
Under review as a conference paper at ICLR 2020

MULTI-STAGE INFLUENCE FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-stage training and knowledge transfer from a large-scale pretraining task to
various finetuning tasks have revolutionized natural language processing (NLP)
and computer vision (CV), with state-of-the-art performances constantly being
improved. In this paper, we develop a multi-stage influence function score to
track predictions from a finetuned model all the way back to the pretraining data.
With this score, we can identify the pretraining examples in the pretraining task
that contribute most to a prediction in the finetuning task. The proposed multi-
stage influence function generalizes the original influence function for a single
model in Koh & Liang (2017), thereby enabling influence computation through
both pretrained and finetuned models. We study two different scenarios with
the pretrained embeddings fixed or updated in the finetuning tasks. We test our
proposed method in various experiments to show its effectiveness and potential
applications.

1 INTRODUCTION

Multi-stage training has become increasingly important and has achieved state-of-the-art results in
many tasks. In NLP applications, it is now a common practice to first learn word embeddings (e.g.,
word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014)) or contextual representations
(e.g., ELMo (Peters et al., 2018), BERT (Devlin et al., 2018)) from a large unsupervised corpus,
and then refine or finetune the model on supervised end tasks. In computer vision applications, it is
common to use a pretrained CNN as a feature extractor and only finetune top-layer networks through
training on the end task. Also, it has been demonstrated that pretraining ResNet (He et al., 2016)
with large hashtag data can greatly benefit many end tasks (Mahajan et al., 2018). Intuitively, the
successes of these multi-stage learning paradigms are due to knowledge transfer from pretraining
tasks to the end task. However, current approaches using multi-stage learning are usually based on
trial-and-error and many fundamental questions remain unanswered. For example, which part of the
pretraining data/task contributes most to the end task? How can one detect “false transfer” where
some pretraining data/task could be harmful for the end task? If a testing point is wrongly predicted
by the finetuned model, can we trace back to the problematic examples in the pretraining data?
Answering these questions requires a quantitative measurement of how the data and loss function in
the pretraining stage influence the end model, which has not been studied in the past and will be the
main focus of this paper.

To find the most influential training data responsible for a model’s prediction, the influence function
was first introduced by Cook & Weisberg (1980) from a robust statistics point of view. Recently, as
large-scale applications become more challenging for influence function computation, Koh & Liang
(2017) proposed to use a first-order approximation to measure the effect of removing one training
point on the model’s prediction, to overcome computational challenges. More broadly, there are
many works using influence functions to investigate the impact of training data on models in various
machine learning applications, such as tracing back the origins of bias in the word embeddings
generated by GloVe (Brunet et al., 2019), and understanding and mitigating disparate impact to
improve model fairness (Wang et al., 2019). However, all of the existing influence score computation
algorithms study the case of single-stage training – where there is only one model with one set
of training/prediction data in the training process. To the best of our knowledge, the influence of
pretraining data on a subsequent finetuning task and model has not been studied, and it is nontrivial
to apply the original influence function in (Koh & Liang, 2017) to this scenario.

1

Under review as a conference paper at ICLR 2020

In this work, we derive the influence function from pretraining data to the end task in multi-stage
training. Since the computation involves several expensive Hessian vector products, we also show
how to compute the influence function efficiently in large-scale problems. Based on this technique,
we show that

• in real datasets and experiments across various vision and NLP tasks, predictions using the
technique and actual influence for the pretraining data to the finetuned model are highly
correlated (Pearson’s r score to be around 0.6). This shows the effectiveness of our proposed
technique for computing the influence scores in multi-stage models;
• the influence for the pretraining data to the finetuned model can be split into two parts: the

influence of the pretraining data on the pretrained model, and influence of the pretraining
data on the finetuned model. Therefore the testing data from the finetuning task will be
impacted by changes in the pretraining data, which can be quantified using our proposed
technique;
• the influence of the pretraining data on the finetuning task is highly dependent on 1) the

similarity of two tasks or stages, 2) and the number of training data in the finetuning task.
Thus our proposed technique provides a novel way to measure how the pretraining data
helps or benefits the finetuning data.

2 RELATED WORK

Multi-stage model training that trains models in many stages on different tasks to improve the end-
task has been used widely in many machine learning areas, such as in transfer learning (Ando &
Zhang, 2005) and zero-shot learning (Larochelle et al., 2008). Recently, multi-stage model training
has achieved state-of-the-art performance by learning large embeddings or data representation as
the pretraining step on a very large pretraining dataset, which is then followed by a finetune step
with further training on the end-task. Examples include the recently proposed BERT (Devlin et al.,
2018), which learns contextual embeddings on a large corpus with the pretraining tasks chosen to
be predicting the masked words in a sentence and predicting whether one sentence is after another
sentence. This contextual embedding is then used in finetuning tasks, such as a question answering
task. ELMo (Peters et al., 2018) is widely used in multi-stage model training as a sentence feature
extractor to benefit the end-task. Similarly, there are some works in computer vision that train an
image representation model on a large number of images as the pretraining step, and then use the
resulting features to finetune another task, such as particular image classification tasks. For example,
(Mahajan et al., 2018) uses ResNet in the pretraining step, and the finetuning task is based on hashtag
data. The rationale for this multi-stage model is that the pretraining task can learn some common or
latent representation which could benefit the end task.

Another related line of research is on understanding machine learning models. One category of
research is to explain predictions with respect to model variables, and trace back the contribution
of variables to the prediction. For example, Oramas et al. (2019) automatically detects internal
features in the set of classes in the pretrained model that are relevant to interpreting the prediction,
and shows for various vision tasks that the proposed scheme can produce detailed explanations
based on the features that are relevant to the targeted classes. Guo et al. (2019) aims to interpret
variable-wise hidden states in an LSTM model to quantify variable importance and variable-wise
temporal importance in the model.

Closely related research has sought to connect model prediction and training data, and trace back
the most influential training data that are most responsible for the model prediction. Among them,
the influence function (Cook & Weisberg, 1980; Koh & Liang, 2017), which aims to model the
prediction changes when training data is added/removed, has been shown to be effective in many
applications. There is a series of work on influence functions, including investigating the influence
of a group of data on the prediction (Koh et al., 2019), using influence functions to detect bias in
word embeddings (Brunet et al., 2019), and using it in preventing data poisoning attacks (Steinhardt
et al., 2017), etc. All of these works only consider a single stage training procedure, and it is not
straightforward to apply the existing influence functions to multi-stage models. In this paper, we
propose to analyze the influence of pretraining data on predictions in the subsequent finetuned model
and end task.

2

Under review as a conference paper at ICLR 2020

3 ALGORITHMS

In this section, we detail the procedure of multi-stage training, show how to compute the influence
score for the multi-stage training, and then discuss how to scale up the computation.

Figure 1: The setting for influence functions in multi-stage models. We consider a two-stage model,
where we have a first pretrained model, and a second finetuned model for a desired end task. We seek
to compute the influence of the pretraining data on predictions using testing data in the finetuning
task.

3.1 MULTI-STAGE MODEL TRAINING

Multi-stage models, which train different models in consecutive stages, have been widely used in
various ML tasks. Mathematically, letZ be the training set for pretraining task with data size |Z| = m,
and X be the training data for the finetuning task with data size |X | = n. In pretraining stage, we
assume the parameters of the pretrained network have two parts: the parameters W that are shared
with the end task, and the task-specific parameters U that will only be used in the pretraining stage.
Note that W could be a word embedding matrix (e.g., in word2vec) or a representation extraction
network (e.g., Elmo, BERT, ResNet), while U is usually the last few layers that corresponds to the
pretraining task. After training on the pretraining task, we obtain the optimal parameters W ∗, U∗.
The pretraining stage can be formulated as

Pretrain Stage: W ∗, U∗ = arg min
W,U

1

m

∑
z∈Z

g(z, W, U) := arg min
W,U

G(W,U), (1)

where g(·) is the loss function for the pretrain task.

In the finetuning stage, the network parameters are W,Θ, where W is shared with the pretraining
task and Θ is the rest of the parameters specifically associated with the finetuning task. We will
initialize the W part by W ∗. Let f(·) denote the finetuning loss, there are two cases when finetuning
the end-task:

• Finetuning Case 1: Fixing embedding parameters W = W ∗, and only finetune Θ:

Θ∗ = arg min
Θ

1

n

∑
x∈X

f(x, W ∗, Θ) := arg min
Θ

F (W ∗,Θ). (2)

• Finetuning Case 2: finetune both the embedding parameters W (initialized from W ∗) and
Θ. Sometimes updating the embedding parameters W in the finetuning stage is necessary,
as the embedding parameters from the pretrained model may not be good enough for the
finetuning task. This corresponds to the following formulation:

W ∗∗,Θ∗ = arg min
W,Θ

1

n

∑
x∈X

f(x, W, Θ) := arg min
W,Θ

F (W,Θ). (3)

3.2 INFLUENCE FUNCTION FOR MULTI-STAGE MODELS

We derive the influence function for the multi-stage model to trace the influence of pretraining data
on the finetuned model. In Figure 1 we show the task we are interested in solving in this paper. Note

3

Under review as a conference paper at ICLR 2020

that we use the same definition of influence function as (Koh & Liang, 2017) and discuss how to
compute it in the multi-stage training scenario. As discussed at the end of Section 3.1, depending on
whether or not we are updating the shared parameters W in the finetuning stage, we will derive the
influence functions under two different scenarios.

3.2.1 CASE 1: EMBEDDING PARAMETERS W ARE FIXED IN FINETUNING

To compute the influence of pretraining data on the finetuning task, the main idea is to perturb one
data example in the pretraining data, and study how that impacts the test data. Mathematically, if
we perturb a pretraining data example z with loss change by a small ε, the perturbed model can be
defined as

Ŵε, Ûε = arg min
W,U

G(W,U) + εg(z,W,U). (4)

Note that choices of ε can result in different effects in the loss function from the original solution
in (1). For instance, if we set ε = − 1

n , then we are removing the training data z in the pretraining
dataset.

For the finetuning stage, since we consider Case 1 where the embedding parameters W are fixed in
the finetuning stage, the new model for the end-task or finetuning task will thus be

Θ̂ε = arg min
Θ

F (Ŵε,Θ). (5)

The influence function that measures the impact of a small ε perturbation on z to the finetuning loss
on a test sample xt from finetuning task is defined as

Iz,xt :=
∂f(xt, Ŵε, Θ̂ε)

∂ε

∣∣
ε=0

(6)

= ∇Θf(xt,W
∗,Θ∗)T · Iz,Θ +∇W f(xt,W

∗,Θ∗)T · Iz,W . (7)

with Iz,Θ :=
∂Θ̂ε

∂ε

∣∣
ε=0

and Iz,W :=
∂Ŵε

∂ε

∣∣
ε=0

, (8)

where Iz,Θ measures the influence of z on the finetuning task parameters Θ, and Iz,W measures how
z influences the pretrained model W . Therefore we can split the influence of z on the test sample
into two pieces: one is the impact of z on the pretrained model Iz,W , and the other is the impact of z
on the finetuned model Iz,Θ. It is worth mentioning that, due to linearity, if we want to estimate a set
of test example influence function scores with respect to a set of pretraining examples, we can simply
sum up the pair-wise influence functions, and so define

I{z(i)},{x(j)
t }

:=
∑
i

∑
j

I
z(i),x

(j)
t
. (9)

where {z(i)} and {x(j)
t } contain a set of pretraining data and finetuning test data. Next we will derive

these two influence scores Iz,Θ and Iz,W (see the detailed derivations in the appendix) in Theorem 1
below.
Theorem 1. For the two-stage training procedure in (1) and (2), we have

Iz,W :=
∂Ŵε

∂ε

∣∣
ε=0

= −
[(∂2G(W ∗, U∗)

∂(W,U)2

)−1
(
∂g(z,W ∗, U∗)

∂(W,U)
)

]
W

(10)

Iz,Θ :=
∂Θ̂ε

∂ε

∣∣
ε=0

= (
∂2F (W ∗,Θ∗)

∂Θ2
)−1 · (∂

2F (W ∗,Θ∗)

∂Θ∂W
) ·
[(∂2G(W ∗, U∗)

∂(W,U)2

)−1
(
∂g(z,W ∗, U∗)

∂(W,U)
)

]
W

where [·]W means taking the W part of the vector.

By plugging (10) into (7), we finally obtain the influence score of pretraining data z on the finetuning
task testing point xt, Iz,xt as

Iz,xt =

[
− ∂f(x,W ∗,Θ∗)T

∂Θ
·(∂

2F (W ∗,Θ∗)

∂Θ2
)−1 · ∂

2F (W ∗,Θ∗)

∂Θ∂W
+
∂f(x,W ∗,Θ∗)T

∂W

]
Iz,W

(11)
Algorithm 1 shows how to compute the influence score in (11). The pseudocode for computing the
influence function in (11) is shown in Algorithm 1.

4

Under review as a conference paper at ICLR 2020

Algorithm 1: Multi-Stage Influence Score with Fixed Embedding
1 Input: pretrain and finetune models with W ∗, Θ∗, and U∗; pretrain and finetune training data Z and
X ; test example xt; and a pretrain training example z;

2 Output: Influence function value Iz,xt ;
3 Compute fintune model’s gradients∂f(xt,W

∗,Θ∗)
∂Θ and ∂f(xt,W

∗,Θ∗)
∂W ;

4 Compute the first inverse Hessian vector product Vihvp1(xt) := (∂
2F (W∗,Θ∗)

∂Θ2)−1 ∂f(xt,W
∗,Θ∗)

∂Θ ;

5 Compute finetune loss’s gradient w.r.t W : ∂f(xt,W
∗,Θ∗)T

∂W = V Tihvp1
∂2F (W∗Θ∗)
∂Θ∂W − f(xt,W

∗,Θ∗)
∂W and

concatenate it with 0 to make it the same dimension as (W, U);
6 Compute and save the second inverse Hessian vector product

V Tihvp2(xt) := [∂f(xt,Θ
∗,W∗)T

∂W , 0](∂
2G(W∗,U∗)
∂(W,U)2)−1 ;

7 Compute influence function score Iz,xt = V Tihvp2(xt)
∂g(z,W∗,U∗)
∂(W,U) ;

3.2.2 CASE 2: EMBEDDING PARAMETER W IS ALSO UPDATED IN THE FINETUNING STAGE

For the second finetuning stage case in (3), we will also further train the embedding parameter W
from the pretraining stage. When W is also updated in the finetuning stage, it is challenging to
characterize the influence since the pretrained embedding W ∗ is only used as an initialization. In
general, the final model (W ∗∗,Θ∗) may be totally unrelated to W ∗; for instance, when the objective
function is strongly convex, any initialization of W in (3) will converge to the same solution.

However, in practice the initialization of W will strongly influence the finetuning stage in deep
learning, since the finetuning objective is usually highly non-convex and initializing W with W ∗ will
converge to a local minimum near W ∗. Therefore, we propose to approximate the whole training
procedure as

W̄ , Ū = arg min
W,U

G(W,U) (12)

W ∗,Θ∗ = arg min
W,Θ

{α‖W − W̄‖2F + F (W,Θ)},

where W̄ , Ū are optimal for the pretraining stage, W ∗,Θ∗ are optimal for the finetuning stage, and
0 ≤ α� 1 is a small value. This is to characterize that in the finetuning stage, we are targeting to
find a solution that minimizes F (W,Θ) and is close to W̄ . In this way, the pretrained parameters are
connected with finetuning task and thus influence of pretraining data to the finetuning task can be
tractable. The results in our experiments show that with this approximation, the computed influence
score can still reflect the real influence quite well.

Similarly we can have ∂Θ̂ε
∂ε , ∂Ŵε

∂ε , and ∂W̄ε

∂ε to measure the difference between their original optimal
solutions in (12) and the optimal solutions from ε perturbation over the pretraining data z. Similar to
(7), the influence function Iz,xt that measures the influence of ε perturbation to pretraining data z on
test sample xt’s loss is

Iz,xt : =
∂f(xt, Ŵε, Θ̂ε)

∂ε

∣∣
ε=0

=
∂f(xt,W

∗,Θ∗)

∂(W,Θ)

T
[
∂Ŵε

∂ε

∣∣
ε=0

∂Θ̂ε
∂ε

∣∣
ε=0

]
. (13)

The influence function of small perturbation of G(W,U) to W̄ ,W ∗,Θ∗ can be computed following
the same approach in Subsection 3.2.1 by replacing W̄ for W ∗ and [Θ∗,W ∗] for Θ∗ in (10). This
will lead to

∂W̄ε

∂ε

∣∣
ε=0

=−
[(∂2G(W̄ , Ū)

∂(W,U)2

)−1
(
∂g(z, W̄ , Ū)

∂(W,U)
)

]
W

(14)[
∂Θ̂ε
∂ε

∣∣
ε=0

∂Ŵε

∂ε

∣∣
ε=0

]
=

[
∂2F (W∗,Θ∗)

∂Θ2

∂2F (W∗,Θ∗)
∂Θ∂W

∂2F (W∗,Θ∗)
∂Θ∂W

∂2F (W∗,Θ∗)
∂W 2 + 2αI

]−1 [
0
−2αI

] [(∂2G(W̄ , Ū)

∂(W,U)2

)−1
(
∂g(z, W̄ , Ū)

∂(W,U)
)

]
W

After plugging (14) into (13), we will have the influence function Iz,xt . Similarly, the algorithm for
computing Iz,xt for Case 2 can follow Algorithm 1 for Case 1 by replacing gradient computation.

5

Under review as a conference paper at ICLR 2020

3.3 IMPLEMENTATION DETAILS

The influence function computation for multi-stage model is presented in the previous section. As we
can see in Algorithm 1 that the influence score computation involves many Hessian matrix operations,
which will be very expensive and sometimes unstable for large-scale models. We used several
strategies to speed up the computation and make the scores more stable.

Large Hessian Matrices A Hessian matrix H has a size of p × p, where p is the number of
parameters in the model. For large deep learning models with thousands or even millions of parame-
ters, it is almost impossible to fit a p × p Hessian into memory. Also, to invert a Hessian requires
O(p3) operations. Similar to Koh & Liang (2017), we avoid explicitly computing and storing the
Hessian matrix and its inverse, and instead compute product of the inverse Hessian with a vector
directly. Every time we need an inverse Hessian vector product v = H−1b, we invoke conjugate
gradients (CG), which transforms the linear system problem into an quadratic optimization problem
H−1b ≡ arg minx{ 1

2x
THx− bTx}. In each iteration of CG, instead of computing H−1b directly,

we will compute a Hessian vector product, which can be efficiently done by backprop through the
model twice with O(p) time complexity. The aforementioned conjugate gradient method requires
the Hessian matrix to be positive definite. However, in practice the Hessian may have negative
eigenvalues, since we run a SGD and the final H may not at a local minimum exactly. To tackle this
issue, we solve

arg min
x
{1

2
xTH2x− bTHx}, (15)

whose solution can be shown the same as arg minx{ 1
2x

THx − bTx} since the Hessian matrix
is symmetric. H2 is guaranteed to be positive definite as long as H is invertible, even when H
has negative eigenvalues. If H2 is not ill-conditioned, we can solve (15) directly. The rate of

convergence of CG depends on
√
κ(H2)−1√
κ(H2)+1

, where κ(H2) is the condition number of H2, which

can be very large if H2 is ill-conditioned. When H2 is ill-conditioned, to stabilize the solution
and to encourage faster convergence, we add a small damping term λ on the diagonal and solve
arg minx{ 1

2x
T (H2 + λI)x− bTHx}.

Time Complexity As mentioned above, we can get an inverse Hessian vector product in O(p) time.
We assume there are p1 parameters in our pretrained model and p2 parameters in our finetuned model.
Since F and G are summation of loss with respect to all pretraining or finetuning examples, it takes
O(mp1) or O(np2) to compute a Hessian vector product, where m is the number of pretraining ex-
amples and n is the number of finetuning examples. We may also subsample the pretraining examples
to estimate G(W,U) when the number of pretraining examples is gigantic such as pretraining using
One-Billion-word dataset (Chelba et al., 2013) for ELMo etc. For the two inverse Hessian vector
products, the time complexity is O(np2r) and O(mp1r), where r is the number of iterations in CG.
For other operations in computing the influence score, vector product has a time complexity of O(p1)
or O(p1), and computing the gradients of all pretraining examples has a complexity of O(mp1). So
computing the total time complexity of computing a multi-stage influence score is O((mp1 + np2)r)

4 EXPERIMENTS

In this section, we will conduct experiment with real datasets on both vision and NLP tasks to show
the effectiveness of our proposed influence function. We will show the results in the main text on the
vision tasks, and some qualitative results on NLP task related to ELMo are presented in Section C in
Appendix.

4.1 INFLUENCE FUNCTION CORRELATION WITH REAL SCORE

To show that our proposed influence score are a good approximation, we evaluate our proposed
multi-stage influence function on two CNN models with CIFAR and MNIST datasets. The model
structures are shown in Table A in Appendix. We use Tanh for all activations. For both MNIST and
CIFAR models, CNN layers are used as embeddings and fully connected layers are task-specific. At
the pretraining stage, we train the models with examples from only two classes (“bird" vs. “frog") for

6

Under review as a conference paper at ICLR 2020

CIFAR and four classes (0, 1, 2, and 3) for MNIST. The resulting embedding is used in the finetuning
tasks, where we finetune the model with the examples from the remaining eight classes in CIFAR
or the other 6 numbers in MNIST task for classification. In order to make the experiments closer
to typical real finetuning situations, we reduce the size of the training set in the finetuning task by
subsampling.

In this experiment we test the correlation between individual pretraining example’s multi-stage
influence function and the real loss difference when the pretraining examples are removed. We test
two cases (as mentioned in Section 3.1) – where the pretrained embedding is fixed, and where it
is updated during finetuning. For both MNIST and CIFAR, we first train the embedding with the
binary classification for Tpretrain steps. The embedding is then used in the finetuned model. Then we
train the finetuned model for Tfinetune steps. Depending on different scenarios which will be explained
below, the embedding may be fixed or updated in the finetuning task training. For a given example
in the pretraining data, we calculate its influence function score with respect to each test example
in the finetuning task test set using the method presented in Section 3. To evaluate this pretraining
example’s contribution to the overall performance of the model, we sum up the influence function
scores across the whole test set in the finetuning task.

To validate the score, we remove that pretraining example and go through the aforementioned process
again by updating the model. In the updating process we further train the pretrained and finetuned
models for T ′pretrain and T ′finetune steps from the original model checkpoints. Note that in this process
the pretraining is conducted with the new leave-one-out pretraining training set, while the training set
for the finetuning task is intact. Due to computation constraints, we only use the top 100 pretraining
examples with the largest influence function absolute values in this experiments to get 100 score-
difference pairs. Then we run a linear regression between the true loss difference values obtained and
the influence score computed to show their correlation. The detailed hyperparameters used in these
experiments are presented in Appendix B.

4.1.1 EMBEDDING IS FIXED

In Figure 2 we show the correlation results of CIFAR and MNIST models when the embedding is
fixed in finetuning task training. Though we make many approximations in our formulation, from
Figures 2a and 2b we can see that there is a clear linear correlation between the true loss difference
and the influence function scores obtained. The correlation is evaluated with Pearson’s r value. This
supports our argument that we can use this score to detect the examples in the pretraining set which
contributes most to the model’s performance. In Figure 3 we demonstrate the misclassified test

0.06725 0.06775 0.06825 0.06875 0.06925
True Loss Difference

0.0010

0.0005

0.0000

0.0005

Sc
ore

 Va
lue

Pearson r=0.62

(a) CIFAR Pearson’s r = 0.62.

0.00182 0.00180 0.00178 0.00176 0.00174 0.00172
True Loss Difference

0.000015

0.000010

0.000005

0.000000

0.000005

0.000010

0.000015

Sc
ore

 Va
lue

Pearson r=0.47

(b) MNIST Pearson’s r = 0.47.

Figure 2: CIFAR and MNIST model true loss difference vs. the influence function scores by (8). The
loss is calculated as the sum of all test examples.

images in the finetuning task and the images with the largest positive influence function score in the
pretraining dataset. Examples with large positive influence score are expected to have negative effect
on the model’s performance since intuitively when they are added to the pretraining dataset, the loss
of the test example will increase. From Figure 3 we can indeed see that the identified examples are
with low quality, and they can be easily misclassified even with human eyes.

One may doubt the effectiveness of the expensive inverse Hessian computation in our formulation.
As a comparison, we replace all inverse Hessians in (11) with identity matrices to compute the

7

Under review as a conference paper at ICLR 2020

influence function score for the MNIST model. The results are shown in Figure 4 with a much smaller
Pearson’s r of 0.17. This again shows effectiveness of our proposed influence function.

4.1.2 EMBEDDING IS UPDATED IN FINETUNE

Practically, the embedding can also be updated in the finetuning process. In Figure 5 we show the
correlation between true loss difference and influence function score values using (13). We can see
that even under this challenging condition, our multi-stage influence function from (13) still has a
strong correlation with the true loss difference, with a Pearson’s r = 0.40.

4.2 THE FINETUNING TASK’S SIMILARITY TO THE PRETRAINING TASK

In this experiment, we explore the relationship between influence function score and finetuning task
similarity with the pretraining task. Specifically, we study whether the influence function score will
increase in absolute value if the finetuning task is very similar to the pretraining task. To do this, we
use the CIFAR embedding obtained from a “bird vs. frog" classification and test its influence function
scores on two finetuning tasks. The finetuning task A is exactly the same as the pretraining “bird vs.
frog" classification, while the finetuning task B is a classification on two other classes (“automobile
vs. deer"). All hyperparameters used in the two finetuning tasks are the same. In Figure 6, for both
tasks we plot the distribution of the influence function values with respect to each pretraining example.
We sum up the influence score for all test examples. We can see that, the first finetuning task influence
function has much larger absolute values than that of the second task. The average absolute value
of task A influence function score is 0.055, much larger than that of task B, which is 0.025. This
supports the argument that if pretraining task and finetuning task are similar, the pretraining data will
have larger influence on the finetuning task performance.

4.3 INFLUENCE FUNCTION SCORE WITH DIFFERENT NUMBER OF FINETUNE EXAMPLES

We also study the relationship between the influence function scores and number of examples used in
finetuning. In this experiment, we update the pretrained embedding in finetuning stage. We use the
same pretraining and finetuning task as in Section 4.1. In Figure 7, model C is the model used in

test example pretrain example test example pretrain example
prediction=6 influence score=91.6 prediction=“cat" influence score=1060.9
true label=5 true label=2 true label=“automobile" true label=“bird"

Figure 3: Identifying the pretrain example with largest influence function score which contributes an
error in the finetune task.

0.00182 0.00180 0.00178 0.00176 0.00174 0.00172
True Loss Difference

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

Sc
or

e
Va

lu
e

Pearson r=0.17

Figure 4: MNIST model true loss differ-
ence and influence function with all Hes-
sians replaced by identity matrices. Pear-
son’s r = 0.17.

0.3745 0.3740 0.3735 0.3730 0.3725
True Loss Difference

0.003

0.002

0.001

0.000

0.001

0.002

Sc
or

e
Va

lu
e

Pearson r=0.40

Figure 5: CIFAR example using `2 reg-
ularization formulation in (13) when em-
bedding is not fixed in finetune. Pearson’s
r = 0.40.

8

Under review as a conference paper at ICLR 2020

12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0
Influence Function Score Value

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y
De

ns
ity

A: bird vs. frog
B: automobile vs. deer

Figure 6: Two different finetuning task dis-
tribution of influence function scores with
respect to each pretrain example. Each pre-
training example’s influence score value is
summed up for all test examples. The pre-
trained embedding is fixed in finetuning.
For both finetuning tasks, the pretrained
model is the same, and is trained using “bird
vs. frog" in CIFAR. For model A, finetun-
ing task and pretraining task are the same.
The average absolute values of influence
function scores for models A and B are
0.055 and 0.025, respectively.

20 10 0 10 20 30 40
Influence Function Score Value

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y
De

ns
ity

C: 5k finetune data
D: 15k finetune data

Figure 7: Two different finetuning task dis-
tribution of influence function scores which
respect to each pretraining example. Each
pretraining example’s influence score value
is summed up for all test examples. The pre-
trained embedding is also updated in fine-
tuning. The pretraining and finetuning tasks
are the same as in Section 4.1.2. Model D’s
number of finetuning examples and finetun-
ing steps are 3X of model C’s. The average
absolute values of influence function scores
for Models C and D are 0.22 and 0.15, re-
spectively.

Section 4.1.2 while in model D we triple the number of finetuning examples as well as the number
of finetuning steps. Figure 7 demonstrates the distribution of each pretraining examples’ influence
function score with the whole test set. The average absolute value of influence function score in
model D is 0.15, much less than that of model C. This indicates that with more finetuning examples
and more finetuning steps, the influence of pretraining data to the finetuning model’s performance
will decrease. This makes sense as if the finetuning data does not have sufficient information for
training a good finetuning task, then pretraining data will have more impact on the finetuning task.

5 CONCLUSION
We introduce a multi-stage influence function to evaluate pretraining examples’ contribution to
finetuned model’s prediction. Two different cases are studied: the pretrained embedding is fixed
in finetuning or the pretrained embedding is updated in finetuning. We test our method on both
CV and NLP tasks. Our experimental results show strong correlation between the proposed multi-
stage influence function scores and the true loss difference when an example is removed from the
pretraining data. We believe this is a promising way to connect finetuned model’s performance with
pretraining data directly.

REFERENCES

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple
tasks and unlabeled data. J. Mach. Learn. Res., 6:1817–1853, 2005.

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, and Richard Zemel. Understand-
ing the origins of bias in word embeddings. In ICML, pp. 803–811, 2019.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

R. Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495–508, 1980.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

9

Under review as a conference paper at ICLR 2020

Tian Guo, Tao Lin, and Nino Antulov-Fantulin. Exploring interpretable LSTM neural networks over
multi-variable data. In Proceedings of the 36th International Conference on Machine Learning, pp.
2494–2504, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1885–1894.
JMLR. org, 2017.

Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo, and Percy Liang. On the accuracy of influence
functions for measuring group effects. In NeurIPS, 2019.

Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new tasks. In Proceed-
ings of the 23rd National Conference on Artificial Intelligence - Volume 2, AAAI’08, pp. 646–651,
2008.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly supervised
pretraining. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 181–196,
2018.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pp. 3111–3119, 2013.

Jose Oramas, Kaili Wang, and Tinne Tuytelaars. Visual explanation by interpretation: Improving
visual feedback capabilities of deep neural networks. In International Conference on Learning
Representations, 2019.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for data poisoning attacks. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
3520–3532, 2017.

Hao Wang, Berk Ustun, and Flávio P. Calmon. Repairing without retraining: Avoiding disparate
impact with counterfactual distributions. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 6618–6627,
2019.

10

Under review as a conference paper at ICLR 2020

A PROOF OF THEOREM 1

Proof. Since Θ̂ε, Ûε, Ŵε are optimal solutions, and thus satisfy the following optimality conditions:

0 =
∂

∂Θ
F (Ŵε, Θ̂ε) (16)

0 =
∂

∂(W,U)
G(Ŵε, Ûε) + ε

∂

∂(W,U)
g(z, Ŵε, Ûε), (17)

where ∂(W,U) means concatenate the U and W as [W,U] and compute the gradient w.r.t [W,U].
We define the changes of parameters as ∆Wε = Ŵε − Ŵ , ∆Θε = Θ̂ε − Θ̂, and ∆Uε = Ûε − Û .
Applying Taylor expansion to the rhs of (17) we get

0 ≈ ∂

∂(W,U)
G(W ∗, U∗) +

∂2G(W ∗, U∗)

∂(W,U)2

[
∆Wε

∆Uε

]
+ ε

∂g(z,W ∗, U∗)

∂(W,U)
+ ε

∂2g(z,W ∗, U∗)

∂(W,U)2

[
∆Wε

∆Uε

]
(18)

Since W ∗, U∗ are optimal of unperturbed problem, ∂
∂(W,U)G(W ∗, U∗) = 0, and we have[

∆Wε

∆Uε

]
≈ −

(
∂2G(W ∗, U∗)

∂(W,U)2
+ ε

∂2g(z,W ∗, U∗)

∂(W,U)2

)−1

(
∂g(z,W ∗, U∗)

∂(W,U)
)ε (19)

Since ε→ 0, we have further approximation[
∆Wε

∆Uε

]
≈
(
∂2G(W ∗, U∗)

∂(W,U)2

)−1

(
∂g(z,W ∗, U∗)

∂(W,U)
)ε (20)

Similarly, based on (16) and applying first order Taylor expansion to its rhs we have

0 ≈ ∂F (W ∗,Θ∗)

∂Θ
+
∂2F (W ∗,Θ∗)

∂Θ∂W
·∆Wε +

∂2F (W ∗,Θ∗)

∂Θ2
∆Θε. (21)

Combining (21) with (20) we have

∆Θε ≈ (
∂2F (W ∗,Θ∗)

∂Θ2
)−1 · (∂

2F (W ∗,Θ∗)

∂Θ∂W
) ·
[(∂2G(W ∗, U∗)

∂(W,U)2

)−1
(
∂g(z,W ∗, U∗)

∂(W,U)
)

]
W

ε

where [·]W means taking the W part of the vector. Therefore,

Iz,W :=
∂Ŵε

∂ε

∣∣
ε=0

= −
[(∂2G(W ∗, U∗)

∂(W,U)2

)−1
(
∂g(z,W ∗, U∗)

∂(W,U)
)

]
W

(22)

Iz,Θ :=
∂Θ̂ε

∂ε

∣∣
ε=0

= (
∂2F (W ∗,Θ∗)

∂Θ2
)−1 · (∂

2F (W ∗,Θ∗)

∂Θ∂W
) ·
[(∂2G(W ∗, U∗)

∂(W,U)2

)−1
(
∂g(z,W ∗, U∗)

∂(W,U)
)

]
W

(23)

B MODELS AND HYPERPARAMETERS FOR THE EXPERIMENTS IN
SECTIONS 4.1, 4.2 AND 4.3

The model structures we used in Sections 4.1, 4.2 and 4.3 are listed in Table A. As mentioned in
the main text, for all models, CNN layers are used as embeddings and fully connected layers are
task-specific. The number of neurons on the last fully connected layer is determined by the number
of classes in the classification. There is no activation at the final output layer and all other activations
are Tanh.

• For MNIST experiments in Section 4.1.1, we train a four-class classification (0, 1, 2, and
3) in pretraining. All examples in the original MNIST training set with with these four
labels are used in pretraining. The finetuning task is to classify the rest six classes, and

11

Under review as a conference paper at ICLR 2020

we subsample only 5000 examples to finetune. The pretrained embedding is fixed in
finetuning. We run Adam optimizer in both pretraining and finetuning with a batch size
of 512. The pretrained and finetuned models are trained to converge. When validating the
influence function score, we remove an example from pretraining dataset. Then we re-run
the pretraining and finetuning process with this leave-one-out pretraining dataset starting
from the original models’ weights. In this process, we only run 100 steps for pretraining
and finetuning as the models converge. When computing the influence function scores, the
damping term for the pretrained and finetuned model’s Hessians are 1× 10−2 and 1× 10−8,
respectively. We sample 1000 pretraining examples when computing the pretraind model’s
Hessian summation.
• For CIFAR experiments in Section 4.1.1, we train a two-class classification (“bird" vs “frog")

in pretraining. All examples in the original CIFAR training set with with these four labels
are used in pretraining. The finetuning task is to classify the rest eight classes, and we
subsample only 5000 examples to finetune. The pretrained embedding is fixed in finetuning.
We run Adam optimizer to train both pretrained and finetuned model with a batch size
of 128. The pretrained and finetuned models are trained to converge. When validating
the influence function score, we remove an example from pretraining dataset. Then we
re-run the pretraining and finetuning process with this leave-one-out pretraining dataset
starting from the original models’ weights. In this process, we only run 6000 steps for
pretraining and 3000 steps for finetuning. When computing the influence function scores, the
damping term for the pretrained and finetuned model’s Hessians are 1× 10−8 and 1× 10−6,
respectively. Same hyperparameters are used in experiments in Sections 4.2 and 4.3. We
also use these hyperparameters in Section 4.1.2’s experiments, except that the pretrained
embedding is updated in finetuning and the number of finetuning steps is reduced to 1000 in
validation. The α constant in Equation 14 is chosen as 0.01. We sample 1000 pretraining
examples when computing the pretrained model’s Hessian summation.

Dataset MNIST CIFAR

Embedding

CONV 32 5×5+1 CONV 32 3×3+1
MAX-POOL 2×2 +2 CONV 64 4×4+1

CONV 64 5×5+1 MAX-POOL 2×2 +2
MAX-POOL 2×2 +2 CONV 128 2×2+1

MAX-POOL 2×2 +2
CONV 128 2×2+1

MAX-POOL 2×2 +2

Task specific FC <# classes> FC 1500
FC <# classes>

Table A: Model Architectures. “CONV k w×h+s” represents a 2D convolutional layer with k filters
of size w×h using a stride of s in both dimensions. “MAX-POOL w×h+s” represents a 2D max
pooling layer with kernel size w×h using a stride of s in both dimensions. “FC n” = fully connected
layer with n outputs. All activation functions are Tanh and last fully connected layers do not have
activation functions. The number of neurons on the last fully connected layer is determined by the
number of classes in the task.

C ELMO EXPERIMENT

In this section we show influence function score results with ELMo. The finetune task is a bi-
nary sentiment classification of twitter1 and the ELMo model is pretrained on a one-billion-word
dataset Chelba et al. (2013). For the finetuned model, we add a hidden layer with 64 neurons and an
output layer to build the classifier. The activation function is Tanh. For simplicity, we use the original
pretrained ELMo embedding and the embedding is fixed in finetuning. We randomly sample a subset
of 1000 sentences from one-billion-word dataset. For a test sentence, we list the pretrain sentences
with the largest and the smallest absolute influence function score values in one-billion-word dataset.

1 https://datahack.analyticsvidhya.com/contest/linguipedia-codefest-natural-language-processing-1/#data_dictionary

12

https://datahack.analyticsvidhya.com/contest/linguipedia-codefest-natural-language-processing-1/#data_dictionary

Under review as a conference paper at ICLR 2020

Test Sentence Max abs. score Sentence in Pretrain Min abs. score Sentence in Pretrain

Finally a transparent silicon
case Thanks to my uncle :)
#yay #Sony #Xperia #S
#sonyexperias. . .

-0.0049 Prof Slobodchikoff details the
experiments he has done to
reveal the hidden structure of
the prairie dog ’s language
within the BBC natural
history programme " Prairie
dogs , talk of the town , "
broadcast as part of the
Natural World documentary
series .

6.74× 10−9 He will be there to help you . "

Bout to go shopping again
listening to music #iphone
#justme #music #likeforlike
#followforfollow. . .

0.0014 We are seeing the first big
systematic investment in
dance .

−6.30× 10−9 The war seemed to energize
her , and she began to hang
out with the American
journalists based in London .

Ha! Not heavy machinery but
it does what I need it to.
@Apple really dropped the
ball with that design.
#drinkyourhaterade

0.00052 He ’s been on the move since
his comeback victory over
Juan Manuel Marquez more
than two weeks ago , a
brutally efficient boxing
display that generated a
staggering 1 million pay-per-v
iew buys .

−2.25× 10−9 Taylor said the syndicated TV
psychologist broached the
idea of the show to Spears ’
handlers , who eventually
decided that such a show
would be " detrimental " to
the family .

Table B: The list of test sentences and pretraining sentences with the largest and the smallest absolute
influence function score values in our subset of pretraining data. The subset consists of 1000 random
sentences from one-billion-word, which is used to pretrained ELMo embedding.

13

	Introduction
	related work
	Algorithms
	Multi-Stage Model Training
	Influence function for multi-stage models
	Case 1: embedding parameters W are fixed in finetuning
	Case 2: embedding parameter W is also updated in the finetuning stage

	Implementation details

	Experiments
	Influence function correlation with real score
	Embedding is fixed
	Embedding is updated in finetune

	The Finetuning Task's Similarity to the Pretraining Task
	Influence Function Score with Different Number of Finetune Examples

	Conclusion
	Proof of Theorem 1
	Models and Hyperparameters for the Experiments in Sections 4.1, 4.2 and 4.3
	ELMo Experiment

