracy for each task sequence of continual learning baselines and our models on
CIFAR-100 Split, on 5 task sequences of different order. Large amount of disparity among task performance
of different orders implies that the model is task-order sensitive, that is less confident in terms of fairness in
continual learning.
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